[1] COXETER H S M, MOSER W O J. Generators and relations for discrete groups: Band 14[M].Second ed. Springer-Verlag, Berlin-Göttingen-New York, 1965: ix+161.
[2] JONES G A. Finite simple automorphism groups of edge-transitive maps[J/OL]. J. Algebra,2022, 607: 454-472. https://doi.org/10.1016/j.jalgebra.2021.07.038.
[3] GRAVER J E, WATKINS M E. Locally finite, planar, edge-transitive graphs[J/OL]. Mem.Amer. Math. Soc., 1997, 126(601): vi+75. https://doi.org/10.1090/memo/0601.
[4] BREDA D’AZEVEDO A, NEDELA R, ŠIRÀŇ J. Classification of regular maps of negativeprime Euler characteristic[J/OL]. Trans. Amer. Math. Soc., 2005, 357(10): 4175-4190. https://doi.org/10.1090/S0002-9947-04-03622-0.
[5] KLEIN F. Ueber die Transformation siebenter Ordnung der elliptischen Functionen[J/OL].Math. Ann., 1878, 14(3): 428-471. https://doi.org/10.1007/BF01677143.
[6] BRAHANA H R. Regular Maps and Their Groups[J]. Amer. J. Math., 1927, 49(2): 268-284.
[7] BREDA D’AZEVEDO A, JONES G, NEDELA R, et al. Chirality groups of maps and hypermaps[J/OL]. J. Algebraic Combin., 2009, 29(3): 337-355. https://doi.org/10.1007/s10801-008-0138-z.
[8] BRAHANA H R. Regular Maps on an Anchor Ring[J/OL]. Amer. J. Math., 1926, 48(4):225-240. https://doi.org/10.2307/2370598.
[9] COXETER H S M. Configurations and maps[J]. Rep. Math. Colloquium (2), 1949, 8: 18-38.
[10] SHERK F A. The regular maps on a surface of genus three[J/OL]. Canadian J. Math., 1959,11: 452-480. https://doi.org/10.4153/CJM-1959-046-9.
[11] GREK A S. Regular polyhedra on a closed surface with the Euler characteristic 𝜒 = −3[J].Izv. Vysš. Učebn. Zaved. Matematika, 1966, 1966(6(55)): 50-53.
[12] GREK A S. Regular polyhedrons on surfaces with Euler characteristic 𝜒 = −4[J]. Soobšč.Akad. Nauk Gruzin. SSR, 1966, 42: 11-15.
[13] CONDER M, DOBCSÀNYI P. Determination of all regular maps of small genus[J/OL]. J.Combin. Theory Ser. B, 2001, 81(2): 224-242. https://doi.org/10.1006/jctb.2000.2008.
[14] CONDER M D E. Regular maps and hypermaps of Euler characteristic −1 to −200[J/OL]. J.Combin. Theory Ser. B, 2009, 99(2): 455-459. https://doi.org/10.1016/j.jctb.2008.09.003.
[15] CONDER M, EVERITT B. Regular maps on non-orientable surfaces[J/OL]. Geom. Dedicata,1995, 56(2): 209-219. https://doi.org/10.1007/BF01267644.
[16] GORENSTEIN D, WALTER J H. The characterization of finite groups with dihedral Sylow2-subgroups[J/OL]. J. Algebra, 1965, 2: 85-151, 218-270,334-393. https://doi.org/10.1016/0021-8693(65)90027-X.
[17] CONDER M, ŠIRÀŇ J. Classification of regular maps of prime characteristic revisited: avoiding the Gorenstein-Walter theorem[J/OL]. J. Algebra, 2020, 548: 120-133. https://doi.org/10.1016/j.jalgebra.2019.12.008.
[18] ZASSENHAUS H. Über endliche Fastkörper[J/OL]. Abh. Math. Sem. Univ. Hamburg, 1935,11(1): 187-220. https://doi.org/10.1007/BF02940723.
[19] SUZUKI M. On finite groups with cyclic Sylow subgroups for all odd primes[J/OL]. Amer. J.Math., 1955, 77: 657-691. https://doi.org/10.2307/2372591.
[20] WONG W J. On finite groups with semi-dihedral Sylow 2-subgroups[J/OL]. J. Algebra, 1966,4: 52-63. https://doi.org/10.1016/0021-8693(66)90050-0.
[21] CONDER M, POTOČNIK P, ŠIRÀŇ J. Regular maps with almost Sylow-cyclic automorphismgroups, and classification of regular maps with Euler characteristic −𝑝2[J/OL]. J. Algebra,2010, 324(10): 2620-2635. https://doi.org/10.1016/j.jalgebra.2010.07.047.
[22] CONDER M, NEDELA R, ŠIRÀŇ J. Classification of regular maps of Euler characteristic−3𝑝[J/OL]. J. Combin. Theory Ser. B, 2012, 102(4): 967-981. https://doi.org/10.1016/j.jctb.2011.11.003.
[23] CONDER M D E, ŠIRÀŇ J, TUCKER T W. The genera, reflexibility and simplicity of regularmaps[J/OL]. J. Eur. Math. Soc. (JEMS), 2010, 12(2): 343-364. https://doi.org/10.4171/JEMS/200.
[24] MA J. Orientably-regular maps of Euler characteristic −2𝑝2[J/OL]. European J. Combin.,2021, 96: 16. https://doi.org/10.1016/j.ejc.2021.103366.
[25] WILSON S. Cantankerous maps and rotary embeddings of 𝐾𝑛[J/OL]. J. Combin. Theory Ser.B, 1989, 47(3): 262-273. https://doi.org/10.1016/0095-8956(89)90028-2.
[26] WILSON S E. Riemann surfaces over regular maps[J/OL]. Canadian J. Math., 1978, 30(4):763-782. https://doi.org/10.4153/CJM-1978-066-5.
[27] BREDA D’AZEVEDO A, CATALANO D A, DUARTE R. Regular pseudo-oriented maps andhypermaps of low genus[J/OL]. Discrete Math., 2015, 338(6): 895-921. https://doi.org/10.1016/j.disc.2015.01.005.
[28] D’AZEVEDO A B, CATALANO D A, ŠIRÀŇ J. Bi-rotary maps of negative prime characteristic[J/OL]. Ann. Comb., 2019, 23(1): 27-50. https://doi.org/10.1007/s00026-019-00421-2.
[29] ORBANIć A, PELLICER D, PISANSKI T, et al. Edge-transitive maps of low genus[J/OL].Ars Math. Contemp., 2011, 4(2): 385-402. https://doi.org/10.26493/1855-3974.249.3a6.
[30] GROTHENDIECK A. Esquisse d’un programme[M]//London Math. Soc. Lecture Note Ser.:Vol. 242 Geometric Galois actions, 1. Cambridge Univ. Press, Cambridge, 1997: 5-48.
[31] BELYĭ G V. On extensions of the maximal cyclotomic field having a given classical Galoisgroup[J/OL]. J. Reine Angew. Math., 1983, 341: 147-156. https://doi.org/10.1515/crll.1983.341.147.
[32] JONES G A, SINGERMAN D. Theory of maps on orientable surfaces[J/OL]. Proc. LondonMath. Soc. (3), 1978, 37(2): 273-307. https://doi.org/10.1112/plms/s3-37.2.273.
[33] BRYANT R P, SINGERMAN D. Foundations of the theory of maps on surfaces with boundary[J/OL]. Quart. J. Math. Oxford Ser. (2), 1985, 36(141): 17-41. https://doi.org/10.1093/qmath/36.1.17.
[34] JONES G A. Maps on surfaces and Galois groups[J]. Math. Slovaca, 1997, 47(1): 1-33.
[35] JONES G, SINGERMAN D. Belyĭ functions, hypermaps and Galois groups[J/OL]. Bull. London Math. Soc., 1996, 28(6): 561-590. https://doi.org/10.1112/blms/28.6.561.
[36] JONES G A. Automorphism groups of maps, hypermaps and dessins[J/OL]. Art Discrete Appl.Math., 2020, 3(1): 14. https://doi.org/10.26493/2590-9770.1275.e77.
[37] JONES G A. Realisation of groups as automorphism groups in permutational categories[J/OL].Ars Math. Contemp., 2021, 21(1): 22. https://doi.org/10.26493/1855-3974.1840.6e0.
[38] WALSH T R S. Hypermaps versus bipartite maps[J/OL]. J. Combinatorial Theory Ser. B, 1975,18: 155-163. https://doi.org/10.1016/0095-8956(75)90042-8.
[39] READE O. Introducing edge-biregular maps[J/OL]. J. Algebraic Combin., 2022, 55(4): 1307-1329. https://doi.org/10.1007/s10801-021-01097-9.
[40] READE O, ŠIRÀŇ J. Classifying edge-biregular maps of negative prime Euler characteristic[J/OL]. Art Discrete Appl. Math., 2022, 5(3): 29. https://doi.org/10.26493/2590-9770.1392.f9a.
[41] WILSON S. Edge-transitive maps and non-orientable surfaces[J]. Math. Slovaca, 1997, 47(1):65-83.
[42] JONES G A. Automorphism groups of edge-transitive maps[J]. Acta Math. Univ. Comenian.(N.S.), 2019, 88(3): 841-847.
[43] CONDER M D E, HOLM I, TUCKER T W. Observations and answers to questions aboutedge-transitive maps[J/OL]. Art Discrete Appl. Math., 2020, 3(1): 27. https://doi.org/10.26493/2590-9770.1381.332.
[44] JONES G A. Just-edge-transitive maps and Coxeter groups[J]. Ars Combin., 1983, 16: 139-150.
[45] SJERVE D, CHERKASSOFF M. CRM Proc. Lecture Notes: Vol. 6 On groups generated bythree involutions, two of which commute[M/OL]. Amer. Math. Soc., Providence, RI, 1994:169-185. https://doi.org/10.1090/crmp/006/09.
[46] NUZHIN Y N. Generating triples of involutions of Chevalley groups over a finite field ofcharacteristic 2[J/OL]. Algebra i Logika, 1990, 29(2): 192-206, 261. https://doi.org/10.1007/BF02001358.
[47] NUZHIN Y N. Generating triples of involutions of Lie-type groups over a finite field of oddcharacteristic. I[J/OL]. Algebra i Logika, 1997, 36(1): 77-96, 118. https://doi.org/10.1007/BF02671953.
[48] NUZHIN Y N. Generating triples of involutions of Lie-type groups over a finite field of oddcharacteristic. II[J]. Algebra i Logika, 1997, 36(4): 422-440, 479.
[49] MAZUROV V D. On the generation of sporadic simple groups by three involutions, two ofwhich commute[J/OL]. Sibirsk. Mat. Zh., 2003, 44(1): 193-198. https://doi.org/10.1023/A:1022028807652.
[50] JAJCAY R, LI C H, ŠIRÁŇ J, et al. Regular and orientably-regular maps with quasiprimitiveautomorphism groups on vertices[J/OL]. Geom. Dedicata, 2019, 203: 389-418. https://doi.org/10.1007/s10711-019-00440-6.
[51] QU H P, WANG Y, YUAN K. Frobenius groups which are the automorphism groups oforientably-regular maps[J/OL]. Ars Math. Contemp., 2020, 19(2): 363-374. https://doi.org/10.26493/1855-3974.1851.b44.
[52] CONDER M D E. Regular maps with an alternating or symmetric group as automorphism group[J/OL]. J. Algebra, 2023, 635: 736-774. https://doi.org/10.1016/j.jalgebra.2023.07.010.
[53] ERSKINE G, HRIŇÁKOVÁ K, ŠIRÁŇ J. Orientably-regular maps on twisted linear fractionalgroups[M/OL]//Springer Proc. Math. Stat.: Vol. 305 Isomorphisms, symmetry and computations in algebraic graph theory. Springer, Cham,
[2020] ©2020: 1-35. https://doi.org/10.1007/978-3-030-32808-5_1. DOI: 10.1007/978-3-030-32808-5_1.
[54] MAČAJ M, PAVLÍKOVÁ S, ŠIRÁŇ J. Enumeration of regular maps of given type on twistedlinear fractional groups[J/OL]. Bull. Lond. Math. Soc., 2023, 55(4): 1668-1684. https://doi.org/10.1112/blms.12811.
[55] PAVLÍKOVÁ S, ŠIRÁŇ J. Characters of twisted fractional linear groups[J/OL]. Comm. Algebra, 2022, 50(9): 3940-3959. https://doi.org/10.1080/00927872.2022.2057505.
[56] LUCCHINI A, SPIGA P. Hypermaps over non-abelian simple groups and strongly symmetricgenerating sets[J/OL]. Electron. J. Combin., 2023, 30(3): 8. https://doi.org/10.37236/10286.
[57] JAMES L D, JONES G A. Regular orientable imbeddings of complete graphs[J/OL]. J. Combin.Theory Ser. B, 1985, 39(3): 353-367. https://doi.org/10.1016/0095-8956(85)90060-7.
[58] NEDELA R, ŠKOVIERA M, ZLATOŠ A. Regular embeddings of complete bipartite graphs[J/OL]. Discrete Math., 2002, 258(1-3): 379-381. https://doi.org/10.1016/S0012-365X(02)00539-3.
[59] BIGGS N L, WHITE A T. London Mathematical Society Lecture Note Series: Vol. 33 Permutation groups and combinatorial structures[M]. Cambridge University Press, Cambridge-NewYork, 1979: 140.
[60] KWAK J H, KWON Y S. Regular orientable embeddings of complete bipartite graphs[J/OL].J. Graph Theory, 2005, 50(2): 105-122. https://doi.org/10.1002/jgt.20097.
[61] JONES G A, NEDELA R, ŠKOVIERA M. Regular embeddings of 𝐾𝑛,𝑛 where 𝑛 is an oddprime power[J/OL]. European J. Combin., 2007, 28(6): 1863-1875. https://doi.org/10.1016/j.ejc.2005.07.021.
[62] JONES G, NEDELA R, ŠKOVIERA M. Complete bipartite graphs with a unique regular embedding[J/OL]. J. Combin. Theory Ser. B, 2008, 98(2): 241-248. https://doi.org/10.1016/j.jctb.2006.07.004.
[63] DU S F, JONES G, KWAK J H, et al. Regular embeddings of 𝐾𝑛,𝑛 where 𝑛 is a power of 2. I.Metacyclic case[J/OL]. European J. Combin., 2007, 28(6): 1595-1609. https://doi.org/10.1016/j.ejc.2006.08.012.
[64] DU S F, JONES G, KWAK J H, et al. Regular embeddings of 𝐾𝑛,𝑛 where 𝑛 is a power of2. II: the non-metacyclic case[J/OL]. European J. Combin., 2010, 31(7): 1946-1956. https://doi.org/10.1016/j.ejc.2010.01.009.
[65] FAN W, LI C H. The complete bipartite graphs with a unique edge-transitive embedding[J/OL].J. Graph Theory, 2018, 87(4): 581-586. https://doi.org/10.1002/jgt.22176.
[66] FAN W, LI C H, QU H P. A classification of orientably edge-transitive circular embeddings ofK𝑝𝑒,𝑝𝑓 [J/OL]. Ann. Comb., 2018, 22(1): 135-146. https://doi.org/10.1007/s00026-018-0373-5.
[67] JONES G A. Regular embeddings of complete bipartite graphs: classification and enumeration[J/OL]. Proc. Lond. Math. Soc. (3), 2010, 101(2): 427-453. https://doi.org/10.1112/plms/pdp061.
[68] JAMES L D. Imbeddings of the complete graph[J]. Ars Combin., 1983, 16: 57-72.
[69] JAMES L D. Edge-symmetric orientable imbeddings of complete graphs[J/OL]. European J.Combin., 1990, 11(2): 133-144. https://doi.org/10.1016/S0195-6698(13)80067-4.
[70] JONES G A. Edge-transitive embeddings of complete graphs[J/OL]. Art Discrete Appl. Math.,2021, 4(3): 12. https://doi.org/10.26493/2590-9770.1314.f6d.
[71] KWAK J H, KWON Y S. Classification of nonorientable regular embeddings of completebipartite graphs[J/OL]. J. Combin. Theory Ser. B, 2011, 101(4): 191-205. https://doi.org/10.1016/j.jctb.2011.03.003.
[72] DU S, ZHANG J Y. A classification of orientably-regular embeddings of complete multipartitegraphs[J/OL]. European J. Combin., 2014, 36: 437-452. https://doi.org/10.1016/j.ejc.2013.09.003.
[73] YU X, LOU B G, FAN W W. The complete bipartite graphs which have exactly two orientablyedge-transitive embeddings[J/OL]. Ars Math. Contemp., 2020, 18(2): 371-379. https://doi.org/10.26493/1855-3974.1900.cc1.
[74] DU S F, KWAK J H, NEDELA R. A classification of regular embeddings of graphs of order aproduct of two primes[J]. Journal of Algebraic Combinatorics, 2004, 19: 123-141.
[75] DU S F, KWAK J H. Nonorientable regular embeddings of graphs of order 𝑝2[J/OL]. DiscreteMath., 2010, 310(12): 1743-1751. https://doi.org/10.1016/j.disc.2009.11.039.
[76] WANG F, DU S. Nonorientable regular embeddings of graphs of order 𝑝𝑞[J/OL]. Sci. ChinaMath., 2011, 54(2): 351-363. https://doi.org/10.1007/s11425-010-4094-4.
[77] ZHOU J X, FENG Y Q. Regular maps of graphs of order 4𝑝[J/OL]. Acta Math. Sin. (Engl.Ser.), 2012, 28(5): 989-1012. https://doi.org/10.1007/s10114-011-9528-6.
[78] ZHU Y, DU S. Nonorientable regular embeddings of graphs of order 𝑝3[J/OL]. J. AlgebraicCombin., 2022, 55(4): 1251-1264. https://doi.org/10.1007/s10801-021-01092-0.
[79] ZHU Y, DU S, MA X, et al. A class of orientably-regular embeddings of graphs of order 𝑝3[J/OL]. Appl. Math. Comput., 2023, 442: 13. https://doi.org/10.1016/j.amc.2022.127707.
[80] DU S, TIAN Y, LI X. Orientably-regular 𝑝-maps and regular 𝑝-maps[J/OL]. J. Combin. TheorySer. A, 2023, 197: 21. https://doi.org/10.1016/j.jcta.2023.105754.
[81] LI X, TIAN Y. On the automorphism groups of regular maps[J/OL]. J. Algebraic Combin.,2024, 59(1): 23-35. https://doi.org/10.1007/s10801-023-01280-0.
[82] DU S, YUAN K. Nilpotent primer hypermaps with hypervertices of valency a prime[J/OL]. J.Algebraic Combin., 2020, 52(3): 299-316. https://doi.org/10.1007/s10801-019-00903-9.
[83] FRASER J, JEANS O, ŠIRÁŇ J. Regular self-dual and self-Petrie-dual maps of arbitrary valency[J/OL]. Ars Math. Contemp., 2019, 16(2): 403-410. https://doi.org/10.26493/1855-3974.1749.84e.
[84] ASCIAK K, CONDER M D E, PAVLÍKOVÁ S, et al. Orientable and non-orientable regularmaps with given exponent group[J/OL]. J. Algebra, 2023, 620: 519-533. https://doi.org/10.1016/j.jalgebra.2023.01.004.
[85] BACHRATÁ V, BACHRATÝ M. Orientably regular maps of given hyperbolic type with nonon-trivial exponents[J/OL]. Ann. Comb., 2023, 27(2): 353-372. https://doi.org/10.1007/s00026-022-00603-5.
[86] LANG S. Introduction to algebraic and abelian functions[M]. Addison-Wesley Publishing Co.,Inc., Reading, MA, 1972: x+112.
[87] JONES G A, WOLFART J. Springer Monographs in Mathematics: Dessins d’enfants onRiemann surfaces[M/OL]. Springer, Cham, 2016: xiv+259. https://doi.org/10.1007/978-3-319-24711-3.
[88] JAJCAY R, ŠIRÀŇ J. Skew-morphisms of regular Cayley maps[J/OL]. Discrete Math., 2002,244(1-3): 167-179. https://doi.org/10.1016/S0012-365X(01)00081-4.
[89] FENG Y Q, HU K, NEDELA R, et al. Complete regular dessins and skew-morphisms of cyclicgroups[J/OL]. Ars Math. Contemp., 2020, 18(2): 289-307. https://doi.org/10.26493/1855-3974.1748.ebd.
[90] CHEN J, FAN W. Complete bipartite multi-graphs with a unique regular dessin[J/OL]. J.Algebraic Combin., 2021, 54(2): 635-649. https://doi.org/10.1007/s10801-021-01019-9.
[91] FAN W. Circular regular dessins[J/OL]. J. Algebraic Combin., 2021, 54(2): 441-456. https://doi.org/10.1007/s10801-020-00996-7.
[92] FAN W. Complete circular regular dessins of type {2𝑒, 2𝑓} I: Metacyclic case[J/OL]. Ann.Comb., 2022, 26(1): 125-144. https://doi.org/10.1007/s00026-021-00562-3.
[93] FAN W, LI C H, QIAO S. Complete circular regular dessins of coprime orders[J/OL]. DiscreteMath., 2023, 346(1): 10. https://doi.org/10.1016/j.disc.2022.113189.
[94] HIDALGO R A. Dessins d’enfants with a given bipartite graph[M/OL]//Contemp. Math.: Vol.776 Automorphisms of Riemann surfaces, subgroups of mapping class groups and relatedtopics. Amer. Math. Soc., [Providence], RI,
[2022] ©2022: 249-267. https://doi.org/10.1090/conm/776/15615.
[95] CONDER M D E, JAJCAY R, TUCKER T W. Cyclic complements and skew morphisms ofgroups[J/OL]. J. Algebra, 2016, 453: 68-100. https://doi.org/10.1016/j.jalgebra.2015.12.024.
[96] HU K, KWON Y S, ZHANG J Y. Classification of skew morphisms of cyclic groups whichare square roots of automorphisms[J/OL]. Ars Math. Contemp., 2021, 21(2): 23. https://doi.org/10.26493/1855-3974.2129.ac1.
[97] CONDER M D E, TUCKER T W. Regular Cayley maps for cyclic groups[J/OL]. Trans. Amer.Math. Soc., 2014, 366(7): 3585-3609. https://doi.org/10.1090/S0002-9947-2014-05933-3.
[98] KWON Y S. A classification of regular 𝑡-balanced Cayley maps for cyclic groups[J/OL]. Discrete Math., 2013, 313(5): 656-664. https://doi.org/10.1016/j.disc.2012.12.012.
[99] CONDER M, JAJCAY R, TUCKER T. Regular Cayley maps for finite abelian groups[J/OL].J. Algebraic Combin., 2007, 25(3): 259-283. https://doi.org/10.1007/s10801-006-0037-0.
[100] CONDER M, JAJCAY R, TUCKER T. Regular 𝑡-balanced Cayley maps[J/OL]. J. Combin.Theory Ser. B, 2007, 97(3): 453-473. https://doi.org/10.1016/j.jctb.2006.07.008.
[101] ŠIRÁŇ J, ŠKOVIERA M. Groups with sign structure and their antiautomorphisms[J/OL]. Discrete Math., 1992, 108(1-3): 189-202. https://doi.org/10.1016/0012-365X(92)90674-5.
[102] CONDER M D E, KWON Y S, ŠIRÁŇ J. Reflexibility of regular Cayley maps for abeliangroups[J/OL]. J. Combin. Theory Ser. B, 2009, 99(1): 254-260. https://doi.org/10.1016/j.jctb.2008.07.002.
[103] KOVÁCS I, KWON Y S. Regular Cayley maps on dihedral groups with the smallest kernel[J/OL]. J. Algebraic Combin., 2016, 44(4): 831-847. https://doi.org/10.1007/s10801-016-0689-3.
[104] KOVÁCS I, KWON Y S. Classification of reflexible Cayley maps for dihedral groups[J/OL].J. Combin. Theory Ser. B, 2017, 127: 187-204. https://doi.org/10.1016/j.jctb.2017.06.002.
[105] KOVÁCS I, KWON Y S. Regular Cayley maps for dihedral groups[J/OL]. J. Combin. TheorySer. B, 2021, 148: 84-124. https://doi.org/10.1016/j.jctb.2020.12.002.
[106] WANG N E, HU K, YUAN K, et al. Smooth skew morphisms of dihedral groups[J/OL]. ArsMath. Contemp., 2019, 16(2): 527-547. https://doi.org/10.26493/1855-3974.1475.3d3.
[107] HU K, KOVÁCS I, KWON Y S. A classification of skew morphisms of dihedral groups[J/OL].J. Group Theory, 2023, 26(3): 547-569. https://doi.org/10.1515/jgth-2022-0085.
[108] DU S, YU H, LUO W. Regular Cayley maps of elementary abelian 𝑝-groups: classificationand enumeration[J/OL]. J. Combin. Theory Ser. A, 2023, 198: 20. https://doi.org/10.1016/j.jcta.2023.105768.
[109] BACHRATÝ M, CONDER M, VERRET G. Skew product groups for monolithic groups[J/OL].Algebr. Comb., 2022, 5(5): 785-802. https://doi.org/10.5802/alco.206.
[110] CHEN J, DU S, LI C H. Skew-morphisms of nonabelian characteristically simple groups[J/OL].J. Combin. Theory Ser. A, 2022, 185: 17. https://doi.org/10.1016/j.jcta.2021.105539.
[111] CAI HENG LI S J S, Cheryl E. Praeger. Locally Finite Vertex-Rotary Maps and Coset Graphswith Finite Valency and Finite Edge Multiplicity[J/OL]. preprint, 2024, preprint: 36. https://doi.org/10.48550/arXiv.2202.07100.
[112] DIXON J D, MORTIMER B. Graduate Texts in Mathematics: Vol. 163 Permutation groups[M/OL]. Springer-Verlag, New York, 1996: xii+346. https://doi.org/10.1007/978-1-4612-0731-3.
[113] ROTMAN J J. Graduate Texts in Mathematics: Vol. 148 An introduction to the theory ofgroups[M/OL]. Fourth ed. Springer-Verlag, New York, 1995: xvi+513. https://doi.org/10.1007/978-1-4612-4176-8.
[114] BRAY J N, HOLT D F, RONEY-DOUGAL C M. London Mathematical Society LectureNote Series: Vol. 407 The maximal subgroups of the low-dimensional finite classical groups[M/OL]. Cambridge University Press, Cambridge, 2013: xiv+438. https://doi.org/10.1017/CBO9781139192576.
[115] KLEIDMAN P, LIEBECK M. London Mathematical Society Lecture Note Series: Vol. 129The subgroup structure of the finite classical groups[M/OL]. Cambridge University Press, Cambridge, 1990: x+303. https://doi.org/10.1017/CBO9780511629235.
[116] HUPPERT B. Die Grundlehren der mathematischen Wissenschaften: Band 134 EndlicheGruppen. I[M]. Springer-Verlag, Berlin-New York, 1967: xii+793.
[117] CARTER R W. Pure and Applied Mathematics: Vol. 28 Simple groups of Lie type[M]. JohnWiley & Sons, London-New York-Sydney, 1972: viii+331.
[118] WILSON S E. Operators over regular maps[J/OL]. Pacific J. Math., 1979, 81(2): 559-568.http://projecteuclid.org/euclid.pjm/1102785296.
[119] LINS S. Graph-encoded maps[J/OL]. J. Combin. Theory Ser. B, 1982, 32(2): 171-181. https://doi.org/10.1016/0095-8956(82)90033-8.
[120] JONES G A, THORNTON J S. Operations on maps, and outer automorphisms[J/OL]. J. Combin. Theory Ser. B, 1983, 35(2): 93-103. https://doi.org/10.1016/0095-8956(83)90065-5.
[121] ŠIRÀŇ J. How symmetric can maps on surfaces be?[M]//London Math. Soc. Lecture Note Ser.:Vol. 409 Surveys in combinatorics 2013. Cambridge Univ. Press, Cambridge, 2013: 161-238.
[122] WOLF J A. Spaces of constant curvature[M/OL]. Sixth ed. AMS Chelsea Publishing, Providence, RI, 2011: xviii+424. https://doi.org/10.1090/chel/372.
修改评论