中文版 | English
题名

Edge transitive maps

其他题名
边传递地图
姓名
姓名拼音
LIU Luyi
学号
12031108
学位类型
博士
学位专业
070101 基础数学
学科门类/专业学位类别
07 理学
导师
胡勇,李才恒
导师单位
数学系;数学系
论文答辩日期
2024-05-11
论文提交日期
2024-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

A {\em map} is a $2$-cell embedding of a graph into a closed surface, denoted by $\calM=(V, E, F)$ a map with vertex set $V$, edge set $E$, and face set $F$. An {\em automorphism} of $\calM$ is a permutation on $V\cup E\cup F$ which preserves $V$, $E$ and $F$, and their incidences. Under composition of permutations, all automorphisms form the {\em automorphism group} $\Aut(\calM)$. An {\em edge-transitive} map $\calM$ has a high symmetry degree; namely, the automorphism group $\Aut(\calM)$ is transitive on the edge set. Studying edge-transitive maps has been a central topic in algebraic and topological graph theory for a long time. In particular, Graver and Watkins classified automorphism groups of edge-transitive maps into fourteen types (\emph{Mem. Amer. Math. Soc.}, 1997). Automorphism groups of maps in each type correspond to a unique algebraically consistent combination of stabilizers of vertices, edges, faces, and Petrie walks. Among the fourteen types, one type is (flag) {\em regular}, six types are {\em arc-regular} up to duality, and the others are {\em edge-regular}. The {\em Euler characteristic} is a topological invariant for a map $\calM$, which is equal to $|V|-|E|+|F|$. Breda, Nedela, and {\v{S}}ir{\`{a}}{\v{n}} classified regular maps of negative prime Euler characteristic (\emph{Trans. Amer. Math. Soc.}, 2005). It is shown that the Euler characteristic of a map affects the automorphism group. As a generalization, we initiate the study of the following problem in this thesis: \emph{Classify edge-transitive maps such that the Euler characteristic is prime to the edge number}. The main results of this thesis include the following three parts. \begin{enumerate}[\rm(i)] \item~ It is proved that there exist exactly thirteen types of edge-transitive maps whose Euler characteristic is prime to the edge number. Examples of each of the thirteen types are constructed. The unique type in the exception is one of the seven edge-regular types. \item~ A classification is given of arc-transitive maps, of which automorphism groups are non-solvable, and the Euler characteristic is prime to the edge number. In this classification, maps are face-intransitive and arc-regular, except for regular maps. In addition, the stabilizers of the points and faces in the automorphism group of the map in this classification result are maximal dihedral subgroups. The enumeration of isomorphic classes of face-intransitive and arc-regular maps is provided. \item~A characterization of orientable maps whose Euler characteristic is prime to the edge number is given. Automorphism groups of such maps are metacyclic or contain a cyclic subgroup of index at most $4$. The later case only occurs when it comes to automorphism groups of regular maps. There exist exactly eight types of orientable edge-transitive maps whose Euler characteristic is prime to the edge number.

其他摘要

    地图是一个图在曲面上的双胞腔嵌入。    我们通常将一个地图$\calM$记作$(V,E,F)$, 其中$V$、$E$、$F$ 分别是地图的点集、边集和面集。
    一个地图的自同构是集合$V\cup E\cup F$上的一个保持点集、边集和面集不变,且保持点、边和面间的邻接关系不变的置换。   所有地图的自同构在置换的复合关系下构成地图的自同构群。   如果一个地图的自同构群在其边集上传递,那么我们称其为一个边传递地图。   边传递地图是一类具有很高对称性的地图。    
    长久以来,对边传递地图的研究一直是代数图论和拓扑图论中的一个热点。    其中一个重要的成果是Graver和Watkins给出的对边传递地图及其自同构群的十四类划分(\emph{Mem. Amer. Math. Soc.}, 1997)。
    每一类中,地图的自同构群对应于唯一的一个代数上相容的点、边、面和Petrie路的稳定子的组合。    在这十四类中,一类是(旗)正则地图,六类在对偶意义下是弧正则地图,其余的七类是边正则地图。    
    一个地图的欧拉示性数是它的一个拓扑不变量,其被定义为点数加面数减去边数,与其曲面的欧拉示性数一致。    Breda,Nedela,和{\v{S}}ir{\`{a}}{\v{n}}分类了欧拉示性数为负素数的正则地图(\emph{Trans. Amer. Math. Soc.}, 2005)。    这篇文章指出,地图的欧拉示性数会对其自同构群做出限制。
    作为以上结果的推广,这篇论文率先开始了对如下问题的研究:分类欧拉示性数和边数互素的边传递地图。
        
    这篇论文的主要结果分为以下三个部分。\begin{enumerate}[\rm(i)]
    \item~在十四类边传递地图中,我们证明了存在十三类欧拉示性数和边数互素的边传递地图。    十四类边传递地图中唯一的例外属于一类边正则地图。
    我们对十三类中的每一类地图构造了例子。    \item~完全分类了自同构群为不可解群的,且欧拉示性数和边数互素的弧传递地图。    其中,除了正则地图以外,地图是弧正则且面不传递的。    %其中这唯一一个正则地图是Petersen图在射影平面上的嵌入。
    另外,在这个分类结果中,地图的点、面在自同构群中的稳定子都是极大二面体子群。    对于弧正则且面不传递的地图,我们计数了其同构类的个数。    \item~刻画了欧拉示性数和边数互素的可定向地图。    这类地图的自同构群是亚循环群或者包含一个指数至多为四的循环子群。    后一种情况只发生在正则地图的自同构群中。    存在八类可定向的,欧拉示性数和边数互素的边传递地图。

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] COXETER H S M, MOSER W O J. Generators and relations for discrete groups: Band 14[M].Second ed. Springer-Verlag, Berlin-Göttingen-New York, 1965: ix+161.
[2] JONES G A. Finite simple automorphism groups of edge-transitive maps[J/OL]. J. Algebra,2022, 607: 454-472. https://doi.org/10.1016/j.jalgebra.2021.07.038.
[3] GRAVER J E, WATKINS M E. Locally finite, planar, edge-transitive graphs[J/OL]. Mem.Amer. Math. Soc., 1997, 126(601): vi+75. https://doi.org/10.1090/memo/0601.
[4] BREDA D’AZEVEDO A, NEDELA R, ŠIRÀŇ J. Classification of regular maps of negativeprime Euler characteristic[J/OL]. Trans. Amer. Math. Soc., 2005, 357(10): 4175-4190. https://doi.org/10.1090/S0002-9947-04-03622-0.
[5] KLEIN F. Ueber die Transformation siebenter Ordnung der elliptischen Functionen[J/OL].Math. Ann., 1878, 14(3): 428-471. https://doi.org/10.1007/BF01677143.
[6] BRAHANA H R. Regular Maps and Their Groups[J]. Amer. J. Math., 1927, 49(2): 268-284.
[7] BREDA D’AZEVEDO A, JONES G, NEDELA R, et al. Chirality groups of maps and hypermaps[J/OL]. J. Algebraic Combin., 2009, 29(3): 337-355. https://doi.org/10.1007/s10801-008-0138-z.
[8] BRAHANA H R. Regular Maps on an Anchor Ring[J/OL]. Amer. J. Math., 1926, 48(4):225-240. https://doi.org/10.2307/2370598.
[9] COXETER H S M. Configurations and maps[J]. Rep. Math. Colloquium (2), 1949, 8: 18-38.
[10] SHERK F A. The regular maps on a surface of genus three[J/OL]. Canadian J. Math., 1959,11: 452-480. https://doi.org/10.4153/CJM-1959-046-9.
[11] GREK A S. Regular polyhedra on a closed surface with the Euler characteristic 𝜒 = −3[J].Izv. Vysš. Učebn. Zaved. Matematika, 1966, 1966(6(55)): 50-53.
[12] GREK A S. Regular polyhedrons on surfaces with Euler characteristic 𝜒 = −4[J]. Soobšč.Akad. Nauk Gruzin. SSR, 1966, 42: 11-15.
[13] CONDER M, DOBCSÀNYI P. Determination of all regular maps of small genus[J/OL]. J.Combin. Theory Ser. B, 2001, 81(2): 224-242. https://doi.org/10.1006/jctb.2000.2008.
[14] CONDER M D E. Regular maps and hypermaps of Euler characteristic −1 to −200[J/OL]. J.Combin. Theory Ser. B, 2009, 99(2): 455-459. https://doi.org/10.1016/j.jctb.2008.09.003.
[15] CONDER M, EVERITT B. Regular maps on non-orientable surfaces[J/OL]. Geom. Dedicata,1995, 56(2): 209-219. https://doi.org/10.1007/BF01267644.
[16] GORENSTEIN D, WALTER J H. The characterization of finite groups with dihedral Sylow2-subgroups[J/OL]. J. Algebra, 1965, 2: 85-151, 218-270,334-393. https://doi.org/10.1016/0021-8693(65)90027-X.
[17] CONDER M, ŠIRÀŇ J. Classification of regular maps of prime characteristic revisited: avoiding the Gorenstein-Walter theorem[J/OL]. J. Algebra, 2020, 548: 120-133. https://doi.org/10.1016/j.jalgebra.2019.12.008.
[18] ZASSENHAUS H. Über endliche Fastkörper[J/OL]. Abh. Math. Sem. Univ. Hamburg, 1935,11(1): 187-220. https://doi.org/10.1007/BF02940723.
[19] SUZUKI M. On finite groups with cyclic Sylow subgroups for all odd primes[J/OL]. Amer. J.Math., 1955, 77: 657-691. https://doi.org/10.2307/2372591.
[20] WONG W J. On finite groups with semi-dihedral Sylow 2-subgroups[J/OL]. J. Algebra, 1966,4: 52-63. https://doi.org/10.1016/0021-8693(66)90050-0.
[21] CONDER M, POTOČNIK P, ŠIRÀŇ J. Regular maps with almost Sylow-cyclic automorphismgroups, and classification of regular maps with Euler characteristic −𝑝2[J/OL]. J. Algebra,2010, 324(10): 2620-2635. https://doi.org/10.1016/j.jalgebra.2010.07.047.
[22] CONDER M, NEDELA R, ŠIRÀŇ J. Classification of regular maps of Euler characteristic−3𝑝[J/OL]. J. Combin. Theory Ser. B, 2012, 102(4): 967-981. https://doi.org/10.1016/j.jctb.2011.11.003.
[23] CONDER M D E, ŠIRÀŇ J, TUCKER T W. The genera, reflexibility and simplicity of regularmaps[J/OL]. J. Eur. Math. Soc. (JEMS), 2010, 12(2): 343-364. https://doi.org/10.4171/JEMS/200.
[24] MA J. Orientably-regular maps of Euler characteristic −2𝑝2[J/OL]. European J. Combin.,2021, 96: 16. https://doi.org/10.1016/j.ejc.2021.103366.
[25] WILSON S. Cantankerous maps and rotary embeddings of 𝐾𝑛[J/OL]. J. Combin. Theory Ser.B, 1989, 47(3): 262-273. https://doi.org/10.1016/0095-8956(89)90028-2.
[26] WILSON S E. Riemann surfaces over regular maps[J/OL]. Canadian J. Math., 1978, 30(4):763-782. https://doi.org/10.4153/CJM-1978-066-5.
[27] BREDA D’AZEVEDO A, CATALANO D A, DUARTE R. Regular pseudo-oriented maps andhypermaps of low genus[J/OL]. Discrete Math., 2015, 338(6): 895-921. https://doi.org/10.1016/j.disc.2015.01.005.
[28] D’AZEVEDO A B, CATALANO D A, ŠIRÀŇ J. Bi-rotary maps of negative prime characteristic[J/OL]. Ann. Comb., 2019, 23(1): 27-50. https://doi.org/10.1007/s00026-019-00421-2.
[29] ORBANIć A, PELLICER D, PISANSKI T, et al. Edge-transitive maps of low genus[J/OL].Ars Math. Contemp., 2011, 4(2): 385-402. https://doi.org/10.26493/1855-3974.249.3a6.
[30] GROTHENDIECK A. Esquisse d’un programme[M]//London Math. Soc. Lecture Note Ser.:Vol. 242 Geometric Galois actions, 1. Cambridge Univ. Press, Cambridge, 1997: 5-48.
[31] BELYĭ G V. On extensions of the maximal cyclotomic field having a given classical Galoisgroup[J/OL]. J. Reine Angew. Math., 1983, 341: 147-156. https://doi.org/10.1515/crll.1983.341.147.
[32] JONES G A, SINGERMAN D. Theory of maps on orientable surfaces[J/OL]. Proc. LondonMath. Soc. (3), 1978, 37(2): 273-307. https://doi.org/10.1112/plms/s3-37.2.273.
[33] BRYANT R P, SINGERMAN D. Foundations of the theory of maps on surfaces with boundary[J/OL]. Quart. J. Math. Oxford Ser. (2), 1985, 36(141): 17-41. https://doi.org/10.1093/qmath/36.1.17.
[34] JONES G A. Maps on surfaces and Galois groups[J]. Math. Slovaca, 1997, 47(1): 1-33.
[35] JONES G, SINGERMAN D. Belyĭ functions, hypermaps and Galois groups[J/OL]. Bull. London Math. Soc., 1996, 28(6): 561-590. https://doi.org/10.1112/blms/28.6.561.
[36] JONES G A. Automorphism groups of maps, hypermaps and dessins[J/OL]. Art Discrete Appl.Math., 2020, 3(1): 14. https://doi.org/10.26493/2590-9770.1275.e77.
[37] JONES G A. Realisation of groups as automorphism groups in permutational categories[J/OL].Ars Math. Contemp., 2021, 21(1): 22. https://doi.org/10.26493/1855-3974.1840.6e0.
[38] WALSH T R S. Hypermaps versus bipartite maps[J/OL]. J. Combinatorial Theory Ser. B, 1975,18: 155-163. https://doi.org/10.1016/0095-8956(75)90042-8.
[39] READE O. Introducing edge-biregular maps[J/OL]. J. Algebraic Combin., 2022, 55(4): 1307-1329. https://doi.org/10.1007/s10801-021-01097-9.
[40] READE O, ŠIRÀŇ J. Classifying edge-biregular maps of negative prime Euler characteristic[J/OL]. Art Discrete Appl. Math., 2022, 5(3): 29. https://doi.org/10.26493/2590-9770.1392.f9a.
[41] WILSON S. Edge-transitive maps and non-orientable surfaces[J]. Math. Slovaca, 1997, 47(1):65-83.
[42] JONES G A. Automorphism groups of edge-transitive maps[J]. Acta Math. Univ. Comenian.(N.S.), 2019, 88(3): 841-847.
[43] CONDER M D E, HOLM I, TUCKER T W. Observations and answers to questions aboutedge-transitive maps[J/OL]. Art Discrete Appl. Math., 2020, 3(1): 27. https://doi.org/10.26493/2590-9770.1381.332.
[44] JONES G A. Just-edge-transitive maps and Coxeter groups[J]. Ars Combin., 1983, 16: 139-150.
[45] SJERVE D, CHERKASSOFF M. CRM Proc. Lecture Notes: Vol. 6 On groups generated bythree involutions, two of which commute[M/OL]. Amer. Math. Soc., Providence, RI, 1994:169-185. https://doi.org/10.1090/crmp/006/09.
[46] NUZHIN Y N. Generating triples of involutions of Chevalley groups over a finite field ofcharacteristic 2[J/OL]. Algebra i Logika, 1990, 29(2): 192-206, 261. https://doi.org/10.1007/BF02001358.
[47] NUZHIN Y N. Generating triples of involutions of Lie-type groups over a finite field of oddcharacteristic. I[J/OL]. Algebra i Logika, 1997, 36(1): 77-96, 118. https://doi.org/10.1007/BF02671953.
[48] NUZHIN Y N. Generating triples of involutions of Lie-type groups over a finite field of oddcharacteristic. II[J]. Algebra i Logika, 1997, 36(4): 422-440, 479.
[49] MAZUROV V D. On the generation of sporadic simple groups by three involutions, two ofwhich commute[J/OL]. Sibirsk. Mat. Zh., 2003, 44(1): 193-198. https://doi.org/10.1023/A:1022028807652.
[50] JAJCAY R, LI C H, ŠIRÁŇ J, et al. Regular and orientably-regular maps with quasiprimitiveautomorphism groups on vertices[J/OL]. Geom. Dedicata, 2019, 203: 389-418. https://doi.org/10.1007/s10711-019-00440-6.
[51] QU H P, WANG Y, YUAN K. Frobenius groups which are the automorphism groups oforientably-regular maps[J/OL]. Ars Math. Contemp., 2020, 19(2): 363-374. https://doi.org/10.26493/1855-3974.1851.b44.
[52] CONDER M D E. Regular maps with an alternating or symmetric group as automorphism group[J/OL]. J. Algebra, 2023, 635: 736-774. https://doi.org/10.1016/j.jalgebra.2023.07.010.
[53] ERSKINE G, HRIŇÁKOVÁ K, ŠIRÁŇ J. Orientably-regular maps on twisted linear fractionalgroups[M/OL]//Springer Proc. Math. Stat.: Vol. 305 Isomorphisms, symmetry and computations in algebraic graph theory. Springer, Cham,
[2020] ©2020: 1-35. https://doi.org/10.1007/978-3-030-32808-5_1. DOI: 10.1007/978-3-030-32808-5_1.
[54] MAČAJ M, PAVLÍKOVÁ S, ŠIRÁŇ J. Enumeration of regular maps of given type on twistedlinear fractional groups[J/OL]. Bull. Lond. Math. Soc., 2023, 55(4): 1668-1684. https://doi.org/10.1112/blms.12811.
[55] PAVLÍKOVÁ S, ŠIRÁŇ J. Characters of twisted fractional linear groups[J/OL]. Comm. Algebra, 2022, 50(9): 3940-3959. https://doi.org/10.1080/00927872.2022.2057505.
[56] LUCCHINI A, SPIGA P. Hypermaps over non-abelian simple groups and strongly symmetricgenerating sets[J/OL]. Electron. J. Combin., 2023, 30(3): 8. https://doi.org/10.37236/10286.
[57] JAMES L D, JONES G A. Regular orientable imbeddings of complete graphs[J/OL]. J. Combin.Theory Ser. B, 1985, 39(3): 353-367. https://doi.org/10.1016/0095-8956(85)90060-7.
[58] NEDELA R, ŠKOVIERA M, ZLATOŠ A. Regular embeddings of complete bipartite graphs[J/OL]. Discrete Math., 2002, 258(1-3): 379-381. https://doi.org/10.1016/S0012-365X(02)00539-3.
[59] BIGGS N L, WHITE A T. London Mathematical Society Lecture Note Series: Vol. 33 Permutation groups and combinatorial structures[M]. Cambridge University Press, Cambridge-NewYork, 1979: 140.
[60] KWAK J H, KWON Y S. Regular orientable embeddings of complete bipartite graphs[J/OL].J. Graph Theory, 2005, 50(2): 105-122. https://doi.org/10.1002/jgt.20097.
[61] JONES G A, NEDELA R, ŠKOVIERA M. Regular embeddings of 𝐾𝑛,𝑛 where 𝑛 is an oddprime power[J/OL]. European J. Combin., 2007, 28(6): 1863-1875. https://doi.org/10.1016/j.ejc.2005.07.021.
[62] JONES G, NEDELA R, ŠKOVIERA M. Complete bipartite graphs with a unique regular embedding[J/OL]. J. Combin. Theory Ser. B, 2008, 98(2): 241-248. https://doi.org/10.1016/j.jctb.2006.07.004.
[63] DU S F, JONES G, KWAK J H, et al. Regular embeddings of 𝐾𝑛,𝑛 where 𝑛 is a power of 2. I.Metacyclic case[J/OL]. European J. Combin., 2007, 28(6): 1595-1609. https://doi.org/10.1016/j.ejc.2006.08.012.
[64] DU S F, JONES G, KWAK J H, et al. Regular embeddings of 𝐾𝑛,𝑛 where 𝑛 is a power of2. II: the non-metacyclic case[J/OL]. European J. Combin., 2010, 31(7): 1946-1956. https://doi.org/10.1016/j.ejc.2010.01.009.
[65] FAN W, LI C H. The complete bipartite graphs with a unique edge-transitive embedding[J/OL].J. Graph Theory, 2018, 87(4): 581-586. https://doi.org/10.1002/jgt.22176.
[66] FAN W, LI C H, QU H P. A classification of orientably edge-transitive circular embeddings ofK𝑝𝑒,𝑝𝑓 [J/OL]. Ann. Comb., 2018, 22(1): 135-146. https://doi.org/10.1007/s00026-018-0373-5.
[67] JONES G A. Regular embeddings of complete bipartite graphs: classification and enumeration[J/OL]. Proc. Lond. Math. Soc. (3), 2010, 101(2): 427-453. https://doi.org/10.1112/plms/pdp061.
[68] JAMES L D. Imbeddings of the complete graph[J]. Ars Combin., 1983, 16: 57-72.
[69] JAMES L D. Edge-symmetric orientable imbeddings of complete graphs[J/OL]. European J.Combin., 1990, 11(2): 133-144. https://doi.org/10.1016/S0195-6698(13)80067-4.
[70] JONES G A. Edge-transitive embeddings of complete graphs[J/OL]. Art Discrete Appl. Math.,2021, 4(3): 12. https://doi.org/10.26493/2590-9770.1314.f6d.
[71] KWAK J H, KWON Y S. Classification of nonorientable regular embeddings of completebipartite graphs[J/OL]. J. Combin. Theory Ser. B, 2011, 101(4): 191-205. https://doi.org/10.1016/j.jctb.2011.03.003.
[72] DU S, ZHANG J Y. A classification of orientably-regular embeddings of complete multipartitegraphs[J/OL]. European J. Combin., 2014, 36: 437-452. https://doi.org/10.1016/j.ejc.2013.09.003.
[73] YU X, LOU B G, FAN W W. The complete bipartite graphs which have exactly two orientablyedge-transitive embeddings[J/OL]. Ars Math. Contemp., 2020, 18(2): 371-379. https://doi.org/10.26493/1855-3974.1900.cc1.
[74] DU S F, KWAK J H, NEDELA R. A classification of regular embeddings of graphs of order aproduct of two primes[J]. Journal of Algebraic Combinatorics, 2004, 19: 123-141.
[75] DU S F, KWAK J H. Nonorientable regular embeddings of graphs of order 𝑝2[J/OL]. DiscreteMath., 2010, 310(12): 1743-1751. https://doi.org/10.1016/j.disc.2009.11.039.
[76] WANG F, DU S. Nonorientable regular embeddings of graphs of order 𝑝𝑞[J/OL]. Sci. ChinaMath., 2011, 54(2): 351-363. https://doi.org/10.1007/s11425-010-4094-4.
[77] ZHOU J X, FENG Y Q. Regular maps of graphs of order 4𝑝[J/OL]. Acta Math. Sin. (Engl.Ser.), 2012, 28(5): 989-1012. https://doi.org/10.1007/s10114-011-9528-6.
[78] ZHU Y, DU S. Nonorientable regular embeddings of graphs of order 𝑝3[J/OL]. J. AlgebraicCombin., 2022, 55(4): 1251-1264. https://doi.org/10.1007/s10801-021-01092-0.
[79] ZHU Y, DU S, MA X, et al. A class of orientably-regular embeddings of graphs of order 𝑝3[J/OL]. Appl. Math. Comput., 2023, 442: 13. https://doi.org/10.1016/j.amc.2022.127707.
[80] DU S, TIAN Y, LI X. Orientably-regular 𝑝-maps and regular 𝑝-maps[J/OL]. J. Combin. TheorySer. A, 2023, 197: 21. https://doi.org/10.1016/j.jcta.2023.105754.
[81] LI X, TIAN Y. On the automorphism groups of regular maps[J/OL]. J. Algebraic Combin.,2024, 59(1): 23-35. https://doi.org/10.1007/s10801-023-01280-0.
[82] DU S, YUAN K. Nilpotent primer hypermaps with hypervertices of valency a prime[J/OL]. J.Algebraic Combin., 2020, 52(3): 299-316. https://doi.org/10.1007/s10801-019-00903-9.
[83] FRASER J, JEANS O, ŠIRÁŇ J. Regular self-dual and self-Petrie-dual maps of arbitrary valency[J/OL]. Ars Math. Contemp., 2019, 16(2): 403-410. https://doi.org/10.26493/1855-3974.1749.84e.
[84] ASCIAK K, CONDER M D E, PAVLÍKOVÁ S, et al. Orientable and non-orientable regularmaps with given exponent group[J/OL]. J. Algebra, 2023, 620: 519-533. https://doi.org/10.1016/j.jalgebra.2023.01.004.
[85] BACHRATÁ V, BACHRATÝ M. Orientably regular maps of given hyperbolic type with nonon-trivial exponents[J/OL]. Ann. Comb., 2023, 27(2): 353-372. https://doi.org/10.1007/s00026-022-00603-5.
[86] LANG S. Introduction to algebraic and abelian functions[M]. Addison-Wesley Publishing Co.,Inc., Reading, MA, 1972: x+112.
[87] JONES G A, WOLFART J. Springer Monographs in Mathematics: Dessins d’enfants onRiemann surfaces[M/OL]. Springer, Cham, 2016: xiv+259. https://doi.org/10.1007/978-3-319-24711-3.
[88] JAJCAY R, ŠIRÀŇ J. Skew-morphisms of regular Cayley maps[J/OL]. Discrete Math., 2002,244(1-3): 167-179. https://doi.org/10.1016/S0012-365X(01)00081-4.
[89] FENG Y Q, HU K, NEDELA R, et al. Complete regular dessins and skew-morphisms of cyclicgroups[J/OL]. Ars Math. Contemp., 2020, 18(2): 289-307. https://doi.org/10.26493/1855-3974.1748.ebd.
[90] CHEN J, FAN W. Complete bipartite multi-graphs with a unique regular dessin[J/OL]. J.Algebraic Combin., 2021, 54(2): 635-649. https://doi.org/10.1007/s10801-021-01019-9.
[91] FAN W. Circular regular dessins[J/OL]. J. Algebraic Combin., 2021, 54(2): 441-456. https://doi.org/10.1007/s10801-020-00996-7.
[92] FAN W. Complete circular regular dessins of type {2𝑒, 2𝑓} I: Metacyclic case[J/OL]. Ann.Comb., 2022, 26(1): 125-144. https://doi.org/10.1007/s00026-021-00562-3.
[93] FAN W, LI C H, QIAO S. Complete circular regular dessins of coprime orders[J/OL]. DiscreteMath., 2023, 346(1): 10. https://doi.org/10.1016/j.disc.2022.113189.
[94] HIDALGO R A. Dessins d’enfants with a given bipartite graph[M/OL]//Contemp. Math.: Vol.776 Automorphisms of Riemann surfaces, subgroups of mapping class groups and relatedtopics. Amer. Math. Soc., [Providence], RI,
[2022] ©2022: 249-267. https://doi.org/10.1090/conm/776/15615.
[95] CONDER M D E, JAJCAY R, TUCKER T W. Cyclic complements and skew morphisms ofgroups[J/OL]. J. Algebra, 2016, 453: 68-100. https://doi.org/10.1016/j.jalgebra.2015.12.024.
[96] HU K, KWON Y S, ZHANG J Y. Classification of skew morphisms of cyclic groups whichare square roots of automorphisms[J/OL]. Ars Math. Contemp., 2021, 21(2): 23. https://doi.org/10.26493/1855-3974.2129.ac1.
[97] CONDER M D E, TUCKER T W. Regular Cayley maps for cyclic groups[J/OL]. Trans. Amer.Math. Soc., 2014, 366(7): 3585-3609. https://doi.org/10.1090/S0002-9947-2014-05933-3.
[98] KWON Y S. A classification of regular 𝑡-balanced Cayley maps for cyclic groups[J/OL]. Discrete Math., 2013, 313(5): 656-664. https://doi.org/10.1016/j.disc.2012.12.012.
[99] CONDER M, JAJCAY R, TUCKER T. Regular Cayley maps for finite abelian groups[J/OL].J. Algebraic Combin., 2007, 25(3): 259-283. https://doi.org/10.1007/s10801-006-0037-0.
[100] CONDER M, JAJCAY R, TUCKER T. Regular 𝑡-balanced Cayley maps[J/OL]. J. Combin.Theory Ser. B, 2007, 97(3): 453-473. https://doi.org/10.1016/j.jctb.2006.07.008.
[101] ŠIRÁŇ J, ŠKOVIERA M. Groups with sign structure and their antiautomorphisms[J/OL]. Discrete Math., 1992, 108(1-3): 189-202. https://doi.org/10.1016/0012-365X(92)90674-5.
[102] CONDER M D E, KWON Y S, ŠIRÁŇ J. Reflexibility of regular Cayley maps for abeliangroups[J/OL]. J. Combin. Theory Ser. B, 2009, 99(1): 254-260. https://doi.org/10.1016/j.jctb.2008.07.002.
[103] KOVÁCS I, KWON Y S. Regular Cayley maps on dihedral groups with the smallest kernel[J/OL]. J. Algebraic Combin., 2016, 44(4): 831-847. https://doi.org/10.1007/s10801-016-0689-3.
[104] KOVÁCS I, KWON Y S. Classification of reflexible Cayley maps for dihedral groups[J/OL].J. Combin. Theory Ser. B, 2017, 127: 187-204. https://doi.org/10.1016/j.jctb.2017.06.002.
[105] KOVÁCS I, KWON Y S. Regular Cayley maps for dihedral groups[J/OL]. J. Combin. TheorySer. B, 2021, 148: 84-124. https://doi.org/10.1016/j.jctb.2020.12.002.
[106] WANG N E, HU K, YUAN K, et al. Smooth skew morphisms of dihedral groups[J/OL]. ArsMath. Contemp., 2019, 16(2): 527-547. https://doi.org/10.26493/1855-3974.1475.3d3.
[107] HU K, KOVÁCS I, KWON Y S. A classification of skew morphisms of dihedral groups[J/OL].J. Group Theory, 2023, 26(3): 547-569. https://doi.org/10.1515/jgth-2022-0085.
[108] DU S, YU H, LUO W. Regular Cayley maps of elementary abelian 𝑝-groups: classificationand enumeration[J/OL]. J. Combin. Theory Ser. A, 2023, 198: 20. https://doi.org/10.1016/j.jcta.2023.105768.
[109] BACHRATÝ M, CONDER M, VERRET G. Skew product groups for monolithic groups[J/OL].Algebr. Comb., 2022, 5(5): 785-802. https://doi.org/10.5802/alco.206.
[110] CHEN J, DU S, LI C H. Skew-morphisms of nonabelian characteristically simple groups[J/OL].J. Combin. Theory Ser. A, 2022, 185: 17. https://doi.org/10.1016/j.jcta.2021.105539.
[111] CAI HENG LI S J S, Cheryl E. Praeger. Locally Finite Vertex-Rotary Maps and Coset Graphswith Finite Valency and Finite Edge Multiplicity[J/OL]. preprint, 2024, preprint: 36. https://doi.org/10.48550/arXiv.2202.07100.
[112] DIXON J D, MORTIMER B. Graduate Texts in Mathematics: Vol. 163 Permutation groups[M/OL]. Springer-Verlag, New York, 1996: xii+346. https://doi.org/10.1007/978-1-4612-0731-3.
[113] ROTMAN J J. Graduate Texts in Mathematics: Vol. 148 An introduction to the theory ofgroups[M/OL]. Fourth ed. Springer-Verlag, New York, 1995: xvi+513. https://doi.org/10.1007/978-1-4612-4176-8.
[114] BRAY J N, HOLT D F, RONEY-DOUGAL C M. London Mathematical Society LectureNote Series: Vol. 407 The maximal subgroups of the low-dimensional finite classical groups[M/OL]. Cambridge University Press, Cambridge, 2013: xiv+438. https://doi.org/10.1017/CBO9781139192576.
[115] KLEIDMAN P, LIEBECK M. London Mathematical Society Lecture Note Series: Vol. 129The subgroup structure of the finite classical groups[M/OL]. Cambridge University Press, Cambridge, 1990: x+303. https://doi.org/10.1017/CBO9780511629235.
[116] HUPPERT B. Die Grundlehren der mathematischen Wissenschaften: Band 134 EndlicheGruppen. I[M]. Springer-Verlag, Berlin-New York, 1967: xii+793.
[117] CARTER R W. Pure and Applied Mathematics: Vol. 28 Simple groups of Lie type[M]. JohnWiley & Sons, London-New York-Sydney, 1972: viii+331.
[118] WILSON S E. Operators over regular maps[J/OL]. Pacific J. Math., 1979, 81(2): 559-568.http://projecteuclid.org/euclid.pjm/1102785296.
[119] LINS S. Graph-encoded maps[J/OL]. J. Combin. Theory Ser. B, 1982, 32(2): 171-181. https://doi.org/10.1016/0095-8956(82)90033-8.
[120] JONES G A, THORNTON J S. Operations on maps, and outer automorphisms[J/OL]. J. Combin. Theory Ser. B, 1983, 35(2): 93-103. https://doi.org/10.1016/0095-8956(83)90065-5.
[121] ŠIRÀŇ J. How symmetric can maps on surfaces be?[M]//London Math. Soc. Lecture Note Ser.:Vol. 409 Surveys in combinatorics 2013. Cambridge Univ. Press, Cambridge, 2013: 161-238.
[122] WOLF J A. Spaces of constant curvature[M/OL]. Sixth ed. AMS Chelsea Publishing, Providence, RI, 2011: xviii+424. https://doi.org/10.1090/chel/372.

所在学位评定分委会
数学
国内图书分类号
O157.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778430
专题理学院_数学系
推荐引用方式
GB/T 7714
Liu LY. Edge transitive maps[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031108-刘鲁一-数学系.pdf(2308KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘鲁一]的文章
百度学术
百度学术中相似的文章
[刘鲁一]的文章
必应学术
必应学术中相似的文章
[刘鲁一]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。