中文版 | English
题名

基于IGZO薄膜忆阻器件的研究

其他题名
RESEARCH ON MEMRISTOR DEVICES BASED ON IGZO THIN FILMS
姓名
姓名拼音
PENG Huiren
学号
11930801
学位类型
博士
学位专业
0805 材料科学与工程
学科门类/专业学位类别
08 工学
导师
程鑫
导师单位
材料科学与工程系
论文答辩日期
2024-05-19
论文提交日期
2024-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  在大数据、人工智能和云计算等领域的迅猛发展的当下,人们对于数据存储和处理的需求日益增长。忆阻器凭借其器件结构简单、读/写速度较快、功耗较低、高低阻态(HRS/LRS)的阻值保持时间较长、存储密度较高、可扩展性强以及和互补金属氧化物半导体(CMOS)工艺兼容等优点,展现出成为新一代非易失性存储器的巨大潜力。同时,忆阻器件的电导可以连续可调,类似于生物神经突触的权重调节机制,在模拟生物神经突触功能方面也具有潜在的应用价值。本论文将聚焦于以InGaZnOIGZO材料为基础的忆阻器件,探究IGZO忆阻器件的工作机制和存储性能,以及忆阻器件的突触可塑性。

  针对阳离子迁移型IGZO忆阻器,设计并制备了Ag/IGZO/Pt 结构的忆阻器件。研究发现,Ag/IGZO/Pt 器件的电学特性呈现出双极性,其工作机制是通过 Ag 离子的迁移形成Ag导电细丝,通过调控器件的Ag电极和Pt电极间导电细丝的通断来改变其电阻态。为了改善Ag/IGZO/Pt 器件的开关性能,我们在IGZO层和Pt电极之间插入3 nm厚的HfAlOx修饰层。与Ag/IGZO/Pt 器件相比,Ag/IGZO/HfAlOx/Pt 器件具有更低的开关电压、更快的开关速度(~20 ns)、更低的开关能(~8 pJ)和功耗等优点。此外,在Vset 的稳定性和均匀性方面也得到大幅度提高,且展现出长的HRS/LRS保持时间(85℃下,超过104 s)、高的开关比(大于5×102)以及大气条件下超过103 次的脉冲循环耐久性。IGZO忆阻器件的开关性能的改善可归因于HfAlOx层对Ag导电细丝形成和断裂的位置以及界面效应更有效的调控。

  针对阴离子迁移型IGZO忆阻器,设计并制备了Pt/IGZO/Ti 结构的忆阻器件。研究表明,Pt/IGZO/Ti 器件的阻变机制是通过O2- 的迁移形成的氧空位导电细丝来实现,并通过控制连通Pt电极和Ti电极间导电细丝的通断来改变其电阻态。为了获得多级存储性能稳定的IGZO忆阻器件,我们通过电感耦合氧等离子体氧化法制备出Pt/IGZO/TiO2/Ti 结构的忆阻器件。研究表明,与Pt/IGZO/Ti 器件相比,Pt/IGZO/TiO2/Ti 器件的开关电压更小、HRS/LRS更加稳定、多级存储性能也更优异、循环耐久性更高(>103 次)、多级存储态的保持时间更长(>105 s)等。经分析可知,主要原因是采用氧等离子体氧化生成的TiO2层可以存储复位过程中IGZO介质层内残留的游离态氧离子,从而提高Pt/IGZO/TiO2/Ti 忆阻器件多级存储的稳定性。

  针对电感耦合氧等离子体氧化法制备的Pt/IGZO/TiO2/Ti 忆阻器件,采用直流电压信号、脉冲三角波电压信号和脉冲矩形波电压信号对其进行突触可塑性测试。研究发现,Pt/IGZO/TiO2/Ti 器件具有良好的突触增强和抑制可塑性,在连续的正脉冲信号刺激下,其器件的电导不断增加后趋于稳定,在连续的负脉冲信号刺激下,其器件的电导不断递减后趋于稳定。在脉冲电压信号(1 V/1 μs)下,能够实现学习-遗忘-再学习过程的模拟。

 
其他摘要
    With the rapid development of big data, artificial intelligence, and cloud computing, the demand for the data storage and processing is increasing. With the advantages of simple device structure, low power consumption, fast read/write speeds, long retention time, high storage density, high scalability, and compatibility with complementary metal-oxide-semiconductor (CMOS) fabrication process, memristor shows great potential to the next generation of non-volatile memory. At the same time, the conductance of memristor devices can be continuously adjusted, similar to the weight regulation mechanism of biological synapses. Therefore, memristor also has potential applications in simulating biological neural synapses. This paper will focus on the memristor devices based on InGaZnO (IGZO) materials, and research on the working mechanism and storage performance of IGZO memristor devices, and the synaptic plasticity of the memristor devices.
    For cation-transporting IGZO memristors, a memristor device with Ag/IGZO/Pt structure was designed and fabricated. It is found that the electrical properties of Ag/IGZO/Pt devices exhibit bipolarity, and the working mechanism is to form Ag conductive filaments through the migration of Ag ions, and to change the resistance state by regulating the on-off of the conductive filaments. To improve the resistive switching performance of Ag/IGZO/Pt devices, a 3 nm HfAlOx modification layer was inserted between the IGZO layer and the Pt electrode. Compared with Ag/IGZO/Pt devices, Ag/IGZO/HfAlOx/Pt devices exhibit lower switching voltages, faster switching speed (~20 ns), lower switching energy (~8 pJ), and lower power consumption. In addition, the stability and uniformity of the Vset are also greatly improved, and it exhibits long retention time (over 104 s at 85℃), high on/off ratio (more than 5×102), and more than 10cycles of pulse endurance in an ambient atmosphere. The improved resistive switching performance of IGZO memristor devices can be attributed to a better regulation of Ag filament formation and rupture locations, as well as interface effects by introducing the HfAlOx layer.
    For anion-transporting IGZO memristors, a memristor device with Pt/IGZO/Ti structure was designed and fabricated. The results show that the resistive switching mechanism of Pt/IGZO/Ti device is realized by the oxygen vacancy conductive filaments formed through the migration of O2-, and the resistance state is changed by controlling the on-off of conductive filaments. To obtain IGZO memristor devices with stable multi-level storage performance, we prepared Pt/IGZO/TiO2/Ti devices by inductively coupled oxygen plasma oxidation. The experimental results show that compared with Pt/IGZO/Ti device, Pt/IGZO/TiO2/Ti devices have smaller switching voltage, more stable HRS/LRS, better multi-level storage performance, high endurances (over 103 cycles), and longer retention of multilevel resistance state (over 105 s). The analysis shows that the main reason is that the TiO2 layer can store the residual free oxygen ions during the reset process, thereby improving the multi-level storage stability of Pt/IGZO/TiO2/Ti memristor devices.
    The synaptic plasticity of Pt/IGZO/TiO2/Ti memristor devices prepared by inductively coupled oxygen plasma oxidation was tested by DC voltage signal, pulse triangular wave voltage signal and pulse rectangular wave voltage signal. It is found that the Pt/IGZO/TiO2/Ti device has good synaptic potentiation and depression plasticity. Under continuous positive pulse signal stimulation, the conductance of the device increases continuously and tends to be stable. Under continuous negative pulse signal stimulation, the conductance of the device decreases continuously and tends to be stable. Under the pulse voltage signal (1 V/1 μs), the learning-forgetting-relearning process can be simulated by Pt/IGZO/TiO2/Ti device.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] CHEN C L P, ZHANG C Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data [J]. Information Sciences, 2014, 275(1): 314-347.
[2] ZIDAN M A, STRACHAN J P, LU W D. The future of electronics based on memristive systems [J]. Nature Electronics, 2018, 1(1): 22-29.
[3] MIKOLAJICK T, DEHM C, HARTNER W, et al. FeRAM technology for high density applications [J]. Microelectronics Reliability, 2001, 41(7): 947-950.
[4] KENT A D, WORLEDGE D C. A new spin on magnetic memories [J]. Nature Nanotechnology, 2015, 10(3): 187-191.
[5] WOUTERS D J, WASER R, WUTTIG M. Phase-change and redox-based resistive switching memories [J]. Proceedings of the IEEE, 2015, 103(8): 1274-1288.
[6] RAOUX S, WEŁNIC W, IELMINI D. Phase change materials and their application to nonvolatile memories [J]. Chemical Reviews, 2010, 110(1): 240-267.
[7] WASER R, AONO M. Nanoionics-based resistive switching memories [J]. Nature Materials, 2007, 6(11): 833-840.
[8] XU Z, LI Y, XIA Y, et al. Organic frameworks memristor: an emerging candidate for data storage, artificial synapse, and neuromorphic device [J]. Advanced Functional Materials, 2024, 1(1): 2312658.
[9] CARLOS E, BRANQUINHO R, MARTINS R, et al. Recent progress in solution-based metal oxide resistive switching devices [J]. Advanced Materials, 2021, 33(7): 2004328.
[10] PAN F, GAO S, CHEN C, et al. Recent progress in resistive random access memories: materials, switching mechanisms, and performance [J]. Materials Science and Engineering, 2014, 83(1): 1-59.
[11] WASER R, DITTMANN R, STAIKOV G, et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges [J]. Advanced Materials, 2009, 21(25-26): 2632-2663.
[12] WONG H S P, LEE H-Y, YU S, et al. Metal-oxide RRAM [J]. Proceedings of the IEEE, 2012, 100(6): 1951-1970.
[13] LI H, WANG S, ZHANG X, et al. Memristive crossbar arrays for storage and computing applications [J]. Advanced Intelligent Systems, 2021, 3(9): 2100017.
[14] IELMINI D, WONG H-S P. In-memory computing with resistive switching devices [J]. Nature Electronics, 2018, 1(6): 333-343.
[15] TANG J, YUAN F, SHEN X, et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges[J].Advanced Materials, 2019, 31(49): 1902761.
[16] CHUA L. Memristor-the missing circuit element [J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-519.
[17] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80-83.
[18] CHUA L O, KANG S M. Memristive devices and systems [J]. Proceedings of the IEEE, 1976, 64(2): 209-223.
[19] CHUA L. Resistance switching memories are memristors [J]. Handbook of Memristor Networks, 2019, 1(1): 197-230.
[20] PI S, LI C, JIANG H, et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension [J]. Nature Nanotechnology, 2019, 14(1): 35-39.
[21] SHARATH S U, VOGEL S, MOLINA-LUNA L, et al. Control of switching modes and conductance quantization in oxygen engineered HfOx based memristive devices[J]. Advanced Functional Materials, 2017, 27(32): 1700432.
[22] KAMBLE G U, PATIL A P, KAMAT R K, et al. Promising materials and synthesis methods for resistive switching memory devices: a status review[J]. ACS Applied Electronic Materials, 2023, 5(5): 2454-2481.
[23] WANG Z, ZENG T, REN Y, et al. Toward a generalized bienenstock-cooper-munro rule for spatiotemporal learning via triplet-STDP in memristive devices [J]. Nature Communication, 2020, 11(1): 1510.
[24] SONG S, CHO B, KIM T W, et al. Three-dimensional integration of organic resistive memory devices [J]. Advanced Materials, 2010, 22(44): 5048-5052.
[25] SUN H, LIU Q, LI C, et al. Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology [J]. Advanced Functional Materials, 2014, 24(36): 5679-5686.
[26] CHANG C F, CHEN J Y, HUANG C W, et al. Direct observation of dual-filament switching behaviors in Ta2O5-based memristors [J]. Small, 2017, 13(15): 1603116.
[27] GAN K-J, CHANG W-C, LIU P-T, et al. Investigation of resistive switching in copper/InGaZnO/Al2O3-based memristor [J]. Applied Physics Letters, 2019, 115(14): 143501.
[28] MIN S Y, CHO W J. High-performance resistive switching in solution-derived IGZO:N memristors by microwave-assisted nitridation [J]. Nanomaterials, 2021, 11(5): 1081.
[29] SUN B, RANJAN S, ZHOU G, et al. Multistate resistive switching behaviors for neuromorphic computing in memristor [J]. Materials Today Advances, 2021, 9(1): 100125.
[30] KWON D H, KIM K M, JANG J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory [J]. Nature Nanotechnology, 2010, 5(2): 148-153.
[31] SUN Y, YAN X, ZHENG X, et al. High on-off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing [J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7382-7388.
[32] SEUL KI H, JI EUN K, SANG OUK K, et al. Flexible resistive switching memory device based on graphene oxide [J]. IEEE Electron Device Letters, 2010, 31(9): 1005-1007.
[33] ISMAIL M, MAHATA C, KWON O, et al. Neuromorphic synapses with high switching uniformity and multilevel memory storage enabled through a Hf-Al-O alloy for artificial intelligence [J]. ACS Applied Electronic Materials, 2022, 4(3): 1288-1300.
[34] CHEN Y-T, CHANG T-C, YANG P-C, et al. Improvement of resistive switching characteristics by thermally assisted forming process for SiO2-based structure [J]. IEEE Electron Device Letters, 2013, 34(2): 226-8.
[35] LIN S-K, WU C-H, CHANG T-C, et al. Improving performance by inserting an indium oxide layer as an oxygen ion storage layer in HfO2-based resistive random access memory [J]. IEEE Transactions on Electron Devices, 2021, 68(3): 1037-1040.
[36] WANG Z Q, XU H Y, LI X H, et al. Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance [J]. IEEE Electron Device Letters, 2011, 32(10): 1442-1444.
[37] LIU L, YU D, MA W, et al. Multilevel resistive switching in Ag/SiO2/Pt resistive switching memory device [J]. Japanese Journal of Applied Physics, 2015, 54(2): 021802.
[38] 袁俊辉. 忆阻器材料与阻变机理的理论研究 [D]; 华中科技大学, 2022.
[39] KIM K M, KIM G H, SONG S J, et al. Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures [J]. Nanotechnology, 2010, 21(30): 305203.
[40] LU C, YU J, CHI X-W, et al. Self-compliance Pt/HfO2/Ti/Si one-diode-one-resistor resistive random access memory device and its low temperature characteristics [J]. Applied Physics Express, 2016, 9(4): 041501.
[41] PERSSON K M, RAM M S, KILPI O P, et al. Cross-point arrays with low-power ITO-HfO2 resistive memory cells integrated on vertical III-V nanowires [J]. Advanced Electronic Materials, 2020, 6(6): 2000154.
[42] GUO T, PAN K, JIAO Y, et al. Versatile memristor for memory and neuromorphic computing [J]. Nanoscale Horizons, 2022, 7(3): 299-310.
[43] WANG H, YAN X. Overview of resistive random access memory (RRAM): materials, filament mechanisms, performance optimization, and prospects [J]. Physica Status Solidi-Rapid Research Letters, 2019, 13(9): 1900073.
[44] MAHAPATRO A K, AGRAWAL R, GHOSH S. Electric-field-induced conductance transition in 8-hydroxyquinoline aluminum (Alq3) [J]. Journal of Applied Physics,2004, 96(6): 3583-3585.
[45] KIM W T, JUNG J H, KIM T W, et al. Current bistability and carrier transport mechanisms of organic bistable devices based on hybrid Ag nanoparticle-polymethyl methacrylate polymer nanocomposites [J]. Applied Physics Letters, 2010, 96(25): 253301.
[46] HE W, SUN H, ZHOU Y, et al. Customized binary and multi-level HfO(2-x)-based memristors tuned by oxidation conditions [J]. Scientific Reports, 2017, 7(1): 10070.
[47] ABBAS H, ALI A, JUNG J, et al. Reversible transition of volatile to non-volatile resistive switching and compliance current-dependent multistate switching in IGZO/MnO RRAM devices [J]. Applied Physics Letters, 2019, 114(9): 093503.
[48] ISMAIL M, MAHATA C, ABBAS H, et al. Bipolar, complementary resistive switching and synaptic properties of sputtering deposited ZnSnO-based devices for electronic synapses [J]. Journal of Alloys and Compounds, 2021, 862(1): 158416.
[49] PRAKASH R, KAUR D. Bipolar resistive switching behavior in Cu/AlN/Pt structure for ReRAM application [J]. Vacuum, 2017, 143(1): 102-105.
[50] BHATTACHARJEE S, CARUSO E, MCEVOY N, et al. Insights into multilevel resistive switching in monolayer MoS2 [J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6022-6029.
[51] SAWA A. Resistive switching in transition metal oxides [J]. Materials Today, 2008, 11(6): 28-36.
[52] RYU J-H, HUSSAIN F, MAHATA C, et al. Filamentary and interface switching of CMOS-compatible Ta2O5 memristor for non-volatile memory and synaptic devices [J]. Applied Surface Science, 2020, 529(1): 147167.
[53] GAO S, LIU G, YANG H, et al. An oxide schottky junction artificial optoelectronic synapse [J]. ACS Nano, 2019, 13(2): 2634-2642.
[54] WANG Z Q, XU H Y, LI X H, et al. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor[J]. Advanced Functional Materials, 2012, 22(13): 2759-2765.
[55] IELMINI D. Resistive switching memories based on metal oxides: mechanisms, reliability and scaling [J]. Semiconductor Science and Technology, 2016, 31(6): 063002.
[56] LIU Q, LONG S, LV H, et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode [J]. ACS Nano, 2010, 4(10): 6162-6068.
[57] KUMAR M, KIM H S, KIM J. A highly transparent artificial photonic nociceptor [J]. Advanced Materials, 2019, 31(19): e1900021.
[58] KUMAR D, ALUGURI R, CHAND U, et al. Metal oxide resistive switching memory: materials, properties and switching mechanisms [J]. Ceramics International, 2017, 43(1): S547-S556.
[59] YOU B K, KIM J M, JOE D J, et al. Reliable memristive switching memory devices enabled by densely packed silver nanocone arrays as electric-field concentrators [J]. ACS Nano, 2016, 10(10): 9478-9488.
[60] CHEN Q, LIU G, XUE W, et al. Controlled construction of atomic point contact with 16 quantized conductance states in oxide resistive switching memory [J]. ACS Applied Electronic Materials, 2019, 1(5): 789-798.
[61] LUO Y, ZHAO D, ZHAO Y, et al. Evolution of Ni nanofilaments and electromagnetic coupling in the resistive switching of NiO [J]. Nanoscale, 2015, 7(2): 642-649.
[62] LEE J, LU W D. On-demand reconfiguration of nanomaterials: when electronics meets ionics [J]. Advanced Materials, 2018, 30(1): 1702770.
[63] GUO X, SCHINDLER C, MENZEL S, et al. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems [J]. Applied Physics Letters, 2007, 91(13): 133513.
[64] YANG Y C, PAN F, LIU Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application [J]. Nano Letters, 2009, 9(4): 1636-43.
[65] YANG Y, GAO P, GABA S, et al. Observation of conducting filament growth in nanoscale resistive memories [J]. Nature Communications, 2012, 3(1): 732.
[66] YAN X, ZHAO Q, CHEN A P, et al. Vacancy-induced synaptic behavior in 2D WS2nanosheet-based memristor for low-power neuromorphic computing [J]. Small, 2019, 15(24): e1901423.
[67] CHOI B J, TORREZAN A C, STRACHAN J P, et al. High-speed and low-energy nitride memristors[J]. Advanced Functional Materials, 2016, 26(29): 5290-5296.
[68] 谢卓琳. 氧化物忆阻器的电输运行为调控及其神经元仿生特性研究 [D]; 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2023.
[69] RUSSO U, IELMINI D, CAGLI C, et al. Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices [J]. IEEE Transactions on Electron Devices, 2009, 56(2): 193-200.
[70] KAN-HAO X, TRAORE B, BLAISE P, et al. A combined ab initio and experimental study on the nature of conductive filaments in Pt/HfO2/Pt resistive random access memory [J]. IEEE Transactions on Electron Devices, 2014, 61(5): 1394-1402.
[71] CHEN J Y, HSIN C L, HUANG C W, et al. Dynamic evolution of conducting nanofilament in resistive switching memories [J]. Nano Letters, 2013, 13(8): 3671-3677.
[72] MENG LU Y, NOMAN M, PICARD Y N, et al. Impact of joule heating on the microstructure of nanoscale TiO2 resistive switching devices [J]. Journal of Applied Physics, 2013, 113(16): 163703.
[73] CHANG S H, LEE J S, CHAE S C, et al. Occurrence of both unipolar memory and threshold resistance switching in a NiO film [J]. Physical Review Letters, 2009, 102(2): 026801.
[74] CHEN A B, KIM S G, WANG Y, et al. A size-dependent nanoscale metal-insulator transition in random materials [J]. Nature Nanotechnology, 2011, 6(4): 237-241.
[75] SHAO X L, ZHOU L W, YOON K J, et al. Electronic resistance switching in the Al/TiOx/Al structure for forming-free and area-scalable memory [J]. Nanoscale, 2015, 7(25): 11063-11074.
[76] WU S, REN L, YU F, et al. Colossal resistance switching in Pt/BiFeO3/Nb:SrTiO3 memristor [J]. Applied Physics A, 2014, 116(4): 1741-1745.
[77] DONGALE T D, PATIL K P, GAIKWAD P K, et al. Investigating conduction mechanism and frequency dependency of nanostructured memristor device [J]. Materials Science in Semiconductor Processing, 2015, 38(1): 228-233.
[78] SALINGA M, WUTTIG M. Phase-change memories on a diet [J]. Science, 2011, 332(6029): 543-544.
[79] JIANG A Q, GENG W P, LV P, et al. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers [J]. Nature Materials, 2020, 19(11): 1188-1194.
[80] YU S, GUAN X, WONG H S P. Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model [J]. Applied Physics Letters, 2011, 99(6): 063507.
[81] CHANG W-Y, LAI Y-C, WU T-B, et al. Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications [J]. Applied Physics Letters, 2008, 92(2): 022110.
[82] LIN C-Y, WANG S-Y, LEE D-Y, et al. Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films [J]. Journal of the Electrochemical Society, 2008, 155(8): H615.
[83] LIU Q, GUAN W, LONG S, et al. Resistive switching memory effect of ZrO2 films with Zr+ implanted [J]. Applied Physics Letters, 2008, 92(1): 012117.
[84] ZAHOOR F, AZNI ZULKIFLI T Z, KHANDAY F A. Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell storage, modeling, and applications [J]. Nanoscale Research Letters, 2020, 15(1): 1-26.
[85] PEI Y, MAI B, ZHANG X, et al. Performance improvement of amorphous indium-gallium-zinc oxide ReRAM with SiO2 inserting layer [J]. Current Applied Physics, 2015, 15(4): 441-445.
[86] NIU J, ZHANG M, LI Y, et al. Highly scalable resistive switching memory in metal nanowire crossbar arrays fabricated by electron beam lithography [J]. Journal of Vacuum Science & Technology B, 2016, 34(2): 02G105.
[87] XUE W, GAO S, SHANG J, et al. Recent advances of quantum conductance in memristors [J]. Advanced Electronic Materials, 2019, 5(9): 1800854.
[88] XUE W, LI Y, LIU G, et al. Controllable and stable quantized conductance states in a Pt/HfOx/ITO memristor [J]. Advanced Electronic Materials, 2019, 6(2): 1901055.
[89] CHEN Y Y, GOUX L, CLIMA S, et al. Endurance/Retention trade-off on HfO2/metal cap 1T1R bipolar RRAM [J]. IEEE Transactions on Electron Devices, 2013, 60(3): 1114-1121.
[90] PERSHIN Y V, DI VENTRA M. Practical approach to programmable analog circuits with memristors [J]. IEEE Transactions on Circuits and Systems, 2010, 57(8): 1857-1864.
[91] REUBEN J, BEN-HUR R, WALD N, et al. Memristive logic: a framework for evaluation and comparison[C]// 27th International Symposium on Power and Timing Modeling, Optimization and Simulation. IEEE, 2017: 1-8.
[92] GAO S, LIU G, CHEN Q, et al. Improving unipolar resistive switching uniformity with cone-shaped conducting filaments and its logic-in-memory application [J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6453-6462.
[93] BORGHETTI J, SNIDER G S, KUEKES P J, et al. 'Memristive' switches enable 'stateful' logic operations via material implication [J]. Nature, 2010, 464(7290): 873-876.
[94] UPADHYAY N K, JOSHI S, YANG J J. Synaptic electronics and neuromorphic computing [J]. Science China Information Sciences, 2016, 59(6): 1-26.
[95] WANG Z, JOSHI S, SAVEL'EV S E, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing [J]. Nature Materials, 2017, 16(1): 101-108.
[96] JO S H, CHANG T, EBONG I, et al. Nanoscale memristor device as synapse in neuromorphic systems [J]. Nano Letters, 2010, 10(4): 1297-1301.
[97] 黄庆红. 国际半导体技术发展路线图[J]. 中国集成电路, 2014, 23(09): 25-45.
[98] JIANG H, HAN L, LIN P, et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor [J]. Scientific Reports, 2016, 6(1): 28525.
[99] MCNAMARA B R, NULSEN P E, WISE M W, et al. The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts [J]. Nature, 2005, 433(7021): 45-47.
[100]IELMINI D, WONG H S P. In-memory computing with resistive switching devices [J]. Nature Electronics, 2018, 1(6): 333-343.
[101]ZHOU Y, LI Y, XU L, et al. 16 boolean logics in three steps with two anti-serially connected memristors [J]. Applied Physics Letters, 2015, 106(23): 233502.
[102]CHENG L, LI Y, YIN K S, et al. Functional demonstration of a memristive arithmetic logic unit for in-memory computing [J]. Advanced Functional Materials, 2019, 29(49): 1905660.
[103]CHEN Q L, LIU G, TANG M H, et al. A univariate ternary logic and three-valued multiplier implemented in a nano-columnar crystalline zinc oxide memristor [J]. RSC Advances, 2019, 9(42): 24595-24602.
[104]UNGERLEIDER L G. Functional brain imaging studies of cortical mechanisms for memory [J]. Science, 1995, 270(5237): 769-775.
[105]TANG J, YUAN F, SHEN X, et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges [J]. Advanced Materials, 2019, 31(49): 1902761.
[106]DU C, MA W, CHANG T, et al. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics [J]. Advanced Functional Materials, 2015, 25(27): 4290-4299.
[107]WANG Z, JOSHI S, SAVEL’EV S, et al. Fully memristive neural networks for pattern classification with unsupervised learning [J]. Nature Electronics, 2018, 1(2): 137-145.
[108]LI C, HU M, LI Y, et al. Analogue signal and image processing with large memristor crossbars [J]. Nature Electronics, 2017, 1(1): 52-59.
[109]LIU Z, TANG J, GAO B, et al. Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces [J]. Nature Communications, 2020, 11(1): 4234.
[110]ZHONG Y, TANG J, LI X, et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing [J]. Nature Electronics, 2022, 5(10): 672-681.
[111]NOMURA K, OHTA H, UEDA K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor [J]. Science, 2003, 300(5623): 1269-1272.
[112]YANG L, CHENG L, LI Y, et al. Cryptographic key generation and in situ encryption in one-transistor-one-resistor memristors for hardware security [J]. Advanced Electronic Materials, 2021, 7(5): 2001182.
[113]ZHANG L, XU Z, HAN J, et al. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment [J]. Journal of Materials Science & Technology, 2020, 49(1): 1-6.
[114]LI Q, LI Y, GAO L, et al. Ru doping enhanced resistive switching behavior in InGaZnO thin films [J]. RSC Advances, 2016, 6(48): 42347-42352.
[115]KANG D Y, LEE T-H, KIM T G. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing [J]. Applied Physics Letters, 2016, 109(7): 073105.
[116]MARTINS R A, CARLOS E, DEUERMEIER J, et al. Emergent solution based IGZO memristor towards neuromorphic applications [J]. Journal of Materials Chemistry C, 2022, 10(6): 1991-1998.
[117]黄鹤鸣. 基于过渡金属氧化物忆阻器的人工突触、人工神经元及人工神经网络[D]; 华中科技大学, 2023.
[118]LUNDSTROM M. Moore's law forever? [J]. Science, 2003, 299(5604): 210-211.
[119]SHEN Z, ZHAO C, QI Y, et al. Advances of RRAM devices: resistive switching mechanisms, materials and bionic synaptic application [J]. Nanomaterials, 2020, 10(8): 1437-1468.
[120]LüBBEN M, CüPPERS F, MOHR J, et al. Design of defect-chemical properties and device performance in memristive systems [J]. Science Advances, 2020, 6(19): eaaz9079.
[121]LANZA M, WONG H S P, POP E, et al. Recommended methods to study resistive switching devices[J]. Advanced Electronic Materials, 2019, 5(1): 1800143.
[122]SON J Y, SHIN Y-H, KIM H, et al. NiO resistive random access memory nanocapacitor array on graphene [J]. ACS Nano, 2010, 4(5): 2655-2658.
[123]YANG J J, PICKETT M D, LI X, et al. Memristive switching mechanism for metal/oxide/metal nanodevices [J]. Nature Nanotechnology, 2008, 3(7): 429-433.
[124]YU S, CHEN H-Y, GAO B, et al. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture [J]. ACS Nano, 2013, 7(3): 2320-2325.
[125]LIU S, LU N, ZHAO X, et al. Eliminating negative-set behavior by suppressing nanofilament overgrowth in cation-based memory [J]. Advanced Materials, 2016, 28(48): 10623-10629.
[126]NIU Y, JIANG K, DONG X, et al. High performance and low power consumption resistive random access memory with Ag/Fe2O3/Pt structure [J]. Nanotechnology, 2021, 32(50): 505715.
[127]RAHMAN F, AHMED T, WALIA S, et al. Reversible resistive switching behaviour in CVD grown, large area MoOx [J]. Nanoscale, 2018, 10(42): 19711-19719.
[128]GUO T, SUN B, MAO S, et al. A resistance ratio change phenomenon observed in Al doped ZnO(AZO)/Cu(In1-xGax)Se2/Mo resistive switching memory device [J]. Applied Surface Science, 2018, 433(1): 535-539.
[129]LEE M-J, KIM S I, LEE C B, et al. Low-temperature-grown transition metal oxide based storage materials and oxide transistors for high-density non-volatile memory [J]. Advanced Functional Materials, 2009, 19(10): 1587-1593.
[130]MA P, LIANG G, WANG Y, et al. High-performance InGaZnO-based ReRAMs [J]. IEEE Transactions on Electron Devices, 2019, 66(6): 2600-2605.
[131]LEE D, CHUN M C, KO H, et al. Highly stable, solution-processed quaternary oxide thin film-based resistive switching random access memory devices via global and local stoichiometric manipulation strategy [J]. Nanotechnology, 2020, 31(24): 245202.
[132]CHANG C-C, LIU P-T, CHIEN C-Y, et al. Solving the integration problem of one transistor one memristor architecture with a Bi-layer IGZO film through synchronous process [J]. Applied Physics Letters, 2018, 112(17): 172101.
[133]WANG Z, ZHAO K, XU H, et al. Improvement of resistive switching memory achieved by using arc-shaped bottom electrode [J]. Applied Physics Express, 2015, 8(1): 014101.
[134]HWANG Y-H, AN H-M, CHO W-J. Performance improvement of the resistive memory properties of InGaZnO thin films by using microwave irradiation [J]. Japanese Journal of Applied Physics, 2014, 53(4S): 04EJ04.
[135]HU W, ZOU L, CHEN X, et al. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method [J]. ACS Applied Materials & Interfaces, 2014, 6(7): 5012-5017.
[136]SURI R, KIRKPATRICK C J, LICHTENWALNER D J, et al. Energy-band alignment of Al2O3 and HfAlO gate dielectrics deposited by atomic layer deposition on 4H-SiC [J]. Applied Physics Letters, 2010, 96(4): 042903.
[137]NIU J, ZHANG M, LI Y, et al. Highly scalable resistive switching memory in metal nanowire crossbar arrays fabricated by electron beam lithography [J]. Journal of Vacuum Science & Technology B, 2016, 34(2): 02G105.
[138]ZHAO X, ZHANG X, SHANG D, et al. Uniform, fast, and reliable LixSiOy-based resistive switching memory [J]. IEEE Electron Device Letters, 2019, 40(4): 554-557.
[139]LEE D K, KIM M H, BANG S, et al. Improvement of resistive switching characteristics of titanium oxide based nanowedge RRAM through nickel silicidation[J]. IEEE Transactions on Electron Devices, 2020, 68(1): 438-442.
[140]YAN X, QIN C, LU C, et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48029-48038.
[141]CHEN S, NOORI S, VILLENA M A, et al. Memristive electronic synapses made by anodic oxidation[J]. Chemistry of Materials, 2019, 31(20): 8394-8401.
[142]LIM E, ISMAIL R. Conduction mechanism of valence change resistive switching memory: a survey [J]. Electronics, 2015, 4(3): 586-613.
[143]SAINI M, KUMAR M, MANDAL R, et al. White light modulated forming-free multilevel resistive switching in ZnO:Cu films [J]. Applied Surface Science, 2021, 563(1): 150271.
[144]VINUESA G, OSSORIO O G, GARCíA H, et al. Effective control of filament efficiency by means of spacer HfAlOx layers and growth temperature in HfO2 based ReRAM devices [J]. Solid-State Electronics, 2021, 183(1): 108085.
[145]ZHAO X, MA J, XIAO X, et al. Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects [J]. Advanced Materials, 2018, 30(14): e1705193.
[146]KUMAR D, ALUGURI R, CHAND U, et al. Enhancement of resistive switching properties in nitride based CBRAM device by inserting an Al2O3 thin layer [J]. Applied Physics Letters, 2017, 110(20): 203102.
[147]WU W, WU H, GAO B, et al. Improving analog switching in HfOx based resistive memory with a thermal enhanced layer [J]. IEEE Electron Device Letters, 2017, 38(8): 1019-1022.
[148]MONZIO COMPAGNONI C, GODA A, SPINELLI A S, et al. Reviewing the evolution of the NAND flash technology [J]. Proceedings of the IEEE, 2017, 105(9): 1609-1633.
[149]CHANG T-C, CHANG K-C, TSAI T-M, et al. Resistance random access memory [J]. Materials Today, 2016, 19(5): 254-264.
[150]CHANG K C, CHANG T C, TSAI T M, et al. Physical and chemical mechanisms in oxide-based resistance random access memory [J]. Nanoscale Research Letters, 2015, 10(1): 1-27.
[151]CHANG M-F, SHEU S-S, LIN K-F, et al. A high-speed 7.2-ns read-write random access 4-Mb embedded resistive RAM (ReRAM) macro using process-variation-tolerant current-mode read schemes [J]. IEEE Journal of Solid-State Circuits, 2013, 48(3): 878-891.
[152]WEI Z, YING H, TING-CHANG C, et al. An electronic synapse device based on solid electrolyte resistive random access memory [J]. IEEE Electron Device Letters, 2015, 36(8): 772-774.
[153]YANG J J, STRUKOV D B, STEWART D R. Memristive devices for computing [J]. Nature Nanotechnology, 2013, 8(1): 13-24.
[154]CHEN P-H, SU Y-T, CHANG F-C. Stabilizing resistive switching characteristics by inserting indium-tin-oxide layer as oxygen ion reservoir in HfO2-based resistive random access memory [J]. IEEE Transactions on Electron Devices, 2019, 66(3): 1276-1280.
[155]PATIL A R, DONGALE T D, KAMAT R K, et al. Binary metal oxide-based resistive switching memory devices: a status review [J]. Materials Today Communications, 2023, 34(1): 105356.
[156]CHOU S-Y, YANG C-C, CHANG T-C, et al. Increasing controllable oxygen ions to improve device performance using supercritical fluid technique in ZnO-based resistive random access memory [J]. IEEE Transactions on Electron Devices, 2022, 69(1): 127-132.
[157]CHEN P-H, CHANG K-C, CHANG T-C, et al. Bulk oxygen-ion storage in indium-tin-oxide electrode for improved performance of HfO2-based resistive random access memory [J]. IEEE Electron Device Letters, 2016, 37(3): 280-283.
[158]LANZA M, WASER R, IELMINI D, et al. Standards for the characterization of endurance in resistive switching devices [J]. ACS Nano, 2021, 15(11): 17214-17231.
[159]YE C, DENG T, ZHANG J, et al. Enhanced resistive switching performance for bilayer HfO2/TiO2 resistive random access memory [J]. Semiconductor Science and Technology, 2016, 31(10):105005.
[160]WU J, CAO J, HAN W-Q, et al. Functional metal oxide nanostructures [M]. Springer Science & Business Media, 2011.
[161]FUJIMOTO M, KOYAMA H, KONAGAI M, et al. TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching [J]. Applied Physics Letters, 2006, 89(22): 223509.
[162]LIM K Y, PARK J H, KIM S, et al. Effect of oxygen content on resistive switching memory characteristics of TiOx films [J]. Journal of the Korean Physical Society, 2012, 60(5): 791-794.
[163]LIN S-K, CHEN M-C, CHANG T-C, et al. The effect of humidity on reducing forming voltage in conductive-bridge random access memory with an alloy electrode[J]. IEEE Electron Device Letters, 2019, 40(10): 1606-1609.
[164]SUN L, ZHANG Y, HAN G, et al. Self-selective van der waals heterostructures for large scale memory array[J]. Nature Communications, 2019, 10(1): 3161.
[165]SZE S M, LI Y, NG K K. Physics of semiconductor devices [M]. John Wiley & Sons, 2021.
[166]YOSHIDA C, KINOSHITA K, YAMASAKI T, et al. Direct observation of oxygen movement during resistance switching in NiO/Pt film [J]. Applied Physics Letters, 2008, 93(4): 042106.
[167]YANG M K, PARK J-W, KO T K, et al. Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices [J]. Applied Physics Letters, 2009, 95(4): 042105.
[168]JEONG H Y, LEE J Y, CHOI S-Y. Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films [J]. Applied Physics Letters, 2010, 97(4): 042109.
[169]LIN C Y, ZHOU K J, CHANG T C, et al. Stabilizing resistive random access memory by constructing an oxygen reservoir with analyzed state distribution [J]. Nanoscale, 2020, 12(46): 23532-23536.
[170]THIMBLEBY H. Modes, wysiwyg and the von neumann bottleneck [C]// IEE Colloquium on Formal Methods and Human-Computer Interaction. IET, 1988: 1-5.
[171]HUANG W, XIA X, ZHU C, et al. Memristive artificial synapses for neuromorphic computing [J]. Nano-Micro Letters, 2021, 13(1): 1-28.
[172]KIM M-K, LEE J-S. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics [J]. ACS Nano, 2018, 12(2): 1680-1687.
[173]李兆男. 氧化铪忆阻器的性能优化及其神经形态计算应用研究 [D]. 华中科技大学, 2023.
[174]李继硕. 神经科学基础 [M]. 北京: 高等教育出版社, 2002.
[175]ABBOTT L, REGEHR W G. Synaptic computation [J]. Nature, 2004, 431(7010): 796-803.
[176]FAN J C, GOODENOUGH J B. X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films [J]. Journal of Applied Physics, 1977, 48(8): 3524-3531.
[177]KUMAR B, GONG H, AKKIPEDDI R. A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3-ZnO system [J]. Journal of Applied Physics, 2005, 97(6): 063706.
[178]XIE H, ZHOU Y, ZHANG Y, et al. Chemical bonds in nitrogen-doped amorphous InGaZnO thin film transistors [J]. Results in Physics, 2018, 11(1): 1080-1086.
[179]TSAY C-Y, YAN T-Y. Solution processed amorphous InGaZnO semiconductor thin films and transistors [J]. Journal of Physics and Chemistry of Solids, 2014, 75(1): 142-147.
[180]ISLAM M N, GHOSH T, CHOPRA K, et al. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films [J]. Thin Solid Films, 1996, 280(1-2): 20-25.
[181]KUMAR M, MOOKERJEE S, SOM T. Field-induced doping-mediated tunability in work function of Al-doped ZnO kelvin probe force microscopy and first-principle theory [J]. Nanotechnology, 2016, 27(37): 375702.
[182]VAN VREESWIJK C, SOMPOLINSKY H. Chaos in neuronal networks with balanced excitatory and inhibitory activity [J]. Science, 1996, 274(5293): 1724-1726.
[183]MANSUY I M, MAYFORD M, JACOB B, et al. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory [J]. Cell, 1998, 92(1): 39-49.
[184]KAMIYA T, HOSONO H. Material characteristics and applications of transparent amorphous oxide semiconductors [J]. NPG Asia Materials, 2010, 2(1): 15-22.
[185]陈江博. PLD 制备 InGaZnO 薄膜及其物理性质研究 [D]. 北京工业大学, 2012.
[186]WAGER J F. Amorphous oxide semiconductor thin-film transistors: performance & manufacturability for display applications [J]. SID Symposium Digest, 2009, 40(1): 181-183.
[187]KAMIYA T, NOMURA K, HOSONO H. Present status of amorphous In-Ga-Zn-O thin-film transistors[J]. Science and Technology of Advanced Materials, 2010, 11(4): 044305.
[188]杜路路. 基于铟镓锌氧和氧化镓肖特基结电子器件的制备及性能研究 [D]. 山东大学, 2019.
[189]郑有炓, 吴玲, 沈波, 等. 第三代半导体材料 [M]. 北京: 中国铁道出版社, 2017.
[190]NOMURA K, OHTA H, TAKAGI A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432(7016): 488-492.

所在学位评定分委会
材料科学与工程
国内图书分类号
TN303
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778438
专题工学院
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
彭辉仁. 基于IGZO薄膜忆阻器件的研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930801-彭辉仁-材料科学与工程(13977KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[彭辉仁]的文章
百度学术
百度学术中相似的文章
[彭辉仁]的文章
必应学术
必应学术中相似的文章
[彭辉仁]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。