中文版 | English
题名

CO2水热处理对香蕉假茎理化性质及气化成灰行为影响

其他题名
THE EFFECT OF CO2 HYDROTHERMAL PRETREATMENT FOR PHYSICOCHEMICAL CHARACTERISTICS OF BANANA PSEUDOSTEM AND ASH CHARACTERISTICS DURING GASIFICATION
姓名
姓名拼音
LUO Da
学号
12233176
学位类型
硕士
学位专业
085602 化学工程
学科门类/专业学位类别
08 工学
导师
李俊国
导师单位
创新创业学院
论文答辩日期
2024-05-15
论文提交日期
2024-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  温室效应是人类命运共同体需要面对的问题,为此我国提出“碳达峰碳中和”战略目标。生物质能的开发利用是减少CO2等温室气体排放的有效手段,生物质气化技术能够高效利用生物质资源,但在气化过程中会遇到生物质能量密度低及沾污、结渣等灰化学问题。本工作采用富钾香蕉假茎为原料,利用CO2水热方式脱除生物质中碱金属及碱土金属,同时提高生物质热值,为气化提供优质原料。

  基于以上目的,考察水热气氛、温度、压力、水相循环次数对水热固体产物影响。通过工业分析、元素分析、热值等基本特性选择最优实验条件,采用FTIR、XRD对理化性质的变化原因进行探究。研究表明240℃、5 MPa CO2水热是最优实验条件。通过ICP-MS研究水热温度对碱金属及碱土金属迁移规律和赋存形态影响,Ca、Mg、K、Na最高脱除率分别为58.55%、29.58%、98.55%、68.25%。

  通过ICP-MS、TGA、SEM、XRD、XPS等考察水热关键因素(温度)对气化成灰的影响。碱金属的大量脱除有效改善了气化过程中的灰行为。随着水热温度的增加,降低了气化灰中残炭的含量、降低熔融颗粒的数量,避免灰渣团聚的现象。在CO2水热温度为200℃的水热炭其气化灰中出现了较强的CaCO3、MgO衍射峰;水热温度240℃以上时,气化灰中出现MgCa(CO3)2衍射峰。不同温度CO2水热炭对应气化灰表面Ca元素形态各不相同,仅在原料、120℃水热炭气化灰表面观察到K的存在,水热温度的增加使得含Al化合物相对含量增加,气化过程中矿物组成转变为硅铝化合物。

  考察了气化关键因素(气化温度)对气化成灰影响。原料、水热炭气化灰分别在1200、1300℃以熔融玻璃态粘附在瓷舟上。随着气化温度的增加,原料气化灰产率逐渐降低;水热炭气化灰产率先降低,在1000℃后基本不变,气化反应较为完全。随着气化温度的增加,水热炭气化灰中碱金属及碱土金属总量增加,K占据比例变化幅度小;原料气化灰中碱金属及碱土金属总含量先略微降低再增加,K占据比例变化幅度大;水热炭气化灰物质结构转变较为简单,而原料会转变为复杂的硅铝酸盐。CO2水热处理可以有效改善香蕉假茎气化过程中的成灰行为,提高气化反应效率。探究CO2水热处理对水热炭理化性质及气化成灰行为影响,为富钾生物质的高效气化提供理论支撑。

其他摘要

The greenhouse effect need all people on earth to face it. “Carbon peak carbon neutral” proposed by China. The utilization of biomass is an effective way to solve it. Biomass gasification could make use of biomass, with low energy density, fouling and slagging problem and so on. CO2 hydrothermal pretreatment was used to handle banana pseudostem with high alkali metals, for removing AAEMs, also increasing calorific value.

Hydrochar were prepared by different hydrothermal atmosphere, temperature, pressure, and aqueous phase cycle times. Choosed the optimal experimental conditions by comparing industrial analysis, elemental analysis, calorific value and so on. Also explored the reason of physicochemical properties changed by FTIR and XRD. The result showed that 240℃, 5 MPa were the optimal experimental conditions of CO2 hydrothermal. Meanwhile, assessed content and the chemical speciation of AAEMs in the hydrochar by ICP-MS and chemical fractionation analysis. The highest removal rate of Ca, Mg, K, and Na were 58.55%, 29.58%, 98.55% and 29.58%, respectively.

The key factor for physicochemical characteristics was temperature, the effects of hydrothermal temperature for gasification ash were investigated by ICP-MS, TGA, SEM, XRD and XPS. With the increased of hydrothermal temperature, left less char and less molten particles in ash after gasification. Ash agglomeration was avoided during hydrochar gasification. Strong CaCO3 and MgO diffraction peaks appeared in the gasification ash from hydrochar made at 200℃. MgCa(CO3)2 diffraction peaks appeared at 240℃ or higher. The bind energy of Ca were not same in gasification ash from different temperature hydrochar. Only observed the presence of K on surface of gasification ash from 120℃ hydrochar and banana pseudostem. As the hydrothermal temperature increased, the silica-aluminium compounds were observed on surface of gasification ash from hydrochar.

Also, the effects of gasification temperature on gasification ash were investigated. Molten glassy state gasification ash from hydrochar and banana pseudostem appeared at 1300℃ and 1200℃, respectively. With the gasification temperature increased, the banana pseudostem ash yield gradually decreased, hydrochar ash yield was first to decrease, unchanged after 1000℃. Which mean the gasification reaction of hydrochar was more complete than banana pseudostem. With the increased of gasification temperature, the content of AAEMs in the hydrochar gasification ash increased, and the proportion of K changed small. The content of AAEMs in banana pseudostem gasification ash slightly decreased and then increased, and the proportion of K changed large. The structure transformation of hydrochar gasification ash were not complicated, while the banana pseudostem gasification ash would be transformed into complex silica-alumina. The CO2 hydrothermal pretreatment could effectively alleviate the ash problem during gasification, and made the gasification react more completely. Explored the effect of CO2 hydrothermal pretreatment for physicochemical characteristics of banana pseudostem and ash characteristics during gasification, to increase effeciency of gasification of potassium-rich biomass.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] SCAPINI T, DOS SANTOS M S, BONATTO C, et al. Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery[J]. Bioresource Technology, 2021, 342: 126033.
[2] 刘洋. 废弃生物质微波热解转化实验研究和机理分析[D]. 北京: 北京化工大学, 2023.
[3] 中国产业发展促进会生物质能产业分会. 2023 年可再生能源统计年鉴[M]. 北京: 中国产业发展促进会生物质能产业分会, 2023.
[4] 中华人民共和国农村农业部.全国农作物秸秆综合利用情况报告[M]. 北京: 中华人民共和国农村农业部, 2022.
[5] MOTTA I L, MIRANDA N T, MACIEL FILHO R, et al. Biomass gasification in fluidized beds: a review of biomass moisture content and operating pressure effects[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 998-1023.
[6] KUMARI D, SINGH R. Pretreatment of lignocellulosic wastes for biofuel production: a critical review[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 877-891.
[7] CHIARAMONTI D. Bioethanol:role and production technologies[M]. Dordrecht: Springer Netherlands, 2007: 209-251.
[8] 姚忠良. 生物质水热处理机制及产物热利用研究[D]. 广州: 华南理工大学, 2020.
[9] ROBERT N G, JACOB S, ASHUTOSH M, et al. A thermodynamic investigation of the cellulose allomorphs: cellulose(am), cellulose Iβ(cr), cellulose II(cr), and cellulose III(cr)[J]. The Journal of Chemical Thermodynamics, 2015, 81: 184-226.
[10] YUE Y Y, HAN G P, WU Q L. Transitional properties of cotton fibers from cellulose I to cellulose II structure[J]. Bioresources, 2013, 8(4): 6460-6471.
[11] VASSILEV S V, BAXTER D, ANDERSEN L K, et al. An overview of the composition and application of biomass ash. part 1. phase–mineral and chemical composition and classification[J]. Fuel, 2013, 105: 40-76.
[12] VASSILEV S V, BAXTER D, ANDERSEN L K, et al. An overview of the chemical composition of biomass[J]. Fuel, 2010, 89(5): 913-933.
[13] KLEINHANS U, WIELAND C, FRANDSEN F, et al. Ash formation and deposition in coal and biomass fired combustion systems: progress and challenges in the field of ash particle sticking and rebound behavior[J]. Progress in Energy and Combustion Science, 2018, 68: 65-168.
[14] ZHANG B, BISWAL B K, ZHANG J J, et al. Hydrothermal treatment of biomass feedstocks for sustainable production of chemicals, fuels, and materials: progress and perspectives[J]. Chemical Reviews, 2023, 123(11): 7193-7294.
[15] 李恒. 生物炭基固体菌剂的制备及产氢应用的研究[D]. 北京: 北京化工大学, 2023.
[16] 张颖男, 张静, 郑德聪, 等. 油松林木废弃物热压成型颗粒介质传热、传力特性研究[J]. 太阳能学报, 2022, 43(12): 453-463.
[17] 杨伟. 生物质成型燃料燃烧颗粒物生成特性研究[D]. 武汉: 华中科技大学, 2018.
[18] XU X R, YAN M, SUN Y M, et al. Bioaugmentation with cold-tolerant methanogenic culture to boost methane production from anaerobic co-digestion of cattle manure and corn straw at 20°C[J]. Chemical Engineering Journal, 2023, 466: 143183.
[19] HE X Z. A novel hybrid digestion-gasification process integrated with membranes for efficient conversion of biomass to bio-alcohols[J]. Green Energy & Environment, 2021, 6: 15-21.
[20] LIU J J, HOU Q D, JU M T, et al. Biomass pyrolysis technology by catalytic fast pyrolysis,catalytic co-pyrolysis and microwave-assisted pyrolysis: a review[J]. Catalysts, 2020, 10(7):742.
[21] MIAN I, LI X, DACRES O D, et al. Combustion kinetics and mechanism of biomass pellet[J].Energy, 2020, 205: 117909.
[22] PARASCANU M M, PUIG-GAMERO M, SOREANU G, et al. Comparison of three Mexican biomasses valorization through combustion and gasification: environmental and economic analysis[J]. Energy, 2019, 189: 116095.
[23] TEZER O, KARABAG N, ONGEN A, et al. Biomass gasification for sustainable energy production: a review[J]. International Journal of Hydrogen Energy, 2022, 47(34): 15419-15433.
[24] 何清. 含碳基质预处理及热解气化反应机理研究[D]. 上海: 华东理工大学, 2022.
[25] 张恒. 生物质气化过程中煤灰的固钾特性及其对灰熔融性和气化反应性的影响[D]. 北京:中国科学院大学, 2021.
[26] SHARMA P, GUPTA B, PANDEY M, et al. Downdraft biomass gasification: a review onconcepts, designs analysis, modelling and recent advances[J]. Materials Today: Proceedings,2020, 46: 5333-5341.
[27] NIU Y Q, TAN H Z, HUI S. Ash-related issues during biomass combustion: alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization,and related countermeasures[J]. Progress in Energy and Combustion Science, 2016, 52: 1-61.
[28] ABIOYE K J, HARUN N Y, SUFIAN S, et al. A review of biomass ash related problems: mechanism, solution, and outlook[J]. Journal of the Energy Institute, 2024, 112: 101490.
[29] ÖHMAN M, NORDIN A, SKRIFVARS B J, et al. Bed agglomeration characteristics during fluidized bed combustion of biomass fuels[J]. Energy & Fuels, 2000, 14(1): 169-178.
[30] NIU Y Q, ZHU Y M, TAN H Z, et al. Investigations on biomass slagging in utility boiler:criterion numbers and slagging growth mechanisms[J]. Fuel Processing Technology, 2014,128: 499-508.
[31] WEBER R, POYRAZ Y, MANCINI M, et al. Biomass fly-ash deposition: dependence of deposition rate on probe/particle temperature in 115-1200°C range[J]. Fuel, 2021, 290: 120033.
[32] MORRIS J D, DAOOD S S, CHILTON S, et al. Mechanisms and mitigation of agglomeration during fluidized bed combustion of biomass: a review[J]. Fuel, 2018, 230: 452-473.
[33] HUEON, NAMKUNG, YOUNG-JOO, et al. Influence of herbaceous biomass ash pre-treated by alkali metal leaching on the agglomeration/sintering and corrosion behaviors[J]. Energy,2019, 187: 115950.
[34] 何紫萌, 邓玉洁, 石文举, 等. 煤灰掺杂对气化条件下生物质中不同无机形态钾迁移转化的影响[J]. 煤炭学报, 2023, 48(6): 2326-2339.
[35] SRIVASTAVA A K, SHANKAR A, NALINI CHANDRAN A K, et al. Emerging concepts of potassium homeostasis in plants[J]. Journal of Experimental Botany, 2019, 71(2): 608-619.
[36] GE J Y, WU Y T, HAN Y S, et al. Effect of hydrothermal pretreatment on the demineralization and thermal degradation behavior of eucalyptus[J]. Bioresource Technology, 2020, 307:123246.
[37] 开兴平. 生物质与塑料共气化特性及碱金属迁移转化行为研究[D]. 大连: 大连理工大学,2021.
[38] LIU Y Z, WAN K, HE Y, et al. Experimental study of potassium release during biomass-pellet combustion and its interaction with inhibitive additives[J]. Fuel, 2020, 260: 116346.
[39] DENG L, JIANG J H, TIE Y, et al. Potassium transformation and release during biomass combustion[J]. The Canadian Journal of Chemical Engineering, 2023, 101(1): 337-346.
[40] VASSILEV S V, BAXTER D, ANDERSEN L K, et al. An overview of the organic and inorganic phase composition of biomass[J]. Fuel, 2012, 94(1): 1-33.
[41] 熊钊. CO2-水洗对生物质中碱金属/碱土金属脱除的研究[D]. 武汉: 华中科技大学, 2020.
[42] SHEN Q Q, LIAW S B, WU H W. Evolution of char properties during rapid pyrolysis of woody biomass particles under pulverized fuel conditions[J]. Energy & Fuels, 2021, 35(19): 15778-15789.
[43] LI C Z. Advances in the science of Victorian brown coal[M]. Amsterdam,AMS: Elsevier, 2004.
[44] ZHAO Y J, FENG D D, ZHANG Y, et al. Effect of pyrolysis temperature on char structure and chemical speciation of alkali and alkaline earth metallic species in biochar[J]. Fuel Processing Technology, 2016, 141: 54-60.
[45] GE Y X, DING S M, KONG X R, et al. Real-time monitoring of alkali release during CO2 gasification of different types of biochar[J]. Fuel, 2022, 327: 125102.
[46] MEI Y G, WANG Z Q, ZHANG S J, et al. Novel assumption about the mechanism of catalytic gasification: on the basis of the same catalytic effect of alkali between C-CO2 and Fe-CO2 reactions[J]. Energy & Fuels, 2021, 35(19): 16258-16263.
[47] DING L, ZHOU Z J, GUO Q H, et al. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel, 2015, 142: 134-144.
[48] DU C S, LIU L, QIU P H. Variation of char reactivity during catalytic gasification with steam: comparison among catalytic gasification by ion-exchangeable Na, Ca, and Na/Ca mixture[J].Energy & Fuels, 2017, 32(1): 142-153.
[49] WANG Y F, CAI X R, GUO S G, et al. Migration behavior of chlorine during co-gasification of Shenmu coal and corn straw[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(12):5833-5845.
[50] ZHANG S P, MIN G G, WANG J Y, et al. Release characteristics of potassium and chlorine for torrefied wheat straw during a combined pyrolysis-combustion system[J]. BioresourceTechnology, 2020, 312: 123591.
[51] 陈天宇. 农业生物质气化关键问题及区域气化利用模式研究[D]. 南京: 东南大学, 2020.
[52] DENG L, HUANG X L, TIE Y, et al. Experimental study on transformation of alkali and alkaline earth metals during biomass gasification[J]. Journal of the Energy Institute, 2022, 103:117-127.
[53] WANG Y F, QIN Y H, VASSILEV S V, et al. Migration behavior of chlorine and sulfur during gasification and combustion of biomass and coal[J]. Biomass and Bioenergy, 2024, 182:107080.
[54] KNUDSEN J N, JENSEN P A, LIN W, et al. Sulfur transformations during thermal conversion of herbaceous biomass[J]. Energy & Fuels, 2004, 18(3): 810-819.
[55] WANG Z H, LIU S Y, WENG W B, et al. Alkali metal release in thermochemical conversion of biomass and coal: optical measurements and modeling[J]. Progress in Energy and Combustion Science, 2024, 100: 101131.
[56] JOHANSEN J M, JAKOBSEN J G, FRANDSEN F, et al. Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass[J]. Energy & Fuels, 2011, 25(11): 4961-4971.
[57] OUDENHOVEN S, WESTERHOF R, KERSTEN S. Fast pyrolysis of organic acid leached wood, straw, hay and bagasse: improved oil and sugar yields[J]. Journal of Analytical & Applied Pyrolysis, 2015, 116: 253-262.
[58] CEN K H, CAO X B, CHEN D Y, et al. Leaching of alkali and alkaline earth metallic species (AAEMs) with phenolic substances in bio-oil and its effect on pyrolysis characteristics of moso bamboo[J]. Fuel Processing Technology, 2020, 200: 106332.
[59] CEN K H, ZHUANG X Z, GAN Z Y, et al. Effect of the combined pretreatment of leaching and torrefaction on the production of bio-aromatics from rice straw via the shape selective catalytic fast pyrolysis[J]. Energy Reports, 2021, 7: 732-739.
[60] CHEN D Y, WANG Y, LIU Y X, et al. Comparative study on the pyrolysis behaviors of rice straw under different washing pretreatments of water, acid solution, and aqueous phase bio-oil by using TG-FTIR and Py-GC/MS[J]. Fuel, 2019, 252: 1-9.
[61] WANG X X, HU Z Z, MA J R, et al. Effect of semi-continuous water washing on the combustion behaviors of agricultural organic solid waste[J]. Carbon Resources Conversion, 2023, 6(1): 58-64.
[62] CHEN D Y, CEN K H, CHEN F, et al. Are the typical organic components in biomass pyrolyzed bio-oil available for leaching of alkali and alkaline earth metallic species (AAEMs) from biomass?[J]. Fuel, 2020, 260: 116347.
[63] SU Y H, ZHANG S P, LIU L Q, et al. Upgrading biomass fuels via combination of CO2 -leaching and torrefaction[J]. Energy & Fuels, 2021, 35(6): 5006-5014.
[64] WANG X X, XIONG Z, LI X, et al. Flue gas-enhanced water leaching: AAEM removal from agricultural organic solid waste and fouling and slagging suppression during its combustion[J].ACS Omega, 2023, 8(18): 16241-16250.
[65] CHENG C, HE Q, ISMAIL T M, et al. Hydrothermal carbonization of rape straw: effect of reaction parameters on hydrochar and migration of AAEMs[J]. Chemosphere, 2021, 291: 132785.
[66] SMITH A M, SINGH S, ROSS A B. Fate of inorganic material during hydrothermal carbonisation of biomass: influence of feedstock on combustion behaviour of hydrochar[J]. Fuel, 2016,169: 135-145.
[67] 郭倩倩. 生物质气化灰渣催化气化试验与机理研究[D]. 天津: 天津大学, 2020.
[68] ESKICIOGLU C, MONLAU F, BARAKAT A, et al. Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO2 catalyst for enhanced methane and hydrogen production[J]. Water Research, 2017, 120: 32-42.
[69] YI W, ZHENG D W N, WANG X H, et al. Biomass hydrothermal conversion under CO2 atmosphere: a way to improve the regulation of hydrothermal products[J]. Science of The Total Environment, 2021, 807: 150900.
[70] BYRD A J, KUMAR S, KONG L, et al. Hydrogen production from catalytic gasification of switchgrass biocrude in supercritical water[J]. International Journal of Hydrogen Energy, 2011,36(5): 3426-3433.
[71] AGUIRRE-FIERRO A, RUIZ H A, CERQUEIRA M A, et al. Sustainable approach of highpressure agave bagasse pretreatment for ethanol production[J]. Renewable Energy, 2020, 155:1347-1354.
[72] ÖZBEK H N, FOCKINK D H, YANıK D K, et al. The green biorefinery concept for the valorisation of pistachio shell by high-pressure CO2/H2O system[J]. Journal of Cleaner Production,2018, 196: 842-851.
[73] GE S B, WU Y J, PENG W X, et al. High-pressure CO2 hydrothermal pretreatment of peanut shells for enzymatic hydrolysis conversion into glucose[J]. Chemical Engineering Journal,2020, 385: 123949.
[74] BACH Q V, TRAN K Q, SKREIBERG Y. Accelerating wet torrefaction rate and ash removal by carbon dioxide addition[J]. Fuel Processing Technology, 2015, 140: 297-303.
[75] JIN F M, ZENG X, JING Z Z, et al. A potentially useful technology by mimicking nature rapid conversion of biomass and CO2 into chemicals and fuels under hydrothermal conditions[J]. Industrial & Engineering Chemistry Research, 2012, 51(30): 9921-9937.
[76] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2023.
[77] SUBAGYO A, CHAFIDZ A. Banana pseudo-stem fiber: preparation characteristics, and applications[M]. England: IntechOpen, 2018: 1-19.
[78] JIANG F H, CAO D F, ZHANG Y, et al. Combustion of the banana pseudo-stem hydrochar by the high-pressure CO2-hydrothermolysis: thermal conversion, kinetic, and emission analyses[J]. Fuel, 2023, 331(2): 125798.
[79] PENG J, KANG X H, ZHAO S Y, et al. Growth mechanism of glucose-based hydrochar under the effects of acid and temperature regulation[J]. Journal of Colloid and Interface Science, 2023,630: 654-665.
[80] DONG X Y, GUO S Q, WANG H Y, et al. Physicochemical characteristics and FTIR-derived structural parameters of hydrochar produced by hydrothermal carbonisation of pea pod (Pisumsativum Linn.) waste[J]. Biomass Conversion and Biorefinery, 2019, 9(3): 531-540.
[81] 张璐璐. 压力调控生物质水热法碳纳米材料的制备及应用研究[D]. 西安: 陕西科技大学,2019.
[82] 郑迪维娜. 二氧化碳气氛下生物质水热转化特性研究[D]. 武汉: 华中科技大学, 2020.
[83] LU X L, MA X Q, QIN Z, et al. Investigation of aqueous phase recirculation on co-hydrothermal carbonization of sewage sludge and lignite: hydrochar properties and heavy metal chemical speciation[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107111.
[84] 陈海涛. 水相循环对螺旋藻水热液化制备生物油的影响研究[D]. 镇江: 江苏大学, 2020.
[85] SUN S C, SUN D, LI H Y, et al. Revealing the topochemical and structural changes of poplar lignin during a two-step hydrothermal pretreatment combined with alkali extraction[J]. Industrial Crops and Products, 2021, 168: 113588.
[86] TANJA G, AMRA P U, ŽELJKO K, et al. Hydrothermal treatment of sugars to obtain highvalue products[J]. Journal of the Serbian Chemical Society, 2020, 85(1): 97-109.
[87] JIE Z, JIA L, RONG LE L. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate[J]. Bioresource Technology, 2015, 176:288-291.
[88] SILVEIRA R L, STOYANOV S R, KOVALENKO A, et al. Cellulose aggregation under hydrothermal pretreatment conditions[J]. Biomacromolecules, 2016, 17(8): 2582-2590.
[89] BENSIDHOM G, BEN A, TRABELSI H, et al. Insights into pyrolytic feedstock potential of date palm industry wastes: kinetic study and product characterization[J]. Fuel, 2020, 285:119096.
[90] JAVIER-ASTETE R, JIMENEZ-DAVALOS J, ZOLLA G. Determination of hemicellulose,cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.)K.Schum. and Guazuma crinita Lam[J]. PLoS ONE, 2021, 16(10): e0256559.
[91] SUMARNO, TRISANTI P N, AIRLANGGA B, et al. The degradation of cellulose in ionic mixture solutions under the high pressure of carbon dioxide[J]. Rsc Advances, 2021, 11(6):3484-3494.
[92] LIU T G, JIAO H T, YANG L S, et al. Co-hydrothermal carbonization of cellulose, hemicellulose, and protein with aqueous phase recirculation: insight into the reaction mechanisms on hydrochar formation[J]. Energy, 2022, 251: 123965.
[93] CHEN X F, MA X Q, PENG X W, et al. Effects of aqueous phase recirculation in hydrothermal carbonization of sweet potato waste[J]. Bioresource Technology, 2018, 267: 167-174.
[94] HE Z X, ZHANG B, FENG H, et al. Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin[J]. Energy, 2019, 179:1103-1113.
[95] 尹思媛, 田纯焱, 李艳美, 等. 水相循环对玉米秸秆水热液化成油特性影响的研究[J]. 燃料化学学报, 2020, 48(3): 275-285.
[96] YANG X H, LV P, ZHU S H, et al. Release of Ca during coal pyrolysis and char gasification in H2O, CO2 and their mixtures[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132:217-224.
[97] LI Y, HUI W, JING WEN Z, et al. Co-combustion and ash characteristics of Zhundong coal with rice husk hydrochar prepared by the hydrothermal carbonization technology for co-combustion[J]. IET Renewable Power Generation, 2022, 16(2): 329-338.
[98] 耿平. 半焦气化动力学及机理模型研究的新探索[D]. 大连: 大连理工大学, 2021.
[99] ZHAO X L, ZENG C, MAO Y Y, et al. The surface characteristics and reactivity of residual carbon in coal gasification slag[J]. Energy & Fuels, 2010, 24(1): 91-94.
[100] 康国卫, 刘苗伟, 杨亚峰, 等. 熔盐造孔法制备六铝酸钙多孔材料[J]. 耐火材料, 2021, 55(5): 448-451,455.
[101] BAI Y H, LV P, LI F, et al. Investigation into Ca/Na compounds catalyzed coal pyrolysis and char gasification with steam[J]. Energy Conversion and Management, 2019, 184: 172-179.
[102] BAI Y H, YANG X H, LI F, et al. Calcium species evolution mechanism during coal pyrolysis and char gasification in H2O/CO2[J]. Journal of the Energy Institute, 2020, 93(4): 1324-1331.
[103] WU Y F, ZHANG Q Y, ZHUO J K, et al. Influence of calcium chloride on the fine particulate matter formation during coal pyrolysis[J]. Fuel, 2024, 355: 129480.
[104] OLSSON E O L, GLARBORG P, JOHANSEN K D, et al. Review of phosphorus chemistry in the thermal conversion of biomass: progress and perspectives[J]. Energy & Fuels, 2023, 37(10): 6907-6998.
[105] WREN A G, PHILLIPS R W, TOLENTINO L U. Surface-reactions of chlorine molecules and atoms with water and sulfuric-acid at low-temperatures[J]. Journal of Colloid and Interface Science, 1979, 70(3): 544-557.
[106] WEI J T, WANG M, LI B, et al. Synergy mechanism of biochar and petcoke co-combustion based on potassium migration and transformation[J]. Fuel Processing Technology, 2023, 250:107927.
[107] BIINO G G, GRöNING P. X-Ray Photoelectron Spectroscopy (XPS) used as a structural and chemical surface probe on aluminosilicate minerals[J]. European Journal of Mineralogy, 1998,10(3): 423-437.
[108] XIAO Y, XU Z C, WANG C S, et al. Preparation of potassium oleate-kaolin/natural rubber composites by ball milling combined with gas-phase spray drying technology[J]. Applied Clay Science, 2023, 241: 106996.
[109] ZHANG J, XIONG K Z, SUN Z Q, et al. Strength degradation of alumina fiber: irreversible phase transition after high-temperature treatment[J]. Ceramics International, 2021, 47(17):24582-24588.
[110] 杨利. 准东煤与稻壳及其水热半焦混烧和成灰特性的实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[111] ENGLATINA I A, BRIAN G, EVANS M C. Hydrothermal carbonisation of paper sludge:effect of process conditions on hydrochar fuel characteristics and energy recycling efficiency[J]. Journal of Cleaner Production, 2022, 373: 133775.

所在学位评定分委会
材料与化工
国内图书分类号
TK6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778436
专题创新创业学院
推荐引用方式
GB/T 7714
罗达. CO2水热处理对香蕉假茎理化性质及气化成灰行为影响[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233176-罗达-创新创业学院.p(42429KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[罗达]的文章
百度学术
百度学术中相似的文章
[罗达]的文章
必应学术
必应学术中相似的文章
[罗达]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。