[1] CHEN C L P, ZHANG C Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data [J]. Information Sciences, 2014, 275(1): 314-347.
[2] ZIDAN M A, STRACHAN J P, LU W D. The future of electronics based on memristive systems [J]. Nature Electronics, 2018, 1(1): 22-29.
[3] MIKOLAJICK T, DEHM C, HARTNER W, et al. FeRAM technology for high density applications [J]. Microelectronics Reliability, 2001, 41(7): 947-950.
[4] KENT A D, WORLEDGE D C. A new spin on magnetic memories [J]. Nature Nanotechnology, 2015, 10(3): 187-191.
[5] WOUTERS D J, WASER R, WUTTIG M. Phase-change and redox-based resistive switching memories [J]. Proceedings of the IEEE, 2015, 103(8): 1274-1288.
[6] RAOUX S, WEŁNIC W, IELMINI D. Phase change materials and their application to nonvolatile memories [J]. Chemical Reviews, 2010, 110(1): 240-267.
[7] WASER R, AONO M. Nanoionics-based resistive switching memories [J]. Nature Materials, 2007, 6(11): 833-840.
[8] XU Z, LI Y, XIA Y, et al. Organic frameworks memristor: an emerging candidate for data storage, artificial synapse, and neuromorphic device [J]. Advanced Functional Materials, 2024, 1(1): 2312658.
[9] CARLOS E, BRANQUINHO R, MARTINS R, et al. Recent progress in solution-based metal oxide resistive switching devices [J]. Advanced Materials, 2021, 33(7): 2004328.
[10] PAN F, GAO S, CHEN C, et al. Recent progress in resistive random access memories: materials, switching mechanisms, and performance [J]. Materials Science and Engineering, 2014, 83(1): 1-59.
[11] WASER R, DITTMANN R, STAIKOV G, et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges [J]. Advanced Materials, 2009, 21(25-26): 2632-2663.
[12] WONG H S P, LEE H-Y, YU S, et al. Metal-oxide RRAM [J]. Proceedings of the IEEE, 2012, 100(6): 1951-1970.
[13] LI H, WANG S, ZHANG X, et al. Memristive crossbar arrays for storage and computing applications [J]. Advanced Intelligent Systems, 2021, 3(9): 2100017.
[14] IELMINI D, WONG H-S P. In-memory computing with resistive switching devices [J]. Nature Electronics, 2018, 1(6): 333-343.
[15] TANG J, YUAN F, SHEN X, et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges[J].Advanced Materials, 2019, 31(49): 1902761.
[16] CHUA L. Memristor-the missing circuit element [J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-519.
[17] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80-83.
[18] CHUA L O, KANG S M. Memristive devices and systems [J]. Proceedings of the IEEE, 1976, 64(2): 209-223.
[19] CHUA L. Resistance switching memories are memristors [J]. Handbook of Memristor Networks, 2019, 1(1): 197-230.
[20] PI S, LI C, JIANG H, et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension [J]. Nature Nanotechnology, 2019, 14(1): 35-39.
[21] SHARATH S U, VOGEL S, MOLINA-LUNA L, et al. Control of switching modes and conductance quantization in oxygen engineered HfOx based memristive devices[J]. Advanced Functional Materials, 2017, 27(32): 1700432.
[22] KAMBLE G U, PATIL A P, KAMAT R K, et al. Promising materials and synthesis methods for resistive switching memory devices: a status review[J]. ACS Applied Electronic Materials, 2023, 5(5): 2454-2481.
[23] WANG Z, ZENG T, REN Y, et al. Toward a generalized bienenstock-cooper-munro rule for spatiotemporal learning via triplet-STDP in memristive devices [J]. Nature Communication, 2020, 11(1): 1510.
[24] SONG S, CHO B, KIM T W, et al. Three-dimensional integration of organic resistive memory devices [J]. Advanced Materials, 2010, 22(44): 5048-5052.
[25] SUN H, LIU Q, LI C, et al. Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology [J]. Advanced Functional Materials, 2014, 24(36): 5679-5686.
[26] CHANG C F, CHEN J Y, HUANG C W, et al. Direct observation of dual-filament switching behaviors in Ta2O5-based memristors [J]. Small, 2017, 13(15): 1603116.
[27] GAN K-J, CHANG W-C, LIU P-T, et al. Investigation of resistive switching in copper/InGaZnO/Al2O3-based memristor [J]. Applied Physics Letters, 2019, 115(14): 143501.
[28] MIN S Y, CHO W J. High-performance resistive switching in solution-derived IGZO:N memristors by microwave-assisted nitridation [J]. Nanomaterials, 2021, 11(5): 1081.
[29] SUN B, RANJAN S, ZHOU G, et al. Multistate resistive switching behaviors for neuromorphic computing in memristor [J]. Materials Today Advances, 2021, 9(1): 100125.
[30] KWON D H, KIM K M, JANG J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory [J]. Nature Nanotechnology, 2010, 5(2): 148-153.
[31] SUN Y, YAN X, ZHENG X, et al. High on-off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing [J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7382-7388.
[32] SEUL KI H, JI EUN K, SANG OUK K, et al. Flexible resistive switching memory device based on graphene oxide [J]. IEEE Electron Device Letters, 2010, 31(9): 1005-1007.
[33] ISMAIL M, MAHATA C, KWON O, et al. Neuromorphic synapses with high switching uniformity and multilevel memory storage enabled through a Hf-Al-O alloy for artificial intelligence [J]. ACS Applied Electronic Materials, 2022, 4(3): 1288-1300.
[34] CHEN Y-T, CHANG T-C, YANG P-C, et al. Improvement of resistive switching characteristics by thermally assisted forming process for SiO2-based structure [J]. IEEE Electron Device Letters, 2013, 34(2): 226-8.
[35] LIN S-K, WU C-H, CHANG T-C, et al. Improving performance by inserting an indium oxide layer as an oxygen ion storage layer in HfO2-based resistive random access memory [J]. IEEE Transactions on Electron Devices, 2021, 68(3): 1037-1040.
[36] WANG Z Q, XU H Y, LI X H, et al. Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance [J]. IEEE Electron Device Letters, 2011, 32(10): 1442-1444.
[37] LIU L, YU D, MA W, et al. Multilevel resistive switching in Ag/SiO2/Pt resistive switching memory device [J]. Japanese Journal of Applied Physics, 2015, 54(2): 021802.
[38] 袁俊辉. 忆阻器材料与阻变机理的理论研究 [D]; 华中科技大学, 2022.
[39] KIM K M, KIM G H, SONG S J, et al. Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures [J]. Nanotechnology, 2010, 21(30): 305203.
[40] LU C, YU J, CHI X-W, et al. Self-compliance Pt/HfO2/Ti/Si one-diode-one-resistor resistive random access memory device and its low temperature characteristics [J]. Applied Physics Express, 2016, 9(4): 041501.
[41] PERSSON K M, RAM M S, KILPI O P, et al. Cross-point arrays with low-power ITO-HfO2 resistive memory cells integrated on vertical III-V nanowires [J]. Advanced Electronic Materials, 2020, 6(6): 2000154.
[42] GUO T, PAN K, JIAO Y, et al. Versatile memristor for memory and neuromorphic computing [J]. Nanoscale Horizons, 2022, 7(3): 299-310.
[43] WANG H, YAN X. Overview of resistive random access memory (RRAM): materials, filament mechanisms, performance optimization, and prospects [J]. Physica Status Solidi-Rapid Research Letters, 2019, 13(9): 1900073.
[44] MAHAPATRO A K, AGRAWAL R, GHOSH S. Electric-field-induced conductance transition in 8-hydroxyquinoline aluminum (Alq3) [J]. Journal of Applied Physics,2004, 96(6): 3583-3585.
[45] KIM W T, JUNG J H, KIM T W, et al. Current bistability and carrier transport mechanisms of organic bistable devices based on hybrid Ag nanoparticle-polymethyl methacrylate polymer nanocomposites [J]. Applied Physics Letters, 2010, 96(25): 253301.
[46] HE W, SUN H, ZHOU Y, et al. Customized binary and multi-level HfO(2-x)-based memristors tuned by oxidation conditions [J]. Scientific Reports, 2017, 7(1): 10070.
[47] ABBAS H, ALI A, JUNG J, et al. Reversible transition of volatile to non-volatile resistive switching and compliance current-dependent multistate switching in IGZO/MnO RRAM devices [J]. Applied Physics Letters, 2019, 114(9): 093503.
[48] ISMAIL M, MAHATA C, ABBAS H, et al. Bipolar, complementary resistive switching and synaptic properties of sputtering deposited ZnSnO-based devices for electronic synapses [J]. Journal of Alloys and Compounds, 2021, 862(1): 158416.
[49] PRAKASH R, KAUR D. Bipolar resistive switching behavior in Cu/AlN/Pt structure for ReRAM application [J]. Vacuum, 2017, 143(1): 102-105.
[50] BHATTACHARJEE S, CARUSO E, MCEVOY N, et al. Insights into multilevel resistive switching in monolayer MoS2 [J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6022-6029.
[51] SAWA A. Resistive switching in transition metal oxides [J]. Materials Today, 2008, 11(6): 28-36.
[52] RYU J-H, HUSSAIN F, MAHATA C, et al. Filamentary and interface switching of CMOS-compatible Ta2O5 memristor for non-volatile memory and synaptic devices [J]. Applied Surface Science, 2020, 529(1): 147167.
[53] GAO S, LIU G, YANG H, et al. An oxide schottky junction artificial optoelectronic synapse [J]. ACS Nano, 2019, 13(2): 2634-2642.
[54] WANG Z Q, XU H Y, LI X H, et al. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor[J]. Advanced Functional Materials, 2012, 22(13): 2759-2765.
[55] IELMINI D. Resistive switching memories based on metal oxides: mechanisms, reliability and scaling [J]. Semiconductor Science and Technology, 2016, 31(6): 063002.
[56] LIU Q, LONG S, LV H, et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode [J]. ACS Nano, 2010, 4(10): 6162-6068.
[57] KUMAR M, KIM H S, KIM J. A highly transparent artificial photonic nociceptor [J]. Advanced Materials, 2019, 31(19): e1900021.
[58] KUMAR D, ALUGURI R, CHAND U, et al. Metal oxide resistive switching memory: materials, properties and switching mechanisms [J]. Ceramics International, 2017, 43(1): S547-S556.
[59] YOU B K, KIM J M, JOE D J, et al. Reliable memristive switching memory devices enabled by densely packed silver nanocone arrays as electric-field concentrators [J]. ACS Nano, 2016, 10(10): 9478-9488.
[60] CHEN Q, LIU G, XUE W, et al. Controlled construction of atomic point contact with 16 quantized conductance states in oxide resistive switching memory [J]. ACS Applied Electronic Materials, 2019, 1(5): 789-798.
[61] LUO Y, ZHAO D, ZHAO Y, et al. Evolution of Ni nanofilaments and electromagnetic coupling in the resistive switching of NiO [J]. Nanoscale, 2015, 7(2): 642-649.
[62] LEE J, LU W D. On-demand reconfiguration of nanomaterials: when electronics meets ionics [J]. Advanced Materials, 2018, 30(1): 1702770.
[63] GUO X, SCHINDLER C, MENZEL S, et al. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems [J]. Applied Physics Letters, 2007, 91(13): 133513.
[64] YANG Y C, PAN F, LIU Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application [J]. Nano Letters, 2009, 9(4): 1636-43.
[65] YANG Y, GAO P, GABA S, et al. Observation of conducting filament growth in nanoscale resistive memories [J]. Nature Communications, 2012, 3(1): 732.
[66] YAN X, ZHAO Q, CHEN A P, et al. Vacancy-induced synaptic behavior in 2D WS2nanosheet-based memristor for low-power neuromorphic computing [J]. Small, 2019, 15(24): e1901423.
[67] CHOI B J, TORREZAN A C, STRACHAN J P, et al. High-speed and low-energy nitride memristors[J]. Advanced Functional Materials, 2016, 26(29): 5290-5296.
[68] 谢卓琳. 氧化物忆阻器的电输运行为调控及其神经元仿生特性研究 [D]; 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2023.
[69] RUSSO U, IELMINI D, CAGLI C, et al. Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices [J]. IEEE Transactions on Electron Devices, 2009, 56(2): 193-200.
[70] KAN-HAO X, TRAORE B, BLAISE P, et al. A combined ab initio and experimental study on the nature of conductive filaments in Pt/HfO2/Pt resistive random access memory [J]. IEEE Transactions on Electron Devices, 2014, 61(5): 1394-1402.
[71] CHEN J Y, HSIN C L, HUANG C W, et al. Dynamic evolution of conducting nanofilament in resistive switching memories [J]. Nano Letters, 2013, 13(8): 3671-3677.
[72] MENG LU Y, NOMAN M, PICARD Y N, et al. Impact of joule heating on the microstructure of nanoscale TiO2 resistive switching devices [J]. Journal of Applied Physics, 2013, 113(16): 163703.
[73] CHANG S H, LEE J S, CHAE S C, et al. Occurrence of both unipolar memory and threshold resistance switching in a NiO film [J]. Physical Review Letters, 2009, 102(2): 026801.
[74] CHEN A B, KIM S G, WANG Y, et al. A size-dependent nanoscale metal-insulator transition in random materials [J]. Nature Nanotechnology, 2011, 6(4): 237-241.
[75] SHAO X L, ZHOU L W, YOON K J, et al. Electronic resistance switching in the Al/TiOx/Al structure for forming-free and area-scalable memory [J]. Nanoscale, 2015, 7(25): 11063-11074.
[76] WU S, REN L, YU F, et al. Colossal resistance switching in Pt/BiFeO3/Nb:SrTiO3 memristor [J]. Applied Physics A, 2014, 116(4): 1741-1745.
[77] DONGALE T D, PATIL K P, GAIKWAD P K, et al. Investigating conduction mechanism and frequency dependency of nanostructured memristor device [J]. Materials Science in Semiconductor Processing, 2015, 38(1): 228-233.
[78] SALINGA M, WUTTIG M. Phase-change memories on a diet [J]. Science, 2011, 332(6029): 543-544.
[79] JIANG A Q, GENG W P, LV P, et al. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers [J]. Nature Materials, 2020, 19(11): 1188-1194.
[80] YU S, GUAN X, WONG H S P. Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model [J]. Applied Physics Letters, 2011, 99(6): 063507.
[81] CHANG W-Y, LAI Y-C, WU T-B, et al. Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications [J]. Applied Physics Letters, 2008, 92(2): 022110.
[82] LIN C-Y, WANG S-Y, LEE D-Y, et al. Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films [J]. Journal of the Electrochemical Society, 2008, 155(8): H615.
[83] LIU Q, GUAN W, LONG S, et al. Resistive switching memory effect of ZrO2 films with Zr+ implanted [J]. Applied Physics Letters, 2008, 92(1): 012117.
[84] ZAHOOR F, AZNI ZULKIFLI T Z, KHANDAY F A. Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell storage, modeling, and applications [J]. Nanoscale Research Letters, 2020, 15(1): 1-26.
[85] PEI Y, MAI B, ZHANG X, et al. Performance improvement of amorphous indium-gallium-zinc oxide ReRAM with SiO2 inserting layer [J]. Current Applied Physics, 2015, 15(4): 441-445.
[86] NIU J, ZHANG M, LI Y, et al. Highly scalable resistive switching memory in metal nanowire crossbar arrays fabricated by electron beam lithography [J]. Journal of Vacuum Science & Technology B, 2016, 34(2): 02G105.
[87] XUE W, GAO S, SHANG J, et al. Recent advances of quantum conductance in memristors [J]. Advanced Electronic Materials, 2019, 5(9): 1800854.
[88] XUE W, LI Y, LIU G, et al. Controllable and stable quantized conductance states in a Pt/HfOx/ITO memristor [J]. Advanced Electronic Materials, 2019, 6(2): 1901055.
[89] CHEN Y Y, GOUX L, CLIMA S, et al. Endurance/Retention trade-off on HfO2/metal cap 1T1R bipolar RRAM [J]. IEEE Transactions on Electron Devices, 2013, 60(3): 1114-1121.
[90] PERSHIN Y V, DI VENTRA M. Practical approach to programmable analog circuits with memristors [J]. IEEE Transactions on Circuits and Systems, 2010, 57(8): 1857-1864.
[91] REUBEN J, BEN-HUR R, WALD N, et al. Memristive logic: a framework for evaluation and comparison[C]// 27th International Symposium on Power and Timing Modeling, Optimization and Simulation. IEEE, 2017: 1-8.
[92] GAO S, LIU G, CHEN Q, et al. Improving unipolar resistive switching uniformity with cone-shaped conducting filaments and its logic-in-memory application [J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6453-6462.
[93] BORGHETTI J, SNIDER G S, KUEKES P J, et al. 'Memristive' switches enable 'stateful' logic operations via material implication [J]. Nature, 2010, 464(7290): 873-876.
[94] UPADHYAY N K, JOSHI S, YANG J J. Synaptic electronics and neuromorphic computing [J]. Science China Information Sciences, 2016, 59(6): 1-26.
[95] WANG Z, JOSHI S, SAVEL'EV S E, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing [J]. Nature Materials, 2017, 16(1): 101-108.
[96] JO S H, CHANG T, EBONG I, et al. Nanoscale memristor device as synapse in neuromorphic systems [J]. Nano Letters, 2010, 10(4): 1297-1301.
[97] 黄庆红. 国际半导体技术发展路线图[J]. 中国集成电路, 2014, 23(09): 25-45.
[98] JIANG H, HAN L, LIN P, et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor [J]. Scientific Reports, 2016, 6(1): 28525.
[99] MCNAMARA B R, NULSEN P E, WISE M W, et al. The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts [J]. Nature, 2005, 433(7021): 45-47.
[100]IELMINI D, WONG H S P. In-memory computing with resistive switching devices [J]. Nature Electronics, 2018, 1(6): 333-343.
[101]ZHOU Y, LI Y, XU L, et al. 16 boolean logics in three steps with two anti-serially connected memristors [J]. Applied Physics Letters, 2015, 106(23): 233502.
[102]CHENG L, LI Y, YIN K S, et al. Functional demonstration of a memristive arithmetic logic unit for in-memory computing [J]. Advanced Functional Materials, 2019, 29(49): 1905660.
[103]CHEN Q L, LIU G, TANG M H, et al. A univariate ternary logic and three-valued multiplier implemented in a nano-columnar crystalline zinc oxide memristor [J]. RSC Advances, 2019, 9(42): 24595-24602.
[104]UNGERLEIDER L G. Functional brain imaging studies of cortical mechanisms for memory [J]. Science, 1995, 270(5237): 769-775.
[105]TANG J, YUAN F, SHEN X, et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges [J]. Advanced Materials, 2019, 31(49): 1902761.
[106]DU C, MA W, CHANG T, et al. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics [J]. Advanced Functional Materials, 2015, 25(27): 4290-4299.
[107]WANG Z, JOSHI S, SAVEL’EV S, et al. Fully memristive neural networks for pattern classification with unsupervised learning [J]. Nature Electronics, 2018, 1(2): 137-145.
[108]LI C, HU M, LI Y, et al. Analogue signal and image processing with large memristor crossbars [J]. Nature Electronics, 2017, 1(1): 52-59.
[109]LIU Z, TANG J, GAO B, et al. Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces [J]. Nature Communications, 2020, 11(1): 4234.
[110]ZHONG Y, TANG J, LI X, et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing [J]. Nature Electronics, 2022, 5(10): 672-681.
[111]NOMURA K, OHTA H, UEDA K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor [J]. Science, 2003, 300(5623): 1269-1272.
[112]YANG L, CHENG L, LI Y, et al. Cryptographic key generation and in situ encryption in one-transistor-one-resistor memristors for hardware security [J]. Advanced Electronic Materials, 2021, 7(5): 2001182.
[113]ZHANG L, XU Z, HAN J, et al. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment [J]. Journal of Materials Science & Technology, 2020, 49(1): 1-6.
[114]LI Q, LI Y, GAO L, et al. Ru doping enhanced resistive switching behavior in InGaZnO thin films [J]. RSC Advances, 2016, 6(48): 42347-42352.
[115]KANG D Y, LEE T-H, KIM T G. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing [J]. Applied Physics Letters, 2016, 109(7): 073105.
[116]MARTINS R A, CARLOS E, DEUERMEIER J, et al. Emergent solution based IGZO memristor towards neuromorphic applications [J]. Journal of Materials Chemistry C, 2022, 10(6): 1991-1998.
[117]黄鹤鸣. 基于过渡金属氧化物忆阻器的人工突触、人工神经元及人工神经网络[D]; 华中科技大学, 2023.
[118]LUNDSTROM M. Moore's law forever? [J]. Science, 2003, 299(5604): 210-211.
[119]SHEN Z, ZHAO C, QI Y, et al. Advances of RRAM devices: resistive switching mechanisms, materials and bionic synaptic application [J]. Nanomaterials, 2020, 10(8): 1437-1468.
[120]LüBBEN M, CüPPERS F, MOHR J, et al. Design of defect-chemical properties and device performance in memristive systems [J]. Science Advances, 2020, 6(19): eaaz9079.
[121]LANZA M, WONG H S P, POP E, et al. Recommended methods to study resistive switching devices[J]. Advanced Electronic Materials, 2019, 5(1): 1800143.
[122]SON J Y, SHIN Y-H, KIM H, et al. NiO resistive random access memory nanocapacitor array on graphene [J]. ACS Nano, 2010, 4(5): 2655-2658.
[123]YANG J J, PICKETT M D, LI X, et al. Memristive switching mechanism for metal/oxide/metal nanodevices [J]. Nature Nanotechnology, 2008, 3(7): 429-433.
[124]YU S, CHEN H-Y, GAO B, et al. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture [J]. ACS Nano, 2013, 7(3): 2320-2325.
[125]LIU S, LU N, ZHAO X, et al. Eliminating negative-set behavior by suppressing nanofilament overgrowth in cation-based memory [J]. Advanced Materials, 2016, 28(48): 10623-10629.
[126]NIU Y, JIANG K, DONG X, et al. High performance and low power consumption resistive random access memory with Ag/Fe2O3/Pt structure [J]. Nanotechnology, 2021, 32(50): 505715.
[127]RAHMAN F, AHMED T, WALIA S, et al. Reversible resistive switching behaviour in CVD grown, large area MoOx [J]. Nanoscale, 2018, 10(42): 19711-19719.
[128]GUO T, SUN B, MAO S, et al. A resistance ratio change phenomenon observed in Al doped ZnO(AZO)/Cu(In1-xGax)Se2/Mo resistive switching memory device [J]. Applied Surface Science, 2018, 433(1): 535-539.
[129]LEE M-J, KIM S I, LEE C B, et al. Low-temperature-grown transition metal oxide based storage materials and oxide transistors for high-density non-volatile memory [J]. Advanced Functional Materials, 2009, 19(10): 1587-1593.
[130]MA P, LIANG G, WANG Y, et al. High-performance InGaZnO-based ReRAMs [J]. IEEE Transactions on Electron Devices, 2019, 66(6): 2600-2605.
[131]LEE D, CHUN M C, KO H, et al. Highly stable, solution-processed quaternary oxide thin film-based resistive switching random access memory devices via global and local stoichiometric manipulation strategy [J]. Nanotechnology, 2020, 31(24): 245202.
[132]CHANG C-C, LIU P-T, CHIEN C-Y, et al. Solving the integration problem of one transistor one memristor architecture with a Bi-layer IGZO film through synchronous process [J]. Applied Physics Letters, 2018, 112(17): 172101.
[133]WANG Z, ZHAO K, XU H, et al. Improvement of resistive switching memory achieved by using arc-shaped bottom electrode [J]. Applied Physics Express, 2015, 8(1): 014101.
[134]HWANG Y-H, AN H-M, CHO W-J. Performance improvement of the resistive memory properties of InGaZnO thin films by using microwave irradiation [J]. Japanese Journal of Applied Physics, 2014, 53(4S): 04EJ04.
[135]HU W, ZOU L, CHEN X, et al. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method [J]. ACS Applied Materials & Interfaces, 2014, 6(7): 5012-5017.
[136]SURI R, KIRKPATRICK C J, LICHTENWALNER D J, et al. Energy-band alignment of Al2O3 and HfAlO gate dielectrics deposited by atomic layer deposition on 4H-SiC [J]. Applied Physics Letters, 2010, 96(4): 042903.
[137]NIU J, ZHANG M, LI Y, et al. Highly scalable resistive switching memory in metal nanowire crossbar arrays fabricated by electron beam lithography [J]. Journal of Vacuum Science & Technology B, 2016, 34(2): 02G105.
[138]ZHAO X, ZHANG X, SHANG D, et al. Uniform, fast, and reliable LixSiOy-based resistive switching memory [J]. IEEE Electron Device Letters, 2019, 40(4): 554-557.
[139]LEE D K, KIM M H, BANG S, et al. Improvement of resistive switching characteristics of titanium oxide based nanowedge RRAM through nickel silicidation[J]. IEEE Transactions on Electron Devices, 2020, 68(1): 438-442.
[140]YAN X, QIN C, LU C, et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48029-48038.
[141]CHEN S, NOORI S, VILLENA M A, et al. Memristive electronic synapses made by anodic oxidation[J]. Chemistry of Materials, 2019, 31(20): 8394-8401.
[142]LIM E, ISMAIL R. Conduction mechanism of valence change resistive switching memory: a survey [J]. Electronics, 2015, 4(3): 586-613.
[143]SAINI M, KUMAR M, MANDAL R, et al. White light modulated forming-free multilevel resistive switching in ZnO:Cu films [J]. Applied Surface Science, 2021, 563(1): 150271.
[144]VINUESA G, OSSORIO O G, GARCíA H, et al. Effective control of filament efficiency by means of spacer HfAlOx layers and growth temperature in HfO2 based ReRAM devices [J]. Solid-State Electronics, 2021, 183(1): 108085.
[145]ZHAO X, MA J, XIAO X, et al. Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects [J]. Advanced Materials, 2018, 30(14): e1705193.
[146]KUMAR D, ALUGURI R, CHAND U, et al. Enhancement of resistive switching properties in nitride based CBRAM device by inserting an Al2O3 thin layer [J]. Applied Physics Letters, 2017, 110(20): 203102.
[147]WU W, WU H, GAO B, et al. Improving analog switching in HfOx based resistive memory with a thermal enhanced layer [J]. IEEE Electron Device Letters, 2017, 38(8): 1019-1022.
[148]MONZIO COMPAGNONI C, GODA A, SPINELLI A S, et al. Reviewing the evolution of the NAND flash technology [J]. Proceedings of the IEEE, 2017, 105(9): 1609-1633.
[149]CHANG T-C, CHANG K-C, TSAI T-M, et al. Resistance random access memory [J]. Materials Today, 2016, 19(5): 254-264.
[150]CHANG K C, CHANG T C, TSAI T M, et al. Physical and chemical mechanisms in oxide-based resistance random access memory [J]. Nanoscale Research Letters, 2015, 10(1): 1-27.
[151]CHANG M-F, SHEU S-S, LIN K-F, et al. A high-speed 7.2-ns read-write random access 4-Mb embedded resistive RAM (ReRAM) macro using process-variation-tolerant current-mode read schemes [J]. IEEE Journal of Solid-State Circuits, 2013, 48(3): 878-891.
[152]WEI Z, YING H, TING-CHANG C, et al. An electronic synapse device based on solid electrolyte resistive random access memory [J]. IEEE Electron Device Letters, 2015, 36(8): 772-774.
[153]YANG J J, STRUKOV D B, STEWART D R. Memristive devices for computing [J]. Nature Nanotechnology, 2013, 8(1): 13-24.
[154]CHEN P-H, SU Y-T, CHANG F-C. Stabilizing resistive switching characteristics by inserting indium-tin-oxide layer as oxygen ion reservoir in HfO2-based resistive random access memory [J]. IEEE Transactions on Electron Devices, 2019, 66(3): 1276-1280.
[155]PATIL A R, DONGALE T D, KAMAT R K, et al. Binary metal oxide-based resistive switching memory devices: a status review [J]. Materials Today Communications, 2023, 34(1): 105356.
[156]CHOU S-Y, YANG C-C, CHANG T-C, et al. Increasing controllable oxygen ions to improve device performance using supercritical fluid technique in ZnO-based resistive random access memory [J]. IEEE Transactions on Electron Devices, 2022, 69(1): 127-132.
[157]CHEN P-H, CHANG K-C, CHANG T-C, et al. Bulk oxygen-ion storage in indium-tin-oxide electrode for improved performance of HfO2-based resistive random access memory [J]. IEEE Electron Device Letters, 2016, 37(3): 280-283.
[158]LANZA M, WASER R, IELMINI D, et al. Standards for the characterization of endurance in resistive switching devices [J]. ACS Nano, 2021, 15(11): 17214-17231.
[159]YE C, DENG T, ZHANG J, et al. Enhanced resistive switching performance for bilayer HfO2/TiO2 resistive random access memory [J]. Semiconductor Science and Technology, 2016, 31(10):105005.
[160]WU J, CAO J, HAN W-Q, et al. Functional metal oxide nanostructures [M]. Springer Science & Business Media, 2011.
[161]FUJIMOTO M, KOYAMA H, KONAGAI M, et al. TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching [J]. Applied Physics Letters, 2006, 89(22): 223509.
[162]LIM K Y, PARK J H, KIM S, et al. Effect of oxygen content on resistive switching memory characteristics of TiOx films [J]. Journal of the Korean Physical Society, 2012, 60(5): 791-794.
[163]LIN S-K, CHEN M-C, CHANG T-C, et al. The effect of humidity on reducing forming voltage in conductive-bridge random access memory with an alloy electrode[J]. IEEE Electron Device Letters, 2019, 40(10): 1606-1609.
[164]SUN L, ZHANG Y, HAN G, et al. Self-selective van der waals heterostructures for large scale memory array[J]. Nature Communications, 2019, 10(1): 3161.
[165]SZE S M, LI Y, NG K K. Physics of semiconductor devices [M]. John Wiley & Sons, 2021.
[166]YOSHIDA C, KINOSHITA K, YAMASAKI T, et al. Direct observation of oxygen movement during resistance switching in NiO/Pt film [J]. Applied Physics Letters, 2008, 93(4): 042106.
[167]YANG M K, PARK J-W, KO T K, et al. Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices [J]. Applied Physics Letters, 2009, 95(4): 042105.
[168]JEONG H Y, LEE J Y, CHOI S-Y. Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films [J]. Applied Physics Letters, 2010, 97(4): 042109.
[169]LIN C Y, ZHOU K J, CHANG T C, et al. Stabilizing resistive random access memory by constructing an oxygen reservoir with analyzed state distribution [J]. Nanoscale, 2020, 12(46): 23532-23536.
[170]THIMBLEBY H. Modes, wysiwyg and the von neumann bottleneck [C]// IEE Colloquium on Formal Methods and Human-Computer Interaction. IET, 1988: 1-5.
[171]HUANG W, XIA X, ZHU C, et al. Memristive artificial synapses for neuromorphic computing [J]. Nano-Micro Letters, 2021, 13(1): 1-28.
[172]KIM M-K, LEE J-S. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics [J]. ACS Nano, 2018, 12(2): 1680-1687.
[173]李兆男. 氧化铪忆阻器的性能优化及其神经形态计算应用研究 [D]. 华中科技大学, 2023.
[174]李继硕. 神经科学基础 [M]. 北京: 高等教育出版社, 2002.
[175]ABBOTT L, REGEHR W G. Synaptic computation [J]. Nature, 2004, 431(7010): 796-803.
[176]FAN J C, GOODENOUGH J B. X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films [J]. Journal of Applied Physics, 1977, 48(8): 3524-3531.
[177]KUMAR B, GONG H, AKKIPEDDI R. A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3-ZnO system [J]. Journal of Applied Physics, 2005, 97(6): 063706.
[178]XIE H, ZHOU Y, ZHANG Y, et al. Chemical bonds in nitrogen-doped amorphous InGaZnO thin film transistors [J]. Results in Physics, 2018, 11(1): 1080-1086.
[179]TSAY C-Y, YAN T-Y. Solution processed amorphous InGaZnO semiconductor thin films and transistors [J]. Journal of Physics and Chemistry of Solids, 2014, 75(1): 142-147.
[180]ISLAM M N, GHOSH T, CHOPRA K, et al. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films [J]. Thin Solid Films, 1996, 280(1-2): 20-25.
[181]KUMAR M, MOOKERJEE S, SOM T. Field-induced doping-mediated tunability in work function of Al-doped ZnO kelvin probe force microscopy and first-principle theory [J]. Nanotechnology, 2016, 27(37): 375702.
[182]VAN VREESWIJK C, SOMPOLINSKY H. Chaos in neuronal networks with balanced excitatory and inhibitory activity [J]. Science, 1996, 274(5293): 1724-1726.
[183]MANSUY I M, MAYFORD M, JACOB B, et al. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory [J]. Cell, 1998, 92(1): 39-49.
[184]KAMIYA T, HOSONO H. Material characteristics and applications of transparent amorphous oxide semiconductors [J]. NPG Asia Materials, 2010, 2(1): 15-22.
[185]陈江博. PLD 制备 InGaZnO 薄膜及其物理性质研究 [D]. 北京工业大学, 2012.
[186]WAGER J F. Amorphous oxide semiconductor thin-film transistors: performance & manufacturability for display applications [J]. SID Symposium Digest, 2009, 40(1): 181-183.
[187]KAMIYA T, NOMURA K, HOSONO H. Present status of amorphous In-Ga-Zn-O thin-film transistors[J]. Science and Technology of Advanced Materials, 2010, 11(4): 044305.
[188]杜路路. 基于铟镓锌氧和氧化镓肖特基结电子器件的制备及性能研究 [D]. 山东大学, 2019.
[189]郑有炓, 吴玲, 沈波, 等. 第三代半导体材料 [M]. 北京: 中国铁道出版社, 2017.
[190]NOMURA K, OHTA H, TAKAGI A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432(7016): 488-492.
修改评论