中文版 | English
题名

基于聚乙烯醇的水凝胶电解质制备及其在锌碘电池性能研究

其他题名
PREPARATION OF POLYVINYL ALCOHOL BASED HYDROGEL ELECTROLYTE AND ITS APPLICATION IN ZINC-IODINE BATTERIES
姓名
姓名拼音
LIAO Ruixi
学号
12232366
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
曾林
导师单位
机械与能源工程系
论文答辩日期
2024-05-09
论文提交日期
2024-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       水系锌碘电池(Aqueous zinc-iodine batteries, AZIBs)因其高安全性、元素来 源丰富和成本低等优点而受到了广泛的关注。然而,传统的 AZIBs 通常采用玻璃 纤维多孔隔膜搭配锌盐电解液,这一体系无法很好地抑制锌负极枝晶、析氢反应 以及碘正极的穿梭效应,造成不可逆的容量损失,导致电池稳定性和循环寿命降 低,严重阻碍了 AZIBs 的发展。相比之下,水凝胶电解质具有更高的机械强度和 更低的自由水含量,同时利用结构设计可优化锌离子传输速率,能够缓解上述问 题,整体提高 AZIBs 的稳定性,并促进锌碘电池的柔性应用。

       为了解决锌碘电池以上关键问题,本研究采用具有良好的机械性能、亲水性 和低成本的聚乙烯醇(Polyvinyl alcohol,PVA)制备水凝胶电解质。本研究通过 冷冻铸造技术开发的一种具有高取向结构的 PVA 基水凝胶电解质(O||-PVA/PAA), 其沿离子传输方向的高取向液相通道加快了锌离子传输,导致了 O||-PVA/PAA 的 高离子电导率(2.32 mS cm-1)、锌离子迁移数(0.45)及 AZIBs 优异的倍率性能。 高取向液相通道的构建还缓解了锌离子非均匀传输问题,基于 O||-PVA/PAA 的 Zn/Zn 对称电池可在 0.5 mA cm-2 电流密度下稳定循环超 1000 小时。此外,基于 O||-PVA/PAA 的 AZIBs 可在 5 A g -1大电流下循环 27000 次,容量保持率高达 94.8%。

       同时,本研究结合静电纺丝和浇筑方法开发了一种聚合物互穿网络结构的 PVA 基水凝胶电解质(IN-PVA/PAN)。由于互穿网络的致密结构,IN-PVA/PAN 表现出良好的机械强度(断裂应力为 2.00 MPa),可抑制锌枝晶生长,因此,基 于IN-PVA/PAN 的Zn/Zn对称电池在1 mA cm-2电流密度下稳定循环接近700小时。 IN-PVA/PAN 的氰基(-CN)可与多碘离子络合,从而阻碍多碘离子的穿梭效应, 因此,组装的 AZIB 自放电现象得到缓解,在 0.5 C 小倍率下库伦效率大于 90.8%。 此外,IN-PVA/PAN组装的AZIB在4 C倍率下循环2500次容量保持率高达95.9%。

       相比传统隔膜和电解液体系,O||-PVA/PAA 和 IN-PVA/PAN 均大幅提升了 AZIBs 的循环稳定性。本研究为进一步开发可整体提升 AZIB 性能的水凝胶电解质 提供了有效的结构设计策略。

其他摘要

Aqueous zinc-iodine batteries (AZIBs) have attracted widespread attention due to their high safety, abundant elemental sources and low cost. However, the traditional AZIBs usually uses glass fiber porous membrane (GF) with zinc salt electrolyte, which can not effectively inhibit the zinc dendrites, hydrogen evolution reaction and the shuttle effect of iodine electrode. It leads to irreversible capacity loss, resulting in limited battery stability and cycle life, seriously hindering the development of AZIBs. In contrast, hydrogel electrolytes exhibiting higher mechanical strength and lower free water content. In addition, hydrogel electrolytes can achieve high zinc ion transport rate by optimizing structural design. Hence, hydrogel electrolytes can alleviate the above problems, improve the overall stability of AZIBs and promote the flexible application of zinc-iodine batteries.

In order to solve the above key problems of zinc-iodine battery, this study used Polyvinyl alcohol (PVA) to prepare hydrogel electrolyte,owing to good mechanical properties, hydrophilicity and low cost of PVA. In this work, a PVA-based hydrogel electrolyte (O||-PVA/PAA) with a highly orientated structure was developed by freeze casting technology. Its highly orientated liquid phase channel along the ion transport direction accelerated zinc ion transport. Hence, the high ionic conductivity (2.32 mS cm-1 ), zinc ion migration number (0.45) of O||-PVA/PAA and excellent magnification performance of AZIB were obtained. The construction of high orientation liquid phase channel also ameliorates the problem of non-uniform transmission of zinc ions. Therefore, Zn/Zn-symmetric battery based on O||-PVA/PAA can cycle stably for more than 1000 hours at 0.5 mA cm-2 current density. Besides, AZIBs based on O||-PVA/PAA cycled 27000 times at 5 A g -1 current with high capacity retention rate of 94.8%.

In this work, a PVa-based hydrogel electrolyte (IN-PVA/PAN) with polymer interpenetrating network structure was developed by combining electrospinning and pouring methods. Due to the dense structure of the interpenetrating network, IN-PVA/PAN exhibits good mechanical strength (the breaking stress is 2.00 MPa). The electrolyte with high mechanical strength can inhibit the growth of zinc dendrite, owing to which the Zn/Zn battery based on IN-PVA/PAN has a stable cycle of nearly 700 h at 1 mA cm-2 current. The cyanide group (-CN) of IN-PVA/PAN can be complex with polyiodide ions, preventing the shuttle of polyiodide ions. Therefore, the self-discharge phenomenon of AZIB is alleviated, in result of which the coulomb efficiency is greater than 90.8% at a small rate of 0.5 C. Besides, AZIBs assembled by IN-PVA/PAN exhibited a capacity retention rate of 95.9% at a 4 C ratio after 2500 cycles.

Compared with traditional GF (using aqueous electrolyte), both O||-PVA/PAA and IN-PVA/PAN greatly improved the cyclic stability of AZIBs, showing excellent capacity retention rate after a long period of charge and discharge cycles. This study provides an effective structural design strategy for further developing hydrogel electrolytes to improve the performance of AZIBs.

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] TIAN X, AN C, CHEN Z. The Role of Clean Energy in Achieving Decarbonization of Electricity Generation, Transportation, and Heating Sectors by 2050: A Meta-analysis Review[J]. Renewable and Sustainable Energy Reviews, 2023, 182: 113404.
[2] 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1): 28-51.
[3] 苏健, 梁英波, 丁麟, 等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 2021, 36(09): 1001-1009.
[4] CHU S, CUI Y, LIU N. The Path Towards Sustainable Energy[J]. Nature Materials, 2017, 16(1): 16-22.
[5] TARASCON J M, ARMAND M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001, 414(6861): 359-367.
[6] NITTA N, WU F, LEE J T, et al. Li-ion Battery Materials: Present and Future[J]. Materials Today, 2015, 18(5): 252-264.
[7] HANNAN M A, LIPU M S H, HUSSAIN A, et al. A Review of Lithium-ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.
[8] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research Development on Sodium-ion Batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[9] SLATER M D, KIM D, LEE E, et al. Sodium-ion Batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958.
[10] PRAMUDITA J C, SEHRAWAT D, GOONETILLEKE D, et al. An Initial Review of the Status of Electrode Materials for Potassium-Ion Batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602911.
[11] SON S B, GAO T, HARVEY S P, et al. An Artificial Interphase Enables Reversible Magnesium Chemistry in Carbonate Electrolytes[J]. Nature Chemistry, 2018, 10(5): 532-539.
[12] WANG D, GAO X, CHEN Y, et al. Plating and Stripping Calcium in An Organic Electrolyte[J]. Nature Materials, 2018, 17(1): 16-20.
[13] WANG F, BORODIN O, GAO T, et al. Highly Reversible Zinc Metal Anode for Aqueous batteries[J]. Nature Materials, 2018, 17(6): 543-549.
[14] WANG D Y, WEI C Y, LIN M C, et al. Advanced Rechargeable Aluminium Ion Battery with A High-quality Natural Graphite Cathode[J]. Nature Communications, 2017, 8: 14283.
[15] MING J, GUO J, XIA C, et al. Zinc-ion Batteries: Materials, Mechanisms, and Applications[J]. Materials Science and Engineering: R: Reports, 2019, 135: 58-84.
[16] SONG M, TAN H, CHAO D, et al. Recent Advances in Zn-Ion Batteries[J]. Advanced Functional Materials, 2018, 28(41): 1802564.
[17] XIE C, ZHANG H, XU W, et al. A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density[J]. Angewandte Chemie International Edition, 2018, 57(35): 11171-11176.
[18] LI H, MA L, HAN C, et al. Advanced Rechargeable Zinc-based Batteries: Recent Progress and Future Perspectives[J]. Nano Energy, 2019, 62: 550-587.
[19] XU C, LI B, DU H, et al. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933-935.
[20] ZENG Y, ZHANG X, MENG Y, et al. Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi-Solid-State Zn-MnO2 Battery[J]. Advanced Materials, 2017, 29(26): 1700274.
[21] KUNDU D, ADAMS B D, DUFFORT V, et al. A High-capacity and Long-life Aqueous rechargeable Zinc Battery Using A Metal Oxide Intercalation Cathode[J]. Nature Energy, 2016, 1(10): 16119.
[22] HE X, ZHANG H, ZHAO X, et al. Stabilized Molybdenum Trioxide Nanowires as Novel Ultrahigh-Capacity Cathode for Rechargeable Zinc Ion Battery[J]. Advanced Science, 2019, 6(14): 1900151.
[23] ZHANG L, CHEN L, ZHOU X, et al. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System[J]. Advanced Energy Materials, 2015, 5(2): 1400930.
[24] OZGIT D, HIRALAL P, AMARATUNGA G A J. Improving Performance and Cyclability of Zinc–Silver Oxide Batteries by Using Graphene as a Two Dimensional Conductive Additive[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20752-20757.
[25] WANG X, WANG F, WANG L, et al. An Aqueous Rechargeable Zn//Co3O4 Battery with High Energy Density and Good Cycling Behavior[J]. Advanced Materials, 2016, 28(24): 4904-4911.
[26] YU M, WANG Z, HOU C, et al. Nitrogen-Doped Co3O4 Mesoporous Nanowire Arrays as an Additive-Free Air-Cathode for Flexible Solid-State Zinc-Air Batteries[J]. Advanced Materials, 2017, 29(15): 1602868.
[27] YUAN Z, LIU X, XU W, et al. Negatively Charged Nanoporous Membrane for A Dendrite-free Alkaline Zinc-based Flow Battery with Long Cycle Life[J]. Nature Communications, 2018, 9(1): 3731.
[28] LEUNG P K, PONCE-DE-LEóN C, LOW C T J, et al. Characterization of A Zinc–cerium Flow Battery[J]. Journal of Power Sources, 2011, 196(11): 5174-5185.
[29] MITRA S. A Design for Zinc Chlorine Batteries[J]. Journal of Power Sources, 1982, 8(4): 359-367.
[30] YU F, PANG L, WANG X, et al. Aqueous Alkaline–acid Hybrid Electrolyte for Zinc-bromine Battery with 3 V Voltage Window[J]. Energy Storage Materials, 2019, 19: 56-61.
[31] LI B, NIE Z, VIJAYAKUMAR M, et al. Ambipolar Zinc-polyiodide Electrolyte for A High-energy Density Aqueous Redox flow Battery[J]. Nature Communications, 2015, 6(1): 6303.
[32] PEI Z, ZHU Z, SUN D, et al. Review of the I−/I3− Redox Chemistry in Zn-Iodine Redox Flow batteries[J]. Materials Research Bulletin, 2021, 141: 111347.
[33] KHOR A, LEUNG P, MOHAMED M R, et al. Review of Zinc-based Hybrid Flow Batteries: From Fundamentals to Applications[J]. Materials Today Energy, 2018, 8: 80-108.
[34] XU Z, FAN Q, LI Y, et al. Review of Zinc Dendrite Formation in Zinc Bromine Redox Flow Battery[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109838.
[35] YU H, WANG Z, ZHENG R, et al. Toward Sustainable Metal-Iodine Batteries: Materials, Electrochemistry and Design Strategies[J]. Angewandte Chemie International Edition, 2023, 62(46): e202308397.
[36] LIN D, LI Y. Recent Advances of Aqueous Rechargeable Zinc-Iodine Batteries: Challenges, Solutions, and Prospects[J]. Advanced Materials, 2022, 34(23): 2108856.
[37] YANG Y, LIANG S, LU B, et al. Eutectic Electrolyte Based on N-methylacetamide for Highly Reversible Zinc–iodine Battery[J]. Energy & Environmental Science, 2022, 15(3): 1192-1200.
[38] CHEN H, LI X, FANG K, et al. Aqueous Zinc-Iodine Batteries: From Electrochemistry to Energy Storage Mechanism[J]. Advanced Energy Materials, 2023, 13(41): 2302187.
[39] CHAI S, YAO J, WANG Y, et al. Mediating Iodine Cathodes with Rbust Directional Halogen Bond Interactions for Highly Stable Rechargeable Zn-I2 Batteries[J]. Chemical Engineering Journal, 2022, 439: 135676.
[40] LIU M, CHEN Q, CAO X, et al. Physicochemical Confinement Effect Enables High-Performing Zinc–Iodine Batteries[J]. Journal of the American Chemical Society, 2022, 144(47): 21683-21691.
[41] MA L, YING Y, CHEN S, et al. Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc-Iodine Battery with Improved Power and Energy Densities[J]. Angewandte Chemie International Edition, 2021, 60(7): 3791-3798.
[42] YANG X, FAN H, HU F, et al. Aqueous Zinc Batteries with Ultra-Fast Redox Kinetics and High Iodine Utilization Enabled by Iron Single Atom Catalysts[J]. Nano-Micro Letters, 2023, 15(1): 126.
[43] JI Y, XIE J, SHEN Z, et al. Advanced Zinc–Iodine Batteries with Ultrahigh Capacity and Superior Rate Performance Based on Reduced Graphene Oxide and Water-in-Salt Electrolyte[J]. Advanced Functional Materials, 2023, 33(10): 2210043.
[44] HONG J J, ZHU L, CHEN C, et al. A Dual Plating Battery with the Iodine/[ZnIx(OH2)4−x]2−x Cathode[J]. Angewandte Chemie International Edition, 2019, 58(44): 15910-15915.
[45] YUE J, ZHANG J, TONG Y, et al. Aqueous Interphase Formed by CO2 Brings Electrolytes Back to Salt-in-water Regime[J]. Nature Chemistry, 2021, 13(11): 1061-1069.
[46] QIAN S, ZHOU J, PENG M, et al. A Lewis Acidity Adjustable Organic Ammonium Cation Derived Robust Protecting Shield for Stable Aqueous Zinc-ion Batteries by Inhibiting the Tip Effect[J]. Materials Chemistry Frontiers, 2022, 6(7): 901-907.
[47] CAI Z, OU Y, WANG J, et al. Chemically Resistant Cu–Zn/Zn Composite Anode for Long Cycling Aqueous Batteries[J]. Energy Storage Materials, 2020, 27: 205-211.
[48] YI Z, CHEN G, HOU F, et al. Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries[J]. Advanced Energy Materials, 2021, 11(1): 2003065.
[49] SHANG W, LI Q, JIANG F, et al. Boosting Zn||I2 Battery’s Performance by Coating a Zeolite-Based Cation-Exchange Protecting Layer[J]. Nano-Micro Letters, 2022, 14(1): 82.
[50] ZHANG L, HUANG J, GUO H, et al. Tuning Ion Transport at the Anode-Electrolyte Interface via a Sulfonate-Rich Ion-Exchange Layer for Durable Zinc-Iodine Batteries[J]. Advanced Energy Materials, 2023, 13(13): 2203790.
[51] LATIMER W. Oxidation Potentials Prentice-Hall[J]. Inc Englewood Cliffs NJ, 1952.
[52] ZHAO Q, LU Y, ZHU Z, et al. Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode[J]. Nano Letters, 2015, 15(9): 5982-5987.
[53] LEE J, SRIMUK P, FLEISCHMANN S, et al. Nanoconfinement of Redox Reactions Enables Rapid Zinc Iodide Energy Storage with Eigh efficiency[J]. Journal of Materials Chemistry A, 2017, 5(24): 12520-12527.
[54] LU K, ZHANG H, SONG B, et al. Sulfur and Nitrogen Enriched Graphene Foam Scaffolds for Aqueous Rechargeable Zinc-iodine battery[J]. Electrochimica Acta, 2019, 296: 755-761.
[55] LIU W, LIU P, LYU Y, et al. Advanced Zn–I2 Battery with Excellent Cycling Stability and Good Rate Performance by a Multifunctional Iodine Host[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 8955-8962.
[56] ZENG X, MENG X, JIANG W, et al. Anchoring Polyiodide to Conductive Polymers as Cathode for High-Performance Aqueous Zinc–Iodine Batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14280-14285.
[57] MACHHI H K, SONIGARA K K, BARIYA S N, et al. Hierarchically Porous Metal–Organic Gel Hosting Catholyte for Limiting Iodine Diffusion and Self-Discharge Control in Sustainable Aqueous Zinc–I2 Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21426-21435.
[58] HE J, MU Y, WU B, et al. Synergistic Effects of Lewis Acid–base and Coulombic Interactions for High-performance Zn–I2 Batteries[J]. Energy & Environmental Science, 2024, 17(1): 323-331.
[59] ZHANG L, ZHANG M, GUO H, et al. A Universal Polyiodide Regulation Using Quaternization Engineering toward High Value-Added and Ultra-Stable Zinc-Iodine Batteries[J]. Advanced Science, 2022, 9(13): 2105598.
[60] LI X, LI N, HUANG Z, et al. Enhanced Redox Kinetics and Duration of Aqueous I2/I−Conversion Chemistry by MXene Confinement[J]. Advanced Materials, 2021, 33(8): 2006897.
[61] LI X, LI M, HUANG Z, et al. Activating the I0/I+ Redox Couple in An Aqueous I2-Zn Battery to Achieve a High Voltage Plateau[J]. Energy & Environmental Science, 2021, 14(1): 407-413.
[62] HAO J, YUAN L, JOHANNESSEN B, et al. Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc-Ion Batteries[J]. Angewandte Chemie International Edition, 2021, 60(47): 25114-25121.
[63] HU Z, WANG X, DU W, et al. Crowding Effect-Induced Zinc-Enriched/Water-Lean Polymer Interfacial Layer Toward Practical Zn-Iodine Batteries[J]. ACS Nano, 2023, 17(22): 23207-23219.
[64] WANG G, YAO Q, DONG J, et al. In situ Construction of Multifunctional Surface Coatings on Zinc Metal for Advanced Aqueous Zinc–Iodine Batteries[J]. Advanced Energy Materials, 2024, 14(5): 2303221.
[65] JIN S, ZHANG D H, SHARMA A, et al. Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth[J]. Small, 2021, 17(33): 2101798.
[66] ZOU Y, LIU T, DU Q, et al. A Four-Electron Zn-I2 Aqueous Battery Enabled by Reversible I−/I2/I+ Conversion[J]. Nature Communications, 2021, 12(1): 170.
[67] LIANG G, LIANG B, CHEN A, et al. Development of Rechargeable High-energy Hybrid Zinc-iodine Aqueous Batteries Exploiting Reversible Chlorine-based Redox Reaction[J]. Nature Communications, 2023, 14(1): 1856-1856.
[68] WENG G-M, LI Z, CONG G, et al. Unlocking the Capacity of Iodide for High-energy-density Zinc/Polyiodide and Lithium/Polyiodide Redox Flow Batteries[J]. Energy & Environmental Science, 2017, 10(3): 735-741.
[69] YAMAMOTO T, HISHINUMA M, YAMAMOTO A. Zn∣ZnI2∣Iodine Secondary Battery Using Iodine-nylon-6 Adduct as Positive Electrode, and Its Charge-discharge Performance[J]. Inorganica Chimica Acta, 1984, 86(2): L47-L49.
[70] YANG H, QIAO Y, CHANG Z, et al. A Metal–Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc–Iodide Batteries[J]. Advanced Materials, 2020, 32(38): 2004240.
[71] LIN P, CHEN G, KANG Y, et al. Simultaneous Inhibition of Zn Dendrites and Polyiodide Ions Shuttle Effect by an Anion Concentrated Electrolyte Membrane for Long Lifespan Aqueous Zinc–Iodine Batteries[J]. ACS Nano, 2023, 17(16): 15492-15503.
[72] SHANG W, ZHU J, LIU Y, et al. Establishing High-Performance Quasi-Solid Zn/I2 Batteries with Alginate-Based Hydrogel Electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24756-24764.
[73] SONIGARA K K, ZHAO J, MACHHI H K, et al. Self-Assembled Solid-State Gel Catholyte Combating Iodide Diffusion and Self-Discharge for a Stable Flexible Aqueous Zn-I2 Battery[J]. Advanced Energy Materials, 2020, 10(47): 2001997.
[74] LV S, FANG T, DING Z, et al. A High-Performance Quasi-Solid-State Aqueous Zinc–Dual Halogen Battery[J]. ACS Nano, 2022, 16(12): 20389-20399.
[75] YANG J-L, XIAO T, XIAO T, et al. Cation-Conduction Dominated Hydrogels for Durable Zinc–Iodine Batteries[J]. Advanced Materials, 2313610.
[76] FAN X, ZHONG C, LIU J, et al. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes[J]. Chemical Reviews, 2022, 122(23): 17155-17239.
[77] ADAMS B D, ZHENG J, REN X, et al. Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries[J]. Advanced Energy Materials, 2018, 8(7): 1702097.
[78] WU J, RAO Z, WANG H, et al. Order-structured Solid-state Electrolytes[J]. SusMat, 2022, 2(6): 660-678.
[79] LI X, WANG Y, XI K, et al. Quasi-Solid-State Ion-Conducting Arrays Composite Electrolytes with Fast Ion Transport Vertical-Aligned Interfaces for All-Weather Practical Lithium-Metal Batteries[J]. Nano-Micro Letters, 2022, 14(1): 210.
[80] SHIN S-H, LEE W, KIM S-M, et al. Ion-conductive Self-healing Hydrogels Based on An Interpenetrating Polymer Network for A Multimodal Sensor[J]. Chemical Engineering Journal, 2019, 371: 452-460.
[81] ZENG Q, LU Y, CHEN P, et al. Semi-interpenetrating-network All-solid-state Polymer Electrolyte with Liquid Crystal Constructing Efficient Ion Transport Channels for Flexible Solid Lithium-metal Batteries[J]. Journal of Energy Chemistry, 2022, 67: 157-167.
[82] FANG Y, XIE X, ZHANG B, et al. Regulating Zinc Deposition Behaviors by the Conditioner of PAN Separator for Zinc-Ion Batteries[J]. Advanced Functional Materials, 2022, 32(14): 2109671.
[83] REN H, GAO B, WANG M. Formation and Structure of Iodine Complex of Polyacrylonitrile Studied by Vibrational Spectroscopy[J]. Polymer, 2022, 249: 124828.

所在学位评定分委会
材料与化工
国内图书分类号
TQ152
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778435
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
廖睿熹. 基于聚乙烯醇的水凝胶电解质制备及其在锌碘电池性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232366-廖睿熹-机械与能源工程(5581KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[廖睿熹]的文章
百度学术
百度学术中相似的文章
[廖睿熹]的文章
必应学术
必应学术中相似的文章
[廖睿熹]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。