[1] TIAN X, AN C, CHEN Z. The Role of Clean Energy in Achieving Decarbonization of Electricity Generation, Transportation, and Heating Sectors by 2050: A Meta-analysis Review[J]. Renewable and Sustainable Energy Reviews, 2023, 182: 113404.
[2] 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1): 28-51.
[3] 苏健, 梁英波, 丁麟, 等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 2021, 36(09): 1001-1009.
[4] CHU S, CUI Y, LIU N. The Path Towards Sustainable Energy[J]. Nature Materials, 2017, 16(1): 16-22.
[5] TARASCON J M, ARMAND M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001, 414(6861): 359-367.
[6] NITTA N, WU F, LEE J T, et al. Li-ion Battery Materials: Present and Future[J]. Materials Today, 2015, 18(5): 252-264.
[7] HANNAN M A, LIPU M S H, HUSSAIN A, et al. A Review of Lithium-ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.
[8] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research Development on Sodium-ion Batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[9] SLATER M D, KIM D, LEE E, et al. Sodium-ion Batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958.
[10] PRAMUDITA J C, SEHRAWAT D, GOONETILLEKE D, et al. An Initial Review of the Status of Electrode Materials for Potassium-Ion Batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602911.
[11] SON S B, GAO T, HARVEY S P, et al. An Artificial Interphase Enables Reversible Magnesium Chemistry in Carbonate Electrolytes[J]. Nature Chemistry, 2018, 10(5): 532-539.
[12] WANG D, GAO X, CHEN Y, et al. Plating and Stripping Calcium in An Organic Electrolyte[J]. Nature Materials, 2018, 17(1): 16-20.
[13] WANG F, BORODIN O, GAO T, et al. Highly Reversible Zinc Metal Anode for Aqueous batteries[J]. Nature Materials, 2018, 17(6): 543-549.
[14] WANG D Y, WEI C Y, LIN M C, et al. Advanced Rechargeable Aluminium Ion Battery with A High-quality Natural Graphite Cathode[J]. Nature Communications, 2017, 8: 14283.
[15] MING J, GUO J, XIA C, et al. Zinc-ion Batteries: Materials, Mechanisms, and Applications[J]. Materials Science and Engineering: R: Reports, 2019, 135: 58-84.
[16] SONG M, TAN H, CHAO D, et al. Recent Advances in Zn-Ion Batteries[J]. Advanced Functional Materials, 2018, 28(41): 1802564.
[17] XIE C, ZHANG H, XU W, et al. A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density[J]. Angewandte Chemie International Edition, 2018, 57(35): 11171-11176.
[18] LI H, MA L, HAN C, et al. Advanced Rechargeable Zinc-based Batteries: Recent Progress and Future Perspectives[J]. Nano Energy, 2019, 62: 550-587.
[19] XU C, LI B, DU H, et al. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933-935.
[20] ZENG Y, ZHANG X, MENG Y, et al. Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi-Solid-State Zn-MnO2 Battery[J]. Advanced Materials, 2017, 29(26): 1700274.
[21] KUNDU D, ADAMS B D, DUFFORT V, et al. A High-capacity and Long-life Aqueous rechargeable Zinc Battery Using A Metal Oxide Intercalation Cathode[J]. Nature Energy, 2016, 1(10): 16119.
[22] HE X, ZHANG H, ZHAO X, et al. Stabilized Molybdenum Trioxide Nanowires as Novel Ultrahigh-Capacity Cathode for Rechargeable Zinc Ion Battery[J]. Advanced Science, 2019, 6(14): 1900151.
[23] ZHANG L, CHEN L, ZHOU X, et al. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System[J]. Advanced Energy Materials, 2015, 5(2): 1400930.
[24] OZGIT D, HIRALAL P, AMARATUNGA G A J. Improving Performance and Cyclability of Zinc–Silver Oxide Batteries by Using Graphene as a Two Dimensional Conductive Additive[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20752-20757.
[25] WANG X, WANG F, WANG L, et al. An Aqueous Rechargeable Zn//Co3O4 Battery with High Energy Density and Good Cycling Behavior[J]. Advanced Materials, 2016, 28(24): 4904-4911.
[26] YU M, WANG Z, HOU C, et al. Nitrogen-Doped Co3O4 Mesoporous Nanowire Arrays as an Additive-Free Air-Cathode for Flexible Solid-State Zinc-Air Batteries[J]. Advanced Materials, 2017, 29(15): 1602868.
[27] YUAN Z, LIU X, XU W, et al. Negatively Charged Nanoporous Membrane for A Dendrite-free Alkaline Zinc-based Flow Battery with Long Cycle Life[J]. Nature Communications, 2018, 9(1): 3731.
[28] LEUNG P K, PONCE-DE-LEóN C, LOW C T J, et al. Characterization of A Zinc–cerium Flow Battery[J]. Journal of Power Sources, 2011, 196(11): 5174-5185.
[29] MITRA S. A Design for Zinc Chlorine Batteries[J]. Journal of Power Sources, 1982, 8(4): 359-367.
[30] YU F, PANG L, WANG X, et al. Aqueous Alkaline–acid Hybrid Electrolyte for Zinc-bromine Battery with 3 V Voltage Window[J]. Energy Storage Materials, 2019, 19: 56-61.
[31] LI B, NIE Z, VIJAYAKUMAR M, et al. Ambipolar Zinc-polyiodide Electrolyte for A High-energy Density Aqueous Redox flow Battery[J]. Nature Communications, 2015, 6(1): 6303.
[32] PEI Z, ZHU Z, SUN D, et al. Review of the I−/I3− Redox Chemistry in Zn-Iodine Redox Flow batteries[J]. Materials Research Bulletin, 2021, 141: 111347.
[33] KHOR A, LEUNG P, MOHAMED M R, et al. Review of Zinc-based Hybrid Flow Batteries: From Fundamentals to Applications[J]. Materials Today Energy, 2018, 8: 80-108.
[34] XU Z, FAN Q, LI Y, et al. Review of Zinc Dendrite Formation in Zinc Bromine Redox Flow Battery[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109838.
[35] YU H, WANG Z, ZHENG R, et al. Toward Sustainable Metal-Iodine Batteries: Materials, Electrochemistry and Design Strategies[J]. Angewandte Chemie International Edition, 2023, 62(46): e202308397.
[36] LIN D, LI Y. Recent Advances of Aqueous Rechargeable Zinc-Iodine Batteries: Challenges, Solutions, and Prospects[J]. Advanced Materials, 2022, 34(23): 2108856.
[37] YANG Y, LIANG S, LU B, et al. Eutectic Electrolyte Based on N-methylacetamide for Highly Reversible Zinc–iodine Battery[J]. Energy & Environmental Science, 2022, 15(3): 1192-1200.
[38] CHEN H, LI X, FANG K, et al. Aqueous Zinc-Iodine Batteries: From Electrochemistry to Energy Storage Mechanism[J]. Advanced Energy Materials, 2023, 13(41): 2302187.
[39] CHAI S, YAO J, WANG Y, et al. Mediating Iodine Cathodes with Rbust Directional Halogen Bond Interactions for Highly Stable Rechargeable Zn-I2 Batteries[J]. Chemical Engineering Journal, 2022, 439: 135676.
[40] LIU M, CHEN Q, CAO X, et al. Physicochemical Confinement Effect Enables High-Performing Zinc–Iodine Batteries[J]. Journal of the American Chemical Society, 2022, 144(47): 21683-21691.
[41] MA L, YING Y, CHEN S, et al. Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc-Iodine Battery with Improved Power and Energy Densities[J]. Angewandte Chemie International Edition, 2021, 60(7): 3791-3798.
[42] YANG X, FAN H, HU F, et al. Aqueous Zinc Batteries with Ultra-Fast Redox Kinetics and High Iodine Utilization Enabled by Iron Single Atom Catalysts[J]. Nano-Micro Letters, 2023, 15(1): 126.
[43] JI Y, XIE J, SHEN Z, et al. Advanced Zinc–Iodine Batteries with Ultrahigh Capacity and Superior Rate Performance Based on Reduced Graphene Oxide and Water-in-Salt Electrolyte[J]. Advanced Functional Materials, 2023, 33(10): 2210043.
[44] HONG J J, ZHU L, CHEN C, et al. A Dual Plating Battery with the Iodine/[ZnIx(OH2)4−x]2−x Cathode[J]. Angewandte Chemie International Edition, 2019, 58(44): 15910-15915.
[45] YUE J, ZHANG J, TONG Y, et al. Aqueous Interphase Formed by CO2 Brings Electrolytes Back to Salt-in-water Regime[J]. Nature Chemistry, 2021, 13(11): 1061-1069.
[46] QIAN S, ZHOU J, PENG M, et al. A Lewis Acidity Adjustable Organic Ammonium Cation Derived Robust Protecting Shield for Stable Aqueous Zinc-ion Batteries by Inhibiting the Tip Effect[J]. Materials Chemistry Frontiers, 2022, 6(7): 901-907.
[47] CAI Z, OU Y, WANG J, et al. Chemically Resistant Cu–Zn/Zn Composite Anode for Long Cycling Aqueous Batteries[J]. Energy Storage Materials, 2020, 27: 205-211.
[48] YI Z, CHEN G, HOU F, et al. Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries[J]. Advanced Energy Materials, 2021, 11(1): 2003065.
[49] SHANG W, LI Q, JIANG F, et al. Boosting Zn||I2 Battery’s Performance by Coating a Zeolite-Based Cation-Exchange Protecting Layer[J]. Nano-Micro Letters, 2022, 14(1): 82.
[50] ZHANG L, HUANG J, GUO H, et al. Tuning Ion Transport at the Anode-Electrolyte Interface via a Sulfonate-Rich Ion-Exchange Layer for Durable Zinc-Iodine Batteries[J]. Advanced Energy Materials, 2023, 13(13): 2203790.
[51] LATIMER W. Oxidation Potentials Prentice-Hall[J]. Inc Englewood Cliffs NJ, 1952.
[52] ZHAO Q, LU Y, ZHU Z, et al. Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode[J]. Nano Letters, 2015, 15(9): 5982-5987.
[53] LEE J, SRIMUK P, FLEISCHMANN S, et al. Nanoconfinement of Redox Reactions Enables Rapid Zinc Iodide Energy Storage with Eigh efficiency[J]. Journal of Materials Chemistry A, 2017, 5(24): 12520-12527.
[54] LU K, ZHANG H, SONG B, et al. Sulfur and Nitrogen Enriched Graphene Foam Scaffolds for Aqueous Rechargeable Zinc-iodine battery[J]. Electrochimica Acta, 2019, 296: 755-761.
[55] LIU W, LIU P, LYU Y, et al. Advanced Zn–I2 Battery with Excellent Cycling Stability and Good Rate Performance by a Multifunctional Iodine Host[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 8955-8962.
[56] ZENG X, MENG X, JIANG W, et al. Anchoring Polyiodide to Conductive Polymers as Cathode for High-Performance Aqueous Zinc–Iodine Batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14280-14285.
[57] MACHHI H K, SONIGARA K K, BARIYA S N, et al. Hierarchically Porous Metal–Organic Gel Hosting Catholyte for Limiting Iodine Diffusion and Self-Discharge Control in Sustainable Aqueous Zinc–I2 Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21426-21435.
[58] HE J, MU Y, WU B, et al. Synergistic Effects of Lewis Acid–base and Coulombic Interactions for High-performance Zn–I2 Batteries[J]. Energy & Environmental Science, 2024, 17(1): 323-331.
[59] ZHANG L, ZHANG M, GUO H, et al. A Universal Polyiodide Regulation Using Quaternization Engineering toward High Value-Added and Ultra-Stable Zinc-Iodine Batteries[J]. Advanced Science, 2022, 9(13): 2105598.
[60] LI X, LI N, HUANG Z, et al. Enhanced Redox Kinetics and Duration of Aqueous I2/I−Conversion Chemistry by MXene Confinement[J]. Advanced Materials, 2021, 33(8): 2006897.
[61] LI X, LI M, HUANG Z, et al. Activating the I0/I+ Redox Couple in An Aqueous I2-Zn Battery to Achieve a High Voltage Plateau[J]. Energy & Environmental Science, 2021, 14(1): 407-413.
[62] HAO J, YUAN L, JOHANNESSEN B, et al. Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc-Ion Batteries[J]. Angewandte Chemie International Edition, 2021, 60(47): 25114-25121.
[63] HU Z, WANG X, DU W, et al. Crowding Effect-Induced Zinc-Enriched/Water-Lean Polymer Interfacial Layer Toward Practical Zn-Iodine Batteries[J]. ACS Nano, 2023, 17(22): 23207-23219.
[64] WANG G, YAO Q, DONG J, et al. In situ Construction of Multifunctional Surface Coatings on Zinc Metal for Advanced Aqueous Zinc–Iodine Batteries[J]. Advanced Energy Materials, 2024, 14(5): 2303221.
[65] JIN S, ZHANG D H, SHARMA A, et al. Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth[J]. Small, 2021, 17(33): 2101798.
[66] ZOU Y, LIU T, DU Q, et al. A Four-Electron Zn-I2 Aqueous Battery Enabled by Reversible I−/I2/I+ Conversion[J]. Nature Communications, 2021, 12(1): 170.
[67] LIANG G, LIANG B, CHEN A, et al. Development of Rechargeable High-energy Hybrid Zinc-iodine Aqueous Batteries Exploiting Reversible Chlorine-based Redox Reaction[J]. Nature Communications, 2023, 14(1): 1856-1856.
[68] WENG G-M, LI Z, CONG G, et al. Unlocking the Capacity of Iodide for High-energy-density Zinc/Polyiodide and Lithium/Polyiodide Redox Flow Batteries[J]. Energy & Environmental Science, 2017, 10(3): 735-741.
[69] YAMAMOTO T, HISHINUMA M, YAMAMOTO A. Zn∣ZnI2∣Iodine Secondary Battery Using Iodine-nylon-6 Adduct as Positive Electrode, and Its Charge-discharge Performance[J]. Inorganica Chimica Acta, 1984, 86(2): L47-L49.
[70] YANG H, QIAO Y, CHANG Z, et al. A Metal–Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc–Iodide Batteries[J]. Advanced Materials, 2020, 32(38): 2004240.
[71] LIN P, CHEN G, KANG Y, et al. Simultaneous Inhibition of Zn Dendrites and Polyiodide Ions Shuttle Effect by an Anion Concentrated Electrolyte Membrane for Long Lifespan Aqueous Zinc–Iodine Batteries[J]. ACS Nano, 2023, 17(16): 15492-15503.
[72] SHANG W, ZHU J, LIU Y, et al. Establishing High-Performance Quasi-Solid Zn/I2 Batteries with Alginate-Based Hydrogel Electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24756-24764.
[73] SONIGARA K K, ZHAO J, MACHHI H K, et al. Self-Assembled Solid-State Gel Catholyte Combating Iodide Diffusion and Self-Discharge for a Stable Flexible Aqueous Zn-I2 Battery[J]. Advanced Energy Materials, 2020, 10(47): 2001997.
[74] LV S, FANG T, DING Z, et al. A High-Performance Quasi-Solid-State Aqueous Zinc–Dual Halogen Battery[J]. ACS Nano, 2022, 16(12): 20389-20399.
[75] YANG J-L, XIAO T, XIAO T, et al. Cation-Conduction Dominated Hydrogels for Durable Zinc–Iodine Batteries[J]. Advanced Materials, 2313610.
[76] FAN X, ZHONG C, LIU J, et al. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes[J]. Chemical Reviews, 2022, 122(23): 17155-17239.
[77] ADAMS B D, ZHENG J, REN X, et al. Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries[J]. Advanced Energy Materials, 2018, 8(7): 1702097.
[78] WU J, RAO Z, WANG H, et al. Order-structured Solid-state Electrolytes[J]. SusMat, 2022, 2(6): 660-678.
[79] LI X, WANG Y, XI K, et al. Quasi-Solid-State Ion-Conducting Arrays Composite Electrolytes with Fast Ion Transport Vertical-Aligned Interfaces for All-Weather Practical Lithium-Metal Batteries[J]. Nano-Micro Letters, 2022, 14(1): 210.
[80] SHIN S-H, LEE W, KIM S-M, et al. Ion-conductive Self-healing Hydrogels Based on An Interpenetrating Polymer Network for A Multimodal Sensor[J]. Chemical Engineering Journal, 2019, 371: 452-460.
[81] ZENG Q, LU Y, CHEN P, et al. Semi-interpenetrating-network All-solid-state Polymer Electrolyte with Liquid Crystal Constructing Efficient Ion Transport Channels for Flexible Solid Lithium-metal Batteries[J]. Journal of Energy Chemistry, 2022, 67: 157-167.
[82] FANG Y, XIE X, ZHANG B, et al. Regulating Zinc Deposition Behaviors by the Conditioner of PAN Separator for Zinc-Ion Batteries[J]. Advanced Functional Materials, 2022, 32(14): 2109671.
[83] REN H, GAO B, WANG M. Formation and Structure of Iodine Complex of Polyacrylonitrile Studied by Vibrational Spectroscopy[J]. Polymer, 2022, 249: 124828.
修改评论