[1] CORONADO E, SHINYA T, VENTURE G. Hold my hand: development of a force controller and system architecture for joint walking with a companion robot[J]. Sensors, 2023, 23(12): 5692.
[2] QIU S, PEI Z, WANG C, et al. Systematic review on wearable lower extremity robotic exoskeletons for assisted locomotion[J]. Journal of Bionic Engineering, 2023, 20(2): 436-469.
[3] SIRINTUNA D, GIAMMARINO A, AJOUDANI A. An object deformation-agnostic framework for human–robot collaborative transportation[J]. IEEE Transactions on Automation Science and Engineering, 2023.
[4] WANG Y H, LIU G Y, HUANG G, et al. Variable admittance force feedback device and its human-robot interaction stability[J]. Robotics and Computer-Integrated Manufacturing, 2023, 82: 102537.
[5] KUMAR N, LEE S C. Human-machine interface in smart factory: A systematic literature review[J]. Technological Forecasting and Social Change, 2022, 174: 121284.
[6] LIU H, JU Z, JI X, et al. Human motion sensing and recognition: Vol. 675[M]. Springer, 2017.
[7] ZHANG P. Human–machine interfaces[M/OL]. 2010: 527-555. DOI: 10.1016/B978-1-437 7-7807-6.10013-0.
[8] TREJOS A, PATEL R, NAISH M. Force sensing and its application in minimally invasive surgery and therapy: a survey[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(7): 1435-1454.
[9] KU S, SONG B H, PARK T, et al. Soft modularized robotic arm for safe human–robot interaction based on visual and proprioceptive feedback[J]. The International Journal of Robotics Research, 2024: 02783649241227249.
[10] VOULOUTSI V, COMINELLI L, DOGAR M, et al. Towards living machines: current and future trends of tactile sensing, grasping, and social robotics[J]. Bioinspiration & biomimetics, 2023, 18(2): 025002.
[11] DONG W, WANG Y, ZHOU Y, et al. Soft human–machine interfaces: design, sensing and stimulation[J]. International Journal of Intelligent Robotics and Applications, 2018, 2: 313- 338.
[12] DE BARRIE D, PANDYA M, PANDYA H, et al. A deep learning method for vision based force prediction of a soft fin ray gripper using simulation data[J]. Frontiers in Robotics and AI, 2021, 8: 631371.
[13] ELGENEIDY K, LIGHTBODY P, PEARSON S, et al. Characterising 3D-printed soft fin ray robotic fingers with layer jamming capability for delicate grasping[C]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2019: 143-148.
[14] REHAN M, SALEEM M M, TIWANA M I, et al. A soft multi-axis high force range magnetic tactile sensor for force feedback in robotic surgical systems[J]. Sensors, 2022, 22(9): 3500
[15] FARIS O, MUTHUSAMY R, RENDA F, et al. Proprioception and exteroception of a soft robotic finger using neuromorphic vision-based sensing[J]. Soft Robotics, 2023, 10(3): 467- 481.
[16] THURUTHEL T G, SHIH B, LASCHI C, et al. Soft robot perception using embedded soft sensors and recurrent neural networks[J]. Science Robotics, 2019, 4(26): eaav1488.
[17] 刘佳, 李娜, 郝子岩, 等. 柔性机械手设计与夹取力动态特性仿真分析[J]. 河北大学学报 (自然科学版), 2018, 38(2): 119.
[18] ZHANG Z, ZHOU J, YI B, et al. A flexible swallowing gripper for harvesting apples and its grasping force sensing model[J]. Computers and Electronics in Agriculture, 2023, 204: 107489.
[19] 金波, 林龙贤. 果蔬采摘欠驱动机械手爪设计及其力控制[J]. 机械工程学报, 2014, 50(19): 1-8.
[20] YANG Y, JIN K, ZHU H, et al. A 3D-printed fin ray effect inspired soft robotic gripper with force feedback[J]. Micromachines, 2021, 12(10): 1141.
[21] TRUBY R L, WEHNER M, GROSSKOPF A K, et al. Soft somatosensitive actuators via embedded 3D printing[J]. Advanced Materials, 2018, 30(15): 1706383.
[22] STANO G, OVY S A I, EDWARDS J R, et al. One-shot additive manufacturing of robotic finger with embedded sensing and actuation[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(1-2): 467-485.
[23] FARIS O, TAWK C, HUSSAIN I. SOPCAS finger: a three-dimensional printed soft finger with pneumatic chambers for simultaneous actuation, sensing, and controlled grasping[J]. Robotics Reports, 2024, 2(1): 32-42.
[24] MATSUNO T, WANG Z, HIRAI S. Real-time curvature estimation of printable soft gripper using electro-conductive yarn[C]//2017 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2017: 5-10.
[25] 王雅纯, 张小栋, 陆竹风, 等. 用于假手指尖的光纤光栅触觉力传感器研究[J]. 仪器仪表学 报, 2023(9): 124-130.
[26] SEN S, CHAKRABARTY S, TOSHNIWAL R, et al. Design of an intelligent voice controlled home automation system[J]. International Journal of Computer Applications, 2015, 121(15).
[27] WEI D, ZHANG R, SAADATZI M N, et al. Organic piezoresistive pressure sensitive robotic skin for physical human-robot interaction[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: Vol. 83907. American Society of Mechanical Engineers, 2020: V001T01A013.
[28] CHENG N, PHUA K S, LAI H S, et al. Brain-computer interface-based soft robotic glove rehabilitation for stroke[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(12): 3339- 3351.
[29] MILLAN J R, RENKENS F, MOURINO J, et al. Noninvasive brain-actuated control of a mobile robot by human EEG[J]. IEEE Transactions on biomedical Engineering, 2004, 51(6): 1026-1033.
[30] JEONG J H, SHIM K H, KIM D J, et al. Brain-controlled robotic arm system based on multidirectional CNN-BiLSTM network using EEG signals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(5): 1226-1238.
[31] GUO Y, ZHANG R, QIU W, et al. Underwater intention recognition using head motion and throat vibration for supernumerary robotic assistance[C/OL]//2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). 2023: 1-6. DOI: 10.1109/CASE56687.2023.10260480.
[32] CALLUPE LUNA J, MARTINEZ ROCHA J, MONACELLI E, et al. WISP, wearable inertial sensor for online wheelchair propulsion detection[J]. Sensors, 2022, 22(11): 4221.
[33] LI Y. Hand gesture recognition using Kinect[C]//2012 IEEE International Conference on Computer Science and Automation Engineering. IEEE, 2012: 196-199.
[34] ADEBAYO O, ADETIBA E, AJAYI O. Hand gesture recognition-based control of motorized wheelchair using electromyography sensors and recurrent neural network[C]//IOP Conference Series: Materials Science and Engineering: Vol. 1107. IOP Publishing, 2021: 012063.
[35] XU J, HUANG Z, LIU L, et al. Eye-Gaze controlled wheelchair based on deep learning[J]. Sensors, 2023, 23(13): 6239.
[36] SHARIFI M, BEHZADIPOUR S, VOSSOUGHI G. Nonlinear model reference adaptive impedance control for human–robot interactions[J]. Control Engineering Practice, 2014, 32: 9-27.
[37] COLGATE E, BICCHI A, PESHKIN M A, et al. Safety for physical human-robot interaction [M]//Springer handbook of robotics. Springer, 2008: 1335-1348.
[38] HADDADIN S, CROFT E. Physical human–robot interaction[J]. Springer handbook of robotics, 2016: 1835-1874.
[39] HOGAN N. Impedance control: An approach to manipulation: Part II—Implementation[Z]. 1985.
[40] KAZEROONI H, HOUPT P, SHERIDAN T. Robust compliant motion for manipulators, Part II: Design method[J]. IEEE Journal on Robotics and Automation, 1986, 2(2): 93-105.
[41] SHARIFI M, ZAKERIMANESH A, MEHR J K, et al. Impedance variation and learning strategies in human–robot interaction[J]. IEEE Transactions on Cybernetics, 2021, 52(7): 6462-6475.
[42] AGHILI F. Robust impedance-matching of manipulators interacting with uncertain environments: application to task verification of the space station’s dexterous manipulator[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(4): 1565-1576.
[43] KIM D, KOH K, CHO G R, et al. A robust impedance controller design for series elastic actuators using the singular perturbation theory[J]. IEEE/ASME Transactions on Mechatronics, 2019, 25(1): 164-174.
[44] ANDERSON R J, SPONG M W. Hybrid impedance control of robotic manipulators[J]. IEEE Journal on Robotics and Automation, 1988, 4(5): 549-556.
[45] ABDOSSALAMI A, SIROUSPOUR S. Adaptive control for improved transparency in haptic simulations[J]. IEEE Transactions on Haptics, 2008, 2(1): 2-14.
[46] FLACCO F, KRÖGER T, DE LUCA A, et al. A depth space approach to human-robot collision avoidance[C]//2012 IEEE international conference on robotics and automation. IEEE, 2012: 338-345.
[47] PHAN S, QUEK Z F, SHAH P, et al. Capacitive skin sensors for robot impact monitoring [C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011: 2992-2997.
[48] AVANZINI G B, CERIANI N M, ZANCHETTIN A M, et al. Safety control of industrial robots based on a distributed distance sensor[J]. IEEE Transactions on Control Systems Technology, 2014, 22(6): 2127-2140.
[49] HAO Y, ZHANG S, FANG B, et al. A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 1-16.
[50] EMERSON J, ELGENEIDY K. Optimising soft fin ray robotic fingers using finite element analysis to reduce object slippage[C]//Proceedings of The 3rd UK-RAS Conference “Robots into the real world. 2020: 43-45.
[51] CAI J, LEI T. An autonomous positioning method of tube-to-tubesheet welding robot based on coordinate transformation and template matching[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 787-794.
[52] ANTMAN S S, OSBORN J E. The principle of virtual work and integral laws of motion[J]. Archive for Rational Mechanics and Analysis, 1979, 69: 231-262.
[53] KALAITZAKIS M, CAIN B, CARROLL S, et al. Fiducial markers for pose estimation: Overview, applications and experimental comparison of the artag, apriltag, aruco and stag markers[J]. Journal of Intelligent & Robotic Systems, 2021, 101: 1-26.
[54] ZHANG Z, LIU G, LI Z, et al. Flexible tactile sensors with biomimetic microstructures: Mechanisms, fabrication, and applications[J]. Advances in Colloid and Interface Science, 2023: 102988.
[55] SPENCER JR B, DYKE S, SAIN M, et al. Phenomenological model for magnetorheological dampers[J]. Journal of engineering mechanics, 1997, 123(3): 230-238.
[56] DOMINGUEZ A, SEDAGHATI R, STIHARU I. Modelling the hysteresis phenomenon of magnetorheological dampers[J]. Smart Materials and Structures, 2004, 13(6): 1351.
[57] MATHIS A T, BALAJI N N, KUETHER R J, et al. A review of damping models for structures with mechanical joints[J]. Applied Mechanics Reviews, 2020, 72(4): 040802.
[58] SHITIKOVA M V, KRUSSER A I. Models of viscoelastic materials: A review on historical development and formulation[J]. Theoretical Analyses, Computations, and Experiments of Multiscale Materials: A Tribute to Francesco Dell’Isola, 2022: 285-326.
[59] DENAVIT J, HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices[M]. American Society of Mechanical Engineers, 1955.
[60] 李宪华, 孙青, 张雷刚, 等. 基于 SVD 可操作度指标的机械臂灵活性分析[J]. 制造技术与 机床, 2019(4): 29-34.
[61] SONG P, YU Y, ZHANG X. Impedance control of robots: an overview[C]//2017 2nd international conference on cybernetics, robotics and control (CRC). IEEE, 2017: 51-55.
[62] CHU T, NGUYEN T, YOO H, et al. A review of vibration analysis and its applications[J]. Heliyon, 2024.
[63] DIMEAS F, ASPRAGATHOS N. Online stability in human-robot cooperation with admittance control[J]. IEEE transactions on haptics, 2016, 9(2): 267-278.
修改评论