中文版 | English
题名

基于力学的软体机器人运动模式、变刚度与传感技术研究

其他题名
A MECHANICS-BASED STUDY ON LOCOMOTION, VARIABLE STIFFNESS, AND SENSING MECHANISMS IN SOFT ROBOTICS
姓名
姓名拼音
YU Wenkai
学号
12031088
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
袁鸿雁
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-15
论文提交日期
2024-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

软体机器人是由软材料制备的机器人系统,能够凭借优异的柔顺性产生大幅连续变形,与周围环境产生密切接触而不造成破坏,特别适合执行人机安全交互以及非结构化环境中的任务,具有重要的研究价值。然而,软体机器人的应用与技术转化仍需要对其关键功能进行深入研究,软体机器人运动模式、变刚度以及磁传感技术的相关研究仍有不足。因此,本文以实验研究为核心研究方法,以力学建模为理论指导,辅以有限元仿真分析,针对软体机器人的运动模式、变刚度以及磁传感技术开展系统性研究及分析,主要工作包括如下三个方面:

1)本文提出了线驱动软体机器人的模块化设计,通过单电机驱动两根驱动线产生的交替伸缩实现双向弯曲。推导了考虑轴向收缩的常曲率模型,并基于该模型和几何精确梁理论分别对线驱动软体机器人进行了运动学建模,并通过位姿测量实验验证了模型的准确性。进而,本文通过一系列实验,研究了具有不同模块组合软体机器人的运动模式及性能表现。实验结果表明,单模块软体爬行机器人凭借线驱动高效的力传递,具有优异的运动鲁棒性和适应性,能够在非结构化腔道环境内实现稳定的爬行运动,进而对软体爬行机器人的运动步态进行了重点分析,并进行了爬行过程的动力学仿真,说明了沿软体机器人长度方向上的不均匀机械特性是产生推进力的关键因素;双模块软体爬行机器人则能够实现腔道环境内的双向爬行;三模块蛇形软体机器人则能够通过各模块协作实现蛇形游水运动。该模块化设计的软体机器人具有稳定的运动能力以及多样化的运动模式,为移动式软体机器人的设计及应用提供了新思路。

2)为保持软体机器人优异柔顺性的同时,增强其负载能力与稳定性,本文提出了一种融合材料相变和几何重构的复合变刚度原理。基于该原理,利用形状记忆聚合物和层阻塞技术,开发了一种复合变刚度结构。该结构既能通过焦耳热调节聚合物层的杨氏模量,也能通过负压驱动实现层阻塞,从而有效调节刚度并实现乘积变化效果。三点弯曲实验结果说明该复合变刚度结构在具有紧凑设计的同时,能够实现0.31 N/mm4.86 N/mm,约15.7倍的刚度变化。激励响应实验结果则说明复合变刚度结构能够实现相对快速的刚度变化,层阻塞具有毫秒级的响应速度,而聚合物层的温升速率最高达2.77 °C/s。通过结合该复合变刚度结构与模块化软体机器人,本文开发了一种变刚度软体抓手。抓取实验说明该软体抓手保持了优异的柔顺性,能够有效抓取宽度为40 mm190 mm不同尺寸的物体;其负载能力同样得到了显著增强,能够提升重达650 g的物体。该复合变刚度技术能够有效适配软体机器人系统,拓展了软体机器人在复杂环境下的应用范围。

3)本文研究了磁传感技术在软体机器人触觉感知以及本体感知中的应用,开发了基于硬磁软材料的触觉传感器以及软体机器人,并随后开发了通用的算法来解决磁传感过程中的“正问题”与“反问题”。基于电磁学、连续介质力学以及有限元法开发了磁场分布算法。通过变形梯度张量以及网格等参数对微元磁矩进行精准建模进而计算磁场分布,解决磁传感过程中的“正问题”。同时,开发了以磁场变化为输入的深度学习模型,实现对各参数的非线性回归及多分类预测,解决磁传感过程中的“反问题”。随后进行了系统性的磁触觉传感实验,并训练了触觉感知模型,对位置预测的正确率为100 %,对力幅值预测的误差不超过6 %。本文同时计算了软体机器人在不同驱动条件下的磁场变化,并训练了本体感知模型,对形心线曲率半径预测的最大误差为4.1 %,对形心线弧长预测的最大误差为0.14 %。通过对软体机器人磁传感技术进行系统性的理论分析和实验验证,有效增强了软体机器人的感知能力,为软体机器人的应用提供了新的可能。

其他摘要

Soft robots, fabricated of soft materials with low elastic modulus, can perform substantial and continuous deformation due to the inherent superior compliance. Therefore, soft robots can contact with environments closely without causing damage, making them well-suited for tasks involving human-robot interaction and operations in unstructured environments. However, the research on locomotion, variable stiffness, and sensing in soft robotics is insufficient, the application of soft robots still needs in-depth and comprehensive research. Therefore, based on continuum mechanics and cooperating with finite element analysis (FEA), this thesis conducts a thorough theoretical and experimental study on the locomotion, variable stiffness, and magnetic sensing mechanism of soft robots. The main contributions of this thesis are delineated into three parts:

(1) This work investigates the modular design of tendon-driven soft robots and locomotion patterns. The minimally designed robot module is capable of bidirectional bending through the alternate contraction of two driven tendons actuated by a single motor. The kinematic modeling is performed by the constant curvature model considering axial contraction and the geometrically exact beam theory, which is validated through the configuration characterization tests. Subsequently, the locomotion and performance of soft robots with various modular designs are experimentally studied. The results demonstrate that with the efficient force transmission of tendon-driven mechanism, the single-modular soft crawling robot exhibits remarkable locomotion robustness and adaptability, enabling unidirectional crawling within unstructured pipes; the gait pattern and locomotion mechanism are experimentally investigated and analyzed by FEA, revealing that the forward frictional force is generated due to the asymmetric mechanical properties along the length direction of the robot. Additionally, dual-modular soft crawling robots are capable of bidirectional locomotion within pipes, and the snake-like soft robot with three modules can achieve serpentine swimming locomotion. The proposed modular design of soft robots could inspire novel design, locomotion, and application in unstructured environments.

(2) To enhance the stiffness and stability of soft robots without compromising their intrinsic compliance, this work introduces a novel Hybrid Variable Stiffness (HVS) mechanism that integrates material phase transition with geometric reconfiguration. Leveraging this mechanism, a pioneering HVS structure incorporating shape memory polymer (SMP) and layer jamming (LJ) is developed, which can modify Young's modulus via Joule heating, and achieving LJ through vacuum pressure, thereby achieving a multiplicative effect of stiffness change. Bending tests reveal that the compact bi-layer designed HVS structure can achieve a 15.7 times stiffness range, from 0.31 N/mm to 4.86 N/mm, which has been verified by FEA simulation. Response tests show that the jamming response is rapid while the maximum heating rate is 2.77 °C/s, indicating that the HVS structure can achieve a relatively fast response. Furthermore, building upon the HVS structure and the modular tendon-driven soft robots, a variable stiffness soft gripper with excellent compliance and load-bearing capability is developed. Several grasping tests indicate that the soft gripper could grasp various objects with diverse materials and shapes from 40.0 mm to 190 mm, 4.75 times, while lifting a weight up to 650 g. The proposed HVS mechanism provides an effective solution for soft robots to meet the intricate requirements of applications in unstructured environments.

(3) This work systematically investigates the magnetic sensing mechanism and its applications in the tactile and proprioceptive sensing of soft robots. A magnetic tactile sensor and soft robots are developed based on hard magnetic soft materials. Then, a universal algorithm is developed to solve the "forward problem" and "inverse problem" of the magnetic sensing process. Leveraging electromagnetism, continuum mechanics, and FEA simulation, a magnetic field distribution calculation algorithm is introduced based on the modeling of the magnetic moment of each element through deformation gradient tensors and mesh parameters. In parallel, with the magnetic field variations as input, a deep learning model capable of regression and classification, was developed to predict the tactile force and the configuration of soft robots. Then, comprehensive magnetic tactile sensing experiments are conducted. The proposed tactile perception model achieves a 100% accuracy rate in location prediction and a maximum error of 6% in force amplitude prediction. Additionally, the magnetic field change of a tendon-driven soft robot under diverse actuation conditions is calculated. The proprioception model achieves a maximum error of 4.1% in radius prediction and a maximum error of 0.14% in arc length prediction. The theoretical analysis and experimental study of magnetic sensing mechanism offer new possibilities for the enhanced sensing ability of soft robots.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J/OL]. Nature, 2015, 521(7553): 467-475. DOI:10.1038/nature14543.
[2] YASA O, TOSHIMITSU Y, MICHELIS M Y, et al. An Overview of Soft Robotics[J/OL]. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6(1): 1-29. DOI:10.1146/annurev-control-062322-100607.
[3] AHMED F, WAQAS M, JAWED B, et al. Decade of bio-inspired soft robots: a review[J/OL]. Smart Materials and Structures, 2022, 31(7): 073002. DOI:10.1088/1361-665X/ac6e15.
[4] TOLLEY M T, SHEPHERD R F, MOSADEGH B, et al. A Resilient, Untethered Soft Robot[J/OL]. Soft Robotics, 2014, 1(3): 213-223. DOI:10.1089/soro.2014.0008.
[5] MARECHAL L, BALLAND P, LINDENROTH L, et al. Toward a Common Framework and Database of Materials for Soft Robotics[J/OL]. Soft Robotics, 2021, 8(3): 284-297. DOI:10.1089/soro.2019.0115.
[6] CHEN Y, ZHANG Y, LI H, et al. Bioinspired hydrogel actuator for soft robotics: Opportunity and challenges[J/OL]. Nano Today, 2023, 49: 101764. DOI:10.1016/j.nantod.2023.101764.
[7] YANG C, SUO Z. Hydrogel ionotronics[J/OL]. Nature Reviews Materials, 2018, 3(6): 125-142. DOI:10.1038/s41578-018-0018-7.
[8] GUPTA U, QIN L, WANG Y, et al. Soft robots based on dielectric elastomer actuators: a review[J/OL]. Smart Materials and Structures, 2019, 28(10): 103002. DOI:10.1088/1361-665X/ab3a77.
[9] ROCHE E T, HORVATH M A, WAMALA I, et al. Soft robotic sleeve supports heart function[J/OL]. Science Translational Medicine, 2017, 9(373): eaaf3925. DOI:10.1126/scitranslmed.aaf3925.
[10] POLYGERINOS P, WANG Z, GALLOWAY K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J/OL]. Robotics and Autonomous Systems, 2015, 73: 135-143. DOI:10.1016/j.robot.2014.08.014.
[11] MAHMOUDI KHOMAMI A, NAJAFI F. A survey on soft lower limb cable-driven wearable robots without rigid links and joints[J/OL]. Robotics and Autonomous Systems, 2021, 144: 103846. DOI:10.1016/j.robot.2021.103846.
[12] ZHANG Y, LI P, QUAN J, et al. Progress, Challenges, and Prospects of Soft Robotics for Space Applications[J/OL]. Advanced Intelligent Systems, 2023, 5(3): 2200071. DOI:10.1002/aisy.202200071.
[13] LI G, CHEN X, ZHOU F, et al. Self-powered soft robot in the Mariana Trench[J/OL]. Nature, 2021, 591(7848): 66-71. DOI:10.1038/s41586-020-03153-z.
[14] NACLERIO N D, KARSAI A, MURRAY-COOPER M, et al. Controlling subterranean forces enables a fast, steerable, burrowing soft robot[J/OL]. Science Robotics, 2021, 6(55): eabe2922. DOI:10.1126/scirobotics.abe2922.
[15] HEGDE C, SU J, TAN J M R, et al. Sensing in Soft Robotics[J/OL]. ACS Nano, 2023, 17(16): 15277-15307. DOI:10.1021/acsnano.3c04089.
[16] ARMANINI C, BOYER F, MATHEW A T, et al. Soft Robots Modeling: A Structured Overview[J/OL]. IEEE Transactions on Robotics, 2023, 39(3): 1728-1748. DOI:10.1109/TRO.2022.3231360.
[17] SAAVEDRA FLORES E I, FRISWELL M I, XIA Y. Variable stiffness biological and bio-inspired materials[J/OL]. Journal of Intelligent Material Systems and Structures, 2013, 24(5): 529-540. DOI:10.1177/1045389X12461722.
[18] BANERJEE H, PUSALKAR N, REN H. Preliminary Design and Performance Test of Tendon-Driven Origami-Inspired Soft Peristaltic Robot[C/OL]//2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2018: 1214-1219. DOI:10.1109/ROBIO.2018.8664842.
[19] YEH C Y, CHOU S C, HUANG H W, et al. Tube-crawling soft robots driven by multistable buckling mechanics[J/OL]. Extreme Mechanics Letters, 2019, 26: 61-68. DOI:10.1016/j.eml.2018.12.004.
[20] BERNTH J E, AREZZO A, LIU H. A Novel Robotic Meshworm With Segment-Bending Anchoring for Colonoscopy[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(3): 1718-1724. DOI:10.1109/lra.2017.2678540.
[21] KASTOR N, MUKHERJEE R, COHEN E, et al. Design and Manufacturing of Tendon-Driven Soft Foam Robots[J/OL]. Robotica, 2020, 38(1): 88-105. DOI:10.1017/s0263574719000481.
[22] VIKAS V, COHEN E, GRASSI R, et al. Design and Locomotion Control of a Soft Robot Using Friction Manipulation and Motor–Tendon Actuation[J/OL]. IEEE Transactions on Robotics, 2016, 32(4): 949-959. DOI:10.1109/tro.2016.2588888.
[23] GILBERTSON M D, MCDONALD G, KORINEK G, et al. Serially Actuated Locomotion for Soft Robots in Tube-Like Environments[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(2): 1140-1147. DOI:10.1109/LRA.2017.2662060.
[24] RAFSANJANI A, ZHANG Y, LIU B, et al. Kirigami skins make a simple soft actuator crawl[J/OL]. Science Robotics, 2018, 3(15): eaar7555. DOI:10.1126/scirobotics.aar7555.
[25] ZHANG B, FAN Y, YANG P, et al. Worm-Like Soft Robot for Complicated Tubular Environments[J/OL]. Soft Robotics, 2019, 6(3): 399-413. DOI:10.1089/soro.2018.0088.
[26] TANG Y, CHI Y, SUN J, et al. Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots[J/OL]. Science Advances, 2020, 6(19): eaaz6912. DOI:10.1126/sciadv.aaz6912.
[27] DONG X, TANG C, JIANG S, et al. Increasing the Payload and Terrain Adaptivity of an Untethered Crawling Robot Via Soft-Rigid Coupled Linear Actuators[J/OL]. IEEE Robotics and Automation Letters, 2021, 6(2): 2405-2412. DOI:10.1109/LRA.2021.3061342.
[28] JIANG H, WANG Z, JIN Y, et al. Hierarchical control of soft manipulators towards unstructured interactions[J/OL]. The International Journal of Robotics Research, 2021, 40(1): 411-434. DOI:10.1177/0278364920979367.
[29] SHEPHERD R F, STOKES A A, FREAKE J, et al. Using Explosions to Power a Soft Robot[J/OL]. Angewandte Chemie International Edition, 2013, 52(10): 2892-2896. DOI:10.1002/anie.201209540.
[30] WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J/OL]. Nature, 2016, 536(7617): 451-455. DOI:10.1038/nature19100.
[31] AUBIN C A, HEISSER R H, PERETZ O, et al. Powerful, soft combustion actuators for insect-scale robots[J/OL]. Science, 2023, 381(6663): 1212-1217. DOI:10.1126/science.adg5067.
[32] GU G Y, ZHU J, ZHU L M, et al. A survey on dielectric elastomer actuators for soft robots[J/OL]. Bioinspiration & Biomimetics, 2017, 12(1): 011003. DOI:10.1088/1748-3190/12/1/011003.
[33] GUO Y, LIU L, LIU Y, et al. Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots[J/OL]. Advanced Intelligent Systems, 2021, 3(10): 2000282. DOI:10.1002/aisy.202000282.
[34] DUDUTA M, HAJIESMAILI E, ZHAO H, et al. Realizing the potential of dielectric elastomer artificial muscles[J/OL]. Proceedings of the National Academy of Sciences, 2019, 116(7): 2476-2481. DOI:10.1073/pnas.1815053116.
[35] CHEN Y, ZHAO H, MAO J, et al. Controlled flight of a microrobot powered by soft artificial muscles[J/OL]. Nature, 2019, 575(7782): 324-329. DOI:10.1038/s41586-019-1737-7.
[36] YANG Y, TSE Y A, ZHANG Y, et al. A Low-cost Inchworm-inspired Soft Robot Driven by Supercoiled Polymer Artificial Muscle[C/OL]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). 2019: 161-166. DOI:10.1109/robosoft.2019.8722784.
[37] UMEDACHI T, VIKAS V, TRIMMER B A. Softworms : the design and control of non-pneumatic, 3D-printed, deformable robots[J/OL]. Bioinspiration & Biomimetics, 2016, 11(2): 025001. DOI:10.1088/1748-3190/11/2/025001.
[38] SCALET G. Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview[J/OL]. Actuators, 2020, 9(1): 10. DOI:10.3390/act9010010.
[39] WANG W, LEE J Y, RODRIGUE H, et al. Locomotion of inchworm-inspired robot made of smart soft composite (SSC)[J/OL]. Bioinspiration & Biomimetics, 2014, 9(4): 046006. DOI:10.1088/1748-3182/9/4/046006.
[40] PHAM L N, ABBOTT J J. A Soft Robot to Navigate the Lumens of the Body Using Undulatory Locomotion Generated by a Rotating Magnetic Dipole Field[C/OL]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 1783-1788
[2020-04-08]. https://ieeexplore.ieee.org/document/8594247/. DOI:10.1109/iros.2018.8594247.
[41] KIM Y, PARADA G A, LIU S, et al. Ferromagnetic soft continuum robots[J/OL]. Science Robotics, 2019, 4(33): eaax7329. DOI:10.1126/scirobotics.aax7329.
[42] NIU H, FENG R, XIE Y, et al. MagWorm: A Biomimetic Magnet Embedded Worm-Like Soft Robot[J/OL]. Soft Robotics, 2021, 8(5): 507-518. DOI:10.1089/soro.2019.0167.
[43] SUN L, YU Y, CHEN Z, et al. Biohybrid robotics with living cell actuation[J/OL]. Chemical Society Reviews, 2020, 49(12): 4043-4069. DOI:10.1039/D0CS00120A.
[44] PARK S J, GAZZOLA M, PARK K S, et al. Phototactic guidance of a tissue-engineered soft-robotic ray[J/OL]. Science, 2016, 353(6295): 158-162. DOI:10.1126/science.aaf4292.
[45] MOUSA M A, SOLIMAN M, SALEH M A, et al. Biohybrid Soft Robots, E-Skin, and Bioimpedance Potential to Build Up Their Applications: A Review[J/OL]. IEEE Access, 2020, 8: 184524-184539. DOI:10.1109/ACCESS.2020.3030098.
[46] MARCHESE A D, ONAL C D, RUS D. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators[J/OL]. Soft Robotics, 2014, 1(1): 75-87. DOI:10.1089/soro.2013.0009.
[47] CHEN Y, CHEN C, REHMAN H U, et al. Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges[J/OL]. Molecules, 2020, 25(18): 4246. DOI:10.3390/molecules25184246.
[48] LEE Y, KOEHLER F, DILLON T, et al. Magnetically Actuated Fiber-Based Soft Robots[J/OL]. Advanced Materials, 2023, 35(38): 2301916. DOI:10.1002/adma.202301916.
[49] WEBSTER R J, JONES B A. Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review[J/OL]. The International Journal of Robotics Research, 2010, 29(13): 1661-1683. DOI:10.1177/0278364910368147.
[50] TONDU B, LOPEZ P. The McKibben muscle and its use in actuating robot‐arms showing similarities with human arm behaviour[J/OL]. Industrial Robot: An International Journal, 1997, 24(6): 432-439. DOI:10.1108/01439919710192563.
[51] KIM Y, ZHAO X. Magnetic Soft Materials and Robots[J/OL]. Chemical Reviews, 2022, 122(5): 5317-5364. DOI:10.1021/acs.chemrev.1c00481.
[52] WANG H, ZHU Z, JIN H, et al. Magnetic soft robots: Design, actuation, and function[J/OL]. Journal of Alloys and Compounds, 2022, 922: 166219. DOI:10.1016/j.jallcom.2022.166219.
[53] JONES T J, JAMBON-PUILLET E, MARTHELOT J, et al. Bubble casting soft robotics[J/OL]. Nature, 2021, 599(7884): 229-233. DOI:10.1038/s41586-021-04029-6.
[54] PREECHAYASOMBOON P, ROMBOKAS E. Negshell casting: 3D-printed structured and sacrificial cores for soft robot fabrication[J/OL]. PLOS ONE, 2020, 15(6): e0234354. DOI:10.1371/journal.pone.0234354.
[55] FAN D, YUAN X, WU W, et al. Self-shrinking soft demoulding for complex high-aspect-ratio microchannels[J/OL]. Nature Communications, 2022, 13(1): 5083. DOI:10.1038/s41467-022-32859-z.
[56] BELL M A, BECKER K P, WOOD R J. Injection Molding of Soft Robots[J/OL]. Advanced Materials Technologies, 2022, 7(1): 2100605. DOI:10.1002/admt.202100605.
[57] STANO G, PERCOCO G. Additive manufacturing aimed to soft robots fabrication: A review[J/OL]. Extreme Mechanics Letters, 2021, 42: 101079. DOI:10.1016/j.eml.2020.101079.
[58] DONG X, LUO X, ZHAO H, et al. Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applications[J/OL]. Soft Matter, 2022, 18(40): 7699-7734. DOI:10.1039/D2SM01067D.
[59] WALLIN T J, PIKUL J, SHEPHERD R F. 3D printing of soft robotic systems[J/OL]. Nature Reviews Materials, 2018, 3(6): 84-100. DOI:10.1038/s41578-018-0002-2.
[60] SACHYANI KENETH E, KAMYSHNY A, TOTARO M, et al. 3D Printing Materials for Soft Robotics[J/OL]. Advanced Materials, 2021, 33(19): 2003387. DOI:10.1002/adma.202003387.
[61] HEIDEN A, PRENINGER D, LEHNER L, et al. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators[J/OL]. Science Robotics, 2022, 7(63): eabk2119. DOI:10.1126/scirobotics.abk2119.
[62] DEL DOTTORE E, MONDINI A, ROWE N, et al. A growing soft robot with climbing plant–inspired adaptive behaviors for navigation in unstructured environments[J/OL]. Science Robotics, 2024, 9(86): eadi5908. DOI:10.1126/scirobotics.adi5908.
[63] ZHANG P, LEI I M, CHEN G, et al. Integrated 3D printing of flexible electroluminescent devices and soft robots[J/OL]. Nature Communications, 2022, 13(1): 4775. DOI:10.1038/s41467-022-32126-1.
[64] WANG Y, WILLENBACHER N. Phase-Change-Enabled, Rapid, High-Resolution Direct Ink Writing of Soft Silicone[J/OL]. Advanced Materials, 2022, 34(15): 2109240. DOI:10.1002/adma.202109240.
[65] DIGUMARTI K M, GOSDEN D, LE N H, et al. Toward Stimuli-Responsive Soft Robots with 3D Printed Self-Healing Konjac Glucomannan Gels[J/OL]. 3D Printing and Additive Manufacturing, 2022, 9(5): 425-434. DOI:10.1089/3dp.2020.0289.
[66] ANSARI M H D, IACOVACCI V, PANE S, et al. 3D Printing of Small-Scale Soft Robots with Programmable Magnetization[J/OL]. Advanced Functional Materials, 2023, 33(15): 2211918. DOI:10.1002/adfm.202211918.
[67] LI X, ZHANG P, LI Q, et al. Direct-ink-write printing of hydrogels using dilute inks[J/OL]. iScience, 2021, 24(4): 102319. DOI:10.1016/j.isci.2021.102319.
[68] LI Z, LAI Y P, DILLER E. 3D Printing of Multilayer Magnetic Miniature Soft Robots with Programmable Magnetization[J/OL]. Advanced Intelligent Systems, 2024, 6(2): 2300052. DOI:10.1002/aisy.202300052.
[69] SUN L, WAN J, DU T. Fully 3D-printed tortoise-like soft mobile robot with muti-scenario adaptability[J/OL]. Bioinspiration & Biomimetics, 2023, 18(6): 066011. DOI:10.1088/1748-3190/acfd76.
[70] PATTERSON Z J, PATEL D K, BERGBREITER S, et al. A Method for 3D Printing and Rapid Prototyping of Fieldable Untethered Soft Robots[J/OL]. Soft Robotics, 2023, 10(2): 292-300. DOI:10.1089/soro.2022.0003.
[71] WANG R, YUAN C, CHENG J, et al. Direct 4D printing of ceramics driven by hydrogel dehydration[J/OL]. Nature Communications, 2024, 15(1): 758. DOI:10.1038/s41467-024-45039-y.
[72] QIU W, HE X, FANG Z, et al. Shape-Tunable 4D Printing of LCEs via Cooling Rate Modulation: Stimulus-Free Locking of Actuated State at Room Temperature[J/OL]. ACS Applied Materials & Interfaces, 2023, 15(40): 47509-47519. DOI:10.1021/acsami.3c10210.
[73] CECCHINI L, MARIANI S, RONZAN M, et al. 4D Printing of Humidity-Driven Seed Inspired Soft Robots[J/OL]. Advanced Science, 2023, 10(9): 2205146. DOI:10.1002/advs.202205146.
[74] ZHAI F, FENG Y, LI Z, et al. 4D-printed untethered self-propelling soft robot with tactile perception: Rolling, racing, and exploring[J/OL]. Matter, 2021, 4(10): 3313-3326. DOI:10.1016/j.matt.2021.08.014.
[75] HU H, ZHANG C, PAN C, et al. Wireless Flexible Magnetic Tactile Sensor with Super-Resolution in Large-Areas[J/OL]. ACS Nano, 2022
[2022-10-14]. https://doi.org/10.1021/acsnano.2c08664. DOI:10.1021/acsnano.2c08664.
[76] ZHANG X, HU H, TANG D, et al. Magnetic flexible tactile sensor via direct ink writing[J/OL]. Sensors and Actuators A: Physical, 2021, 327: 112753. DOI:10.1016/j.sna.2021.112753.
[77] HUANG C W, WEN S C, HSIAO C H, et al. Digital Light Processing of Soft Robotic Gripper with High Toughness and Self-Healing Capability Achieved by Deep Eutectic Solvents[J/OL]. Advanced Functional Materials, n/a(n/a): 2314101. DOI:10.1002/adfm.202314101.
[78] KE X, ZHANG S, CHAI Z, et al. Flexible discretely-magnetized configurable soft robots via laser-tuned selective transfer printing of anisotropic ferromagnetic cells[J/OL]. Materials Today Physics, 2021, 17: 100313. DOI:10.1016/j.mtphys.2020.100313.
[79] XU H, WU S, LIU Y, et al. 3D nanofabricated soft microrobots with super-compliant picoforce springs as onboard sensors and actuators[J/OL]. Nature Nanotechnology, 2024: 1-10. DOI:10.1038/s41565-023-01567-0.
[80] ZHANG S, KE X, JIANG Q, et al. Fabrication and Functionality Integration Technologies for Small-Scale Soft Robots[J/OL]. Advanced Materials, 2022, 34(52): 2200671. DOI:10.1002/adma.202200671.
[81] CALISTI M, PICARDI G, LASCHI C. Fundamentals of soft robot locomotion[J/OL]. Journal of The Royal Society Interface, 2017, 14(130): 20170101. DOI:10.1098/rsif.2017.0101.
[82] GU G, ZOU J, ZHAO R, et al. Soft wall-climbing robots[J/OL]. Science Robotics, 2018, 3(25): eaat2874. DOI:10.1126/scirobotics.aat2874.
[83] YEH C Y, CHEN C Y, JUANG J Y. Soft hopping and crawling robot for in-pipe traveling[J/OL]. Extreme Mechanics Letters, 2020, 39: 100854. DOI:10.1016/j.eml.2020.100854.
[84] CHEN S, CAO Y, SARPARAST M, et al. Soft Crawling Robots: Design, Actuation, and Locomotion[J/OL]. Advanced Materials Technologies, 2020, 5(2): 1900837. DOI:10.1002/admt.201900837.
[85] FANG H, ZHANG Y, WANG K W. Origami-based earthworm-like locomotion robots[J/OL]. Bioinspiration & Biomimetics, 2017, 12(6): 065003. DOI:10.1088/1748-3190/aa8448.
[86] LOEPFE M, SCHUMACHER C M, LUSTENBERGER U B, et al. An Untethered, Jumping Roly-Poly Soft Robot Driven by Combustion[J/OL]. Soft Robotics, 2015, 2(1): 33-41. DOI:10.1089/soro.2014.0021.
[87] AHN C, LIANG X, CAI S. Bioinspired Design of Light-Powered Crawling, Squeezing, and Jumping Untethered Soft Robot[J/OL]. Advanced Materials Technologies, 2019, 4(7): 1900185. DOI:10.1002/admt.201900185.
[88] KATZSCHMANN R K, DELPRETO J, MACCURDY R, et al. Exploration of underwater life with an acoustically controlled soft robotic fish[J/OL]. Science Robotics, 2018, 3(16): eaar3449. DOI:10.1126/scirobotics.aar3449.
[89] ZHANG J, DILLER E. Untethered Miniature Soft Robots: Modeling and Design of a Millimeter-Scale Swimming Magnetic Sheet[J/OL]. Soft Robotics, 2018, 5(6): 761-776. DOI:10.1089/soro.2017.0126.
[90] WANG R, ZHANG C, ZHANG Y, et al. Soft Underwater Swimming Robots Based on Artificial Muscle[J/OL]. Advanced Materials Technologies, 2023, 8(4): 2200962. DOI:10.1002/admt.202200962.
[91] ZARROUK D, SHARF I, SHOHAM M. Conditions for Worm-Robot Locomotion in a Flexible Environment: Theory and Experiments[J/OL]. IEEE Transactions on Biomedical Engineering, 2012, 59(4): 1057-1067. DOI:10.1109/TBME.2011.2182612.
[92] ZHANG X, PAN T, HEUNG H L, et al. A Biomimetic Soft Robot for Inspecting Pipeline with Significant Diameter Variation[C/OL]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018: 7486-7491. DOI:10.1109/iros.2018.8594390.
[93] LIU X, SONG M, FANG Y, et al. Worm-Inspired Soft Robots Enable Adaptable Pipeline and Tunnel Inspection[J/OL]. Advanced Intelligent Systems, 2021, n/a(n/a): 2100128. DOI:10.1002/aisy.202100128.
[94] VERMA M S, AINLA A, YANG D, et al. A Soft Tube-Climbing Robot[J/OL]. Soft Robotics, 2018, 5(2): 133-137. DOI:10.1089/soro.2016.0078.
[95] GE J Z, CALDERÓN A A, CHANG L, et al. An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion[J/OL]. Bioinspiration & Biomimetics, 2019, 14(3): 036004. DOI:10.1088/1748-3190/aae7bb.
[96] XIE R, SU M, ZHU H, et al. A 2D Pneumatic Soft Robot with Suckers for Locomotion[C/OL]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2019: 1325-1330. DOI:10.1109/robio49542.2019.8961784.
[97] QIN L, LIANG X, HUANG H, et al. A Versatile Soft Crawling Robot with Rapid Locomotion[J/OL]. Soft Robotics, 2019, 6(4): 455-467. DOI:10.1089/soro.2018.0124.
[98] LIU B, OZKAN-AYDIN Y, GOLDMAN D I, et al. Kirigami Skin Improves Soft Earthworm Robot Anchoring and Locomotion Under Cohesive Soil[C/OL]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). 2019: 828-833. DOI:10.1109/ROBOSOFT.2019.8722821.
[99] WEN L, WEAVER J C, LAUDER G V. Biomimetic shark skin: design, fabrication and hydrodynamic function[J/OL]. Journal of Experimental Biology, 2014, 217(10): 1656-1666. DOI:10.1242/jeb.097097.
[100] WANG N, HE M, CUI Y, et al. A Soft Pneumatic Crawling Robot with Unbalanced Inflation[C/OL]//2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2020: 138-143. DOI:10.1109/aim43001.2020.9158925.
[101] QI X, SHI H, PINTO T, et al. A Novel Pneumatic Soft Snake Robot Using Traveling-Wave Locomotion in Constrained Environments[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(2): 1610-1617. DOI:10.1109/lra.2020.2969923.
[102] DRORY L H, ZARROUK D. Locomotion Dynamics of a Miniature Wave-Like Robot, Modeling and Experiments[C/OL]//2019 International Conference on Robotics and Automation (ICRA). 2019: 8422-8428. DOI:10.1109/ICRA.2019.8794015.
[103] MOONEY M. A Theory of Large Elastic Deformation[J/OL]. Journal of Applied Physics, 1940, 11(9): 582-592. DOI:10.1063/1.1712836.
[104] OGDEN R W, HILL R. Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids[J/OL]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1997, 326(1567): 565-584. DOI:10.1098/rspa.1972.0026.
[105] TRELOAR L R G. The elasticity of a network of long-chain molecules—II[J/OL]. Transactions of the Faraday Society, 1943, 39(0): 241-246. DOI:10.1039/TF9433900241.
[106] YEOH O H. Some Forms of the Strain Energy Function for Rubber[J/OL]. Rubber Chemistry and Technology, 1993, 66(5): 754-771. DOI:10.5254/1.3538343.
[107] GEORGE THURUTHEL T, ANSARI Y, FALOTICO E, et al. Control Strategies for Soft Robotic Manipulators: A Survey[J/OL]. Soft Robotics, 2018, 5(2): 149-163. DOI:10.1089/soro.2017.0007.
[108] DELLA SANTINA C, DURIEZ C, RUS D. Model-Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges[J/OL]. IEEE Control Systems Magazine, 2023, 43(3): 30-65. DOI:10.1109/MCS.2023.3253419.
[109] CAMARILLO D B, MILNE C F, CARLSON C R, et al. Mechanics Modeling of Tendon-Driven Continuum Manipulators[J/OL]. IEEE Transactions on Robotics, 2008, 24(6): 1262-1273. DOI:10.1109/TRO.2008.2002311.
[110] KATZSCHMANN R K, SANTINA C D, TOSHIMITSU Y, et al. Dynamic Motion Control of Multi-Segment Soft Robots Using Piecewise Constant Curvature Matched with an Augmented Rigid Body Model[C/OL]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). 2019: 454-461
[2024-03-29]. https://ieeexplore.ieee.org/abstract/document/8722799. DOI:10.1109/ROBOSOFT.2019.8722799.
[111] DELLA SANTINA C, BICCHI A, RUS D. On an Improved State Parametrization for Soft Robots With Piecewise Constant Curvature and Its Use in Model Based Control[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(2): 1001-1008. DOI:10.1109/LRA.2020.2967269.
[112] RAO P, PEYRON Q, BURGNER-KAHRS J. Shape Representation and Modeling of Tendon-Driven Continuum Robots Using Euler Arc Splines[J/OL]. IEEE Robotics and Automation Letters, 2022, 7(3): 8114-8121. DOI:10.1109/LRA.2022.3185377.
[113] WIESE M, RÜSTMANN K, RAATZ A. Kinematic Modeling of a Soft Pneumatic Actuator Using Cubic Hermite Splines[C/OL]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019: 7176-7182
[2024-03-29]. https://ieeexplore.ieee.org/document/8967776. DOI:10.1109/IROS40897.2019.8967776.
[114] ALBEN S. Optimizing snake locomotion in the plane[J/OL]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469(2159): 20130236. DOI:10.1098/rspa.2013.0236.
[115] HIROSE S, YAMADA H. Snake-like robots [Tutorial][J/OL]. IEEE Robotics & Automation Magazine, 2009, 16(1): 88-98. DOI:10.1109/MRA.2009.932130.
[116] RENDA F, GIORELLI M, CALISTI M, et al. Dynamic Model of a Multibending Soft Robot Arm Driven by Cables[J/OL]. IEEE Transactions on Robotics, 2014, 30(5): 1109-1122. DOI:10.1109/TRO.2014.2325992.
[117] JANABI-SHARIFI F, JALALI A, WALKER I D. Cosserat Rod-Based Dynamic Modeling of Tendon-Driven Continuum Robots: A Tutorial[J/OL]. IEEE Access, 2021, 9: 68703-68719. DOI:10.1109/ACCESS.2021.3077186.
[118] SIMO J C. A finite strain beam formulation. The three-dimensional dynamic problem. Part I[J/OL]. Computer Methods in Applied Mechanics and Engineering, 1985, 49(1): 55-70. DOI:10.1016/0045-7825(85)90050-7.
[119] XAVIER M S, FLEMING A J, YONG Y K. Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments[J/OL]. Advanced Intelligent Systems, 2021, 3(2): 2000187. DOI:10.1002/aisy.202000187.
[120] FERRENTINO P, ROELS E, BRANCART J, et al. Finite Element Analysis-Based Soft Robotic Modeling: Simulating a Soft Actuator in SOFA[J/OL]. IEEE Robotics & Automation Magazine, 2023: 2-12. DOI:10.1109/MRA.2022.3220536.
[121] B J, PANYAYUE. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation[J/OL]. Soft Robotics, 2019
[2024-03-29]. https://www.liebertpub.com/doi/10.1089/soro.2018.0082. DOI:10.1089/soro.2018.0082.
[122] TAWK C, ALICI G. Finite Element Modeling in the Design Process of 3D Printed Pneumatic Soft Actuators and Sensors[J/OL]. Robotics, 2020, 9(3): 52. DOI:10.3390/robotics9030052.
[123] MOSELEY P, FLOREZ J M, SONAR H A, et al. Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method[J/OL]. Advanced Engineering Materials, 2016, 18(6): 978-988. DOI:10.1002/adem.201500503.
[124] YANG F, RUAN Q, MAN Y, et al. Design and Optimize of a Novel Segmented Soft Pneumatic Actuator[J/OL]. IEEE Access, 2020, 8: 122304-122313. DOI:10.1109/ACCESS.2020.3006865.
[125] POLYGERINOS P, WANG Z, OVERVELDE J T B, et al. Modeling of Soft Fiber-Reinforced Bending Actuators[J/OL]. IEEE Transactions on Robotics, 2015, 31(3): 778-789. DOI:10.1109/TRO.2015.2428504.
[126] DAWOOD A B, GODABA H, ALTHOEFER K. Modelling of a Soft Sensor for Exteroception and Proprioception in a Pneumatically Actuated Soft Robot[C/OL]//ALTHOEFER K, KONSTANTINOVA J, ZHANG K. Towards Autonomous Robotic Systems. Cham: Springer International Publishing, 2019: 99-110. DOI:10.1007/978-3-030-25332-5_9.
[127] SCHEGG P, MÉNAGER E, KHAIRALLAH E, et al. SofaGym: An Open Platform for Reinforcement Learning Based on Soft Robot Simulations[J/OL]. Soft Robotics, 2023, 10(2): 410-430. DOI:10.1089/soro.2021.0123.
[128] FAURE F, DURIEZ C, DELINGETTE H, et al. SOFA: A Multi-Model Framework for Interactive Physical Simulation[M/OL]//PAYAN Y. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Berlin, Heidelberg: Springer, 2012: 283-321
[2024-03-29]. https://doi.org/10.1007/8415_2012_125. DOI:10.1007/8415_2012_125.
[129] SOFA - Simulation Open Framework Architecture[EB/OL].
[2024-03-29]. https://www.sofa-framework.org/.
[130] CHEN Z, RENDA F, GALL A L, et al. Data-Driven Methods Applied to Soft Robot Modeling and Control: A Review[J/OL]. IEEE Transactions on Automation Science and Engineering, 2024: 1-16. DOI:10.1109/TASE.2024.3377291.
[131] FANG G, TIAN Y, YANG Z X, et al. Efficient Jacobian-Based Inverse Kinematics With Sim-to-Real Transfer of Soft Robots by Learning[J/OL]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5296-5306. DOI:10.1109/TMECH.2022.3178303.
[132] HYATT P, KILLPACK M D. Real-Time Nonlinear Model Predictive Control of Robots Using a Graphics Processing Unit[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(2): 1468-1475. DOI:10.1109/LRA.2020.2965393.
[133] BAAIJ T, KLEIN HOLKENBORG M, STÖLZLE M, et al. Learning 3D shape proprioception for continuum soft robots with multiple magnetic sensors[J/OL]. Soft Matter, 2023, 19(1): 44-56. DOI:10.1039/D2SM00914E.
[134] CIANCHETTI M, RANZANI T, GERBONI G, et al. Soft Robotics Technologies to Address Shortcomings in Today’s Minimally Invasive Surgery: The STIFF-FLOP Approach[J/OL]. Soft Robotics, 2014, 1(2): 122-131. DOI:10.1089/soro.2014.0001.
[135] NARANG Y S, VLASSAK J J, HOWE R D. Mechanically Versatile Soft Machines through Laminar Jamming[J/OL]. Advanced Functional Materials, 2018, 28(17): 1707136. DOI:10.1002/adfm.201707136.
[136] WANG T, ZHANG J, LI Y, et al. Electrostatic Layer Jamming Variable Stiffness for Soft Robotics[J/OL]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 424-433. DOI:10.1109/TMECH.2019.2893480.
[137] GUO X Y, LI W B, GAO Q H, et al. Self-locking mechanism for variable stiffness rigid–soft gripper[J/OL]. Smart Materials and Structures, 2020, 29(3): 035033. DOI:10.1088/1361-665X/ab710f.
[138] ZHANG Y F, ZHANG N, HINGORANI H, et al. Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multimaterial 3D Printing[J/OL]. Advanced Functional Materials, 2019, 29(15): 1806698. DOI:10.1002/adfm.201806698.
[139] NARANG Y S, DEGIRMENCI A, VLASSAK J J, et al. Transforming the Dynamic Response of Robotic Structures and Systems Through Laminar Jamming[J/OL]. IEEE Robotics and Automation Letters, 2018, 3(2): 688-695. DOI:10.1109/LRA.2017.2779802.
[140] TONAZZINI A, MINTCHEV S, SCHUBERT B, et al. Variable Stiffness Fiber with Self-Healing Capability[J/OL]. Advanced Materials, 2016, 28(46): 10142-10148. DOI:10.1002/adma.201602580.
[141] MATTMANN M, DE MARCO C, BRIATICO F, et al. Thermoset Shape Memory Polymer Variable Stiffness 4D Robotic Catheters[J/OL]. Advanced Science, 2022, 9(1): 2103277. DOI:10.1002/advs.202103277.
[142] SHAH D S, YANG E J, YUEN M C, et al. Jamming Skins that Control System Rigidity from the Surface[J/OL]. Advanced Functional Materials, 2021, 31(1): 2006915. DOI:10.1002/adfm.202006915.
[143] WANG Y, LI L, HOFMANN D, et al. Structured fabrics with tunable mechanical properties[J/OL]. Nature, 2021, 596(7871): 238-243. DOI:10.1038/s41586-021-03698-7.
[144] WANG W, AHN S H. Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping[J/OL]. Soft Robotics, 2017, 4(4): 379-389. DOI:10.1089/soro.2016.0081.
[145] YAN J, XU Z, SHI P, et al. A Human-Inspired Soft Finger with Dual-Mode Morphing Enabled by Variable Stiffness Mechanism[J/OL]. Soft Robotics, 2022, 9(2): 399-411. DOI:10.1089/soro.2020.0153.
[146] BILODEAU R A, YUEN M C, KRAMER-BOTTIGLIO R. Addressable, Stretchable Heating Silicone Sheets[J/OL]. Advanced Materials Technologies, 2019, 4(9): 1900276. DOI:10.1002/admt.201900276.
[147] YUAN Z, WU L, XU X, et al. Soft pneumatic gripper integrated with multi-configuration and variable-stiffness functionality[J/OL]. Cognitive Computation and Systems, 2021, 3(1): 70-77. DOI:10.1049/ccs2.12009.
[148] ZHAO D, PANG B, ZHU Y, et al. A Stiffness-Switchable, Biomimetic Smart Material Enabled by Supramolecular Reconfiguration[J/OL]. Advanced Materials, 2022, 34(10): 2107857. DOI:10.1002/adma.202107857.
[149] TAKAHASHI R, SUN T L, SARUWATARI Y, et al. Creating Stiff, Tough, and Functional Hydrogel Composites with Low-Melting-Point Alloys[J/OL]. Advanced Materials, 2018, 30(16): 1706885. DOI:10.1002/adma.201706885.
[150] JIANG Y, CHEN D, LIU C, et al. Chain-Like Granular Jamming: A Novel Stiffness-Programmable Mechanism for Soft Robotics[J/OL]. Soft Robotics, 2019, 6(1): 118-132. DOI:10.1089/soro.2018.0005.
[151] BROWN E, RODENBERG N, AMEND J, et al. Universal robotic gripper based on the jamming of granular material[J/OL]. Proceedings of the National Academy of Sciences, 2010, 107(44): 18809-18814. DOI:10.1073/pnas.1003250107.
[152] JADHAV S, MAJIT M R A, SHIH B, et al. Variable Stiffness Devices Using Fiber Jamming for Application in Soft Robotics and Wearable Haptics[J/OL]. Soft Robotics, 2022, 9(1): 173-186. DOI:10.1089/soro.2019.0203.
[153] BRANCADORO M, MANTI M, GRANI F, et al. Toward a Variable Stiffness Surgical Manipulator Based on Fiber Jamming Transition[J/OL]. Frontiers in Robotics and AI, 2019, 6
[2022-04-07]. https://www.frontiersin.org/article/10.3389/frobt.2019.00012. DOI:10.3389/frobt.2019.00012.
[154] AKTAŞ B, HOWE R D. Tunable Anisotropic Stiffness with Square Fiber Jamming[C/OL]//2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). 2020: 879-884. DOI:10.1109/RoboSoft48309.2020.9116030.
[155] KIM Y J, CHENG S, KIM S, et al. A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery[J/OL]. IEEE Transactions on Robotics, 2013, 29(4): 1031-1042. DOI:10.1109/TRO.2013.2256313.
[156] PARK W, LEE D, BAE J. A Hybrid Jamming Structure Combining Granules and a Chain Structure for Robotic Applications[J/OL]. Soft Robotics, 2021
[2022-06-07]. https://www.liebertpub.com/doi/full/10.1089/soro.2020.0209. DOI:10.1089/soro.2020.0209.
[157] YANG Y, ZHANG Y, KAN Z, et al. Hybrid Jamming for Bioinspired Soft Robotic Fingers[J/OL]. Soft Robotics, 2020, 7(3): 292-308. DOI:10.1089/soro.2019.0093.
[158] BRANCADORO M, MANTI M, TOGNARELLI S, et al. Preliminary experimental study on variable stiffness structures based on fiber jamming for soft robots[C/OL]//2018 IEEE International Conference on Soft Robotics (RoboSoft). 2018: 258-263. DOI:10.1109/ROBOSOFT.2018.8404929.
[159] CARUSO F, MANTRIOTA G, AFFERRANTE L, et al. A theoretical model for multi-layer jamming systems[J/OL]. Mechanism and Machine Theory, 2022, 172: 104788. DOI:10.1016/j.mechmachtheory.2022.104788.
[160] FANG X, WEN J, CHENG L, et al. Programmable gear-based mechanical metamaterials[J/OL]. Nature Materials, 2022, 21(8): 869-876. DOI:10.1038/s41563-022-01269-3.
[161] ZHANG X, YAN J, ZHAO J. A Gas–Ribbon-Hybrid Actuated Soft Finger with Active Variable Stiffness[J/OL]. Soft Robotics, 2021
[2022-03-03]. https://www.liebertpub.com/doi/full/10.1089/soro.2020.0031. DOI:10.1089/soro.2020.0031.
[162] WANG P, GUO S, WANG X, et al. Design and Analysis of a Novel Variable Stiffness Continuum Robot With Built-in Winding-Styled Ropes[J/OL]. IEEE Robotics and Automation Letters, 2022, 7(3): 6375-6382. DOI:10.1109/LRA.2022.3171917.
[163] WANG H, TOTARO M, BECCAI L. Toward Perceptive Soft Robots: Progress and Challenges[J/OL]. Advanced Science, 2018, 5(9): 1800541. DOI:10.1002/advs.201800541.
[164] KIM T, LEE S, HONG T, et al. Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces[J/OL]. Science Robotics, 2020, 5(49): eabc6878. DOI:10.1126/scirobotics.abc6878.
[165] LU D, LIU T, MENG X, et al. Wearable Triboelectric Visual Sensors for Tactile Perception[J/OL]. Advanced Materials, 2023, 35(7): 2209117. DOI:10.1002/adma.202209117.
[166] WAN Y, QIU Z, HONG Y, et al. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures[J/OL]. Advanced Electronic Materials, 2018, 4(4): 1700586. DOI:10.1002/aelm.201700586.
[167] PAN M, YUAN C, LIANG X, et al. Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines[J/OL]. iScience, 2020, 23(11): 101682. DOI:10.1016/j.isci.2020.101682.
[168] WANG H, DE BOER G, KOW J, et al. Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors[J/OL]. Sensors, 2016, 16(9): 1356. DOI:10.3390/s16091356.
[169] BRUDER D, FU X, GILLESPIE R B, et al. Data-Driven Control of Soft Robots Using Koopman Operator Theory[J/OL]. IEEE Transactions on Robotics, 2021, 37(3): 948-961. DOI:10.1109/TRO.2020.3038693.
[170] THURUTHEL T G, FALOTICO E, RENDA F, et al. Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators[J/OL]. IEEE Transactions on Robotics, 2019, 35(1): 124-134. DOI:10.1109/TRO.2018.2878318.
[171] DELLA SANTINA C, KATZSCHMANN R K, BICCHI A, et al. Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment[J/OL]. The International Journal of Robotics Research, 2020, 39(4): 490-513. DOI:10.1177/0278364919897292.
[172] ZHAO H, O’BRIEN K, LI S, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J/OL]. Science Robotics, 2016, 1(1): eaai7529. DOI:10.1126/scirobotics.aai7529.
[173] GALLOWAY K C, CHEN Y, TEMPLETON E, et al. Fiber Optic Shape Sensing for Soft Robotics[J/OL]. Soft Robotics, 2019, 6(5): 671-684. DOI:10.1089/soro.2018.0131.
[174] WANG X, LI Z, SU L. Soft Optical Waveguides for Biomedical Applications, Wearable Devices, and Soft Robotics: A Review[J/OL]. Advanced Intelligent Systems, 2024, 6(1): 2300482. DOI:10.1002/aisy.202300482.
[175] MASSARI L, SCHENA E, MASSARONI C, et al. A Machine-Learning-Based Approach to Solve Both Contact Location and Force in Soft Material Tactile Sensors[J/OL]. Soft Robotics, 2020, 7(4): 409-420. DOI:10.1089/soro.2018.0172.
[176] GEORGOPOULOU A, CLEMENS F. Pellet-based fused deposition modeling for the development of soft compliant robotic grippers with integrated sensing elements[J/OL]. Flexible and Printed Electronics, 2022, 7(2): 025010. DOI:10.1088/2058-8585/ac6f34.
[177] SHIH B, CHRISTIANSON C, GILLESPIE K, et al. Design Considerations for 3D Printed, Soft, Multimaterial Resistive Sensors for Soft Robotics[J/OL]. Frontiers in Robotics and AI, 2019, 6
[2024-04-01]. https://www.frontiersin.org/articles/10.3389/frobt.2019.00030. DOI:10.3389/frobt.2019.00030.
[178] HUANG X, LIU L, LIN Y H, et al. High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures[J/OL]. Science Advances, 2023, 9(34): eadh9799. DOI:10.1126/sciadv.adh9799.
[179] ALSHAWABKEH M, ALAGI H, NAVARRO S E, et al. Highly Stretchable Additively Manufactured Capacitive Proximity and Tactile Sensors for Soft Robotic Systems[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-10. DOI:10.1109/TIM.2023.3250232.
[180] LIU Z, LI S, ZHU J, et al. Fabrication of β-Phase-Enriched PVDF Sheets for Self-Powered Piezoelectric Sensing[J/OL]. ACS Applied Materials & Interfaces, 2022, 14(9): 11854-11863. DOI:10.1021/acsami.2c01611.
[181] CAO C, ZHOU P, WANG J, et al. Enhanced energy harvesting performance via interfacial polarization in ternary piezoelectric composites for self-powered flexible pressure sensing application[J/OL]. Ceramics International, 2023, 49(13): 22377-22385. DOI:10.1016/j.ceramint.2023.04.067.
[182] MA B, XU C, CUI L, et al. Magnetic Printing of Liquid Metal for Perceptive Soft Actuators with Embodied Intelligence[J/OL]. ACS Applied Materials & Interfaces, 2021, 13(4): 5574-5582. DOI:10.1021/acsami.0c20418.
[183] MITCHELL M D, HURLEY F E, ONAL C D. Fast Probabilistic 3-D Curvature Proprioception with a Magnetic Soft Sensor[C/OL]//2021 IEEE 17th International Conference on Automation Science and Engineering (CASE). 2021: 215-220
[2024-04-05]. https://ieeexplore.ieee.org/abstract/document/9551572. DOI:10.1109/CASE49439.2021.9551572.
[184] BECKER C. A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays[J/OL]. Nature Communications, 2022: 11. DOI:10.1038/s41467-022-29802-7.
[185] LU Z, GAO X, YU H. GTac: A Biomimetic Tactile Sensor With Skin-Like Heterogeneous Force Feedback for Robots[J/OL]. IEEE Sensors Journal, 2022, 22(14): 14491-14500. DOI:10.1109/JSEN.2022.3181128.
[186] REHAN M, SALEEM M M, TIWANA M I, et al. A Soft Multi-Axis High Force Range Magnetic Tactile Sensor for Force Feedback in Robotic Surgical Systems[J/OL]. Sensors, 2022, 22(9): 3500. DOI:10.3390/s22093500.
[187] TOMO T P, SCHMITZ A, WONG W K, et al. Covering a Robot Fingertip With uSkin: A Soft Electronic Skin With Distributed 3-Axis Force Sensitive Elements for Robot Hands[J/OL]. IEEE Robotics and Automation Letters, 2017, 3(1): 124-131. DOI:10.1109/LRA.2017.2734965.
[188] KAWASETSU T, HORII T, ISHIHARA H, et al. Mexican-Hat-Like Response in a Flexible Tactile Sensor Using a Magnetorheological Elastomer[J/OL]. Sensors, 2018, 18(2): 587. DOI:10.3390/s18020587.
[189] YAN Y, HU Z, YANG Z, et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling[J/OL]. Science Robotics, 2021, 6(51): eabc8801. DOI:10.1126/scirobotics.abc8801.
[190] LI Y, CHEN Z, ZHENG G, et al. A magnetized microneedle-array based flexible triboelectric-electromagnetic hybrid generator for human motion monitoring[J/OL]. Nano Energy, 2020, 69: 104415. DOI:10.1016/j.nanoen.2019.104415.
[191] ALFADHEL A, KOSEL J. Magnetic Nanocomposite Cilia Tactile Sensor[J/OL]. Advanced Materials, 2015, 27(47): 7888-7892. DOI:10.1002/adma.201504015.
[192] GE J, WANG X, DRACK M, et al. A bimodal soft electronic skin for tactile and touchless interaction in real time[J/OL]. Nature Communications, 2019, 10(1): 4405. DOI:10.1038/s41467-019-12303-5.
[193] HELLEBREKERS T, KROEMER O, MAJIDI C. Soft Magnetic Skin for Continuous Deformation Sensing[J/OL]. Advanced Intelligent Systems, 2019, 1(4): 1900025. DOI:10.1002/aisy.201900025.
[194] HELLEBREKERS T, CHANG N, CHIN K, et al. Soft Magnetic Tactile Skin for Continuous Force and Location Estimation Using Neural Networks[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(3): 3892-3898. DOI:10.1109/LRA.2020.2983707.
[195] ALFADHEL A, KHAN M A, CARDOSO DE FREITAS S, et al. Magnetic Tactile Sensor for Braille Reading[J/OL]. IEEE Sensors Journal, 2016, 16(24): 8700-8705. DOI:10.1109/JSEN.2016.2558599.
[196] RIBEIRO P, KHAN M A, ALFADHEL A, et al. Bioinspired Ciliary Force Sensor for Robotic Platforms[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(2): 971-976. DOI:10.1109/LRA.2017.2656249.
[197] ZHANG X, AI J, MA Z, et al. Magnetoelectric soft composites with a self-powered tactile sensing capacity[J/OL]. Nano Energy, 2020, 69: 104391. DOI:10.1016/j.nanoen.2019.104391.
[198] XIE S, ZHANG Y, JIN M, et al. High Sensitivity and Wide Range Soft Magnetic Tactile Sensor Based on Electromagnetic Induction[J/OL]. IEEE Sensors Journal, 2021, 21(3): 2757-2766. DOI:10.1109/JSEN.2020.3025830.
[199] MIRZANEJAD H, AGHELI M. Soft force sensor made of magnetic powder blended with silicone rubber[J/OL]. Sensors and Actuators A: Physical, 2019, 293: 108-118. DOI:10.1016/j.sna.2019.04.021.
[200] YANG X, LI B, YANG L, et al. Robust Estimation of Contact Force and Location for Magnetic-Field-Based Soft Tactile Sensor Considering Magnetic Source Inconsistency[J/OL]. Sensors, 2021, 21(16): 5388. DOI:10.3390/s21165388.
[201] YAN Y, SHEN Y, SONG C, et al. Tactile Super-Resolution Model for Soft Magnetic Skin[J/OL]. IEEE Robotics and Automation Letters, 2022, 7(2): 2589-2596. DOI:10.1109/LRA.2022.3141449.
[202] FANG B, XIA Z, SUN F, et al. Soft Magnetic Fingertip With Particle Jamming Structure for Tactile Perception and Grasping[J/OL]. IEEE Transactions on Industrial Electronics, 2022: 1-10. DOI:10.1109/TIE.2022.3201305.
[203] SIMO J C, VU-QUOC L. On the dynamics in space of rods undergoing large motions - A geometrically exact approach[J/OL]. Computer Methods in Applied Mechanics and Engineering, 1988, 66(2): 125-161. DOI:10.1016/0045-7825(88)90073-4.
[204] TAYLOR G I. Analysis of the swimming of long and narrow animals[J/OL]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1997, 214(1117): 158-183. DOI:10.1098/rspa.1952.0159.
[205] LEE J Y, SEO Y S, PARK C, et al. Shape-Adaptive Universal Soft Parallel Gripper for Delicate Grasping Using a Stiffness-Variable Composite Structure[J/OL]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12441-12451. DOI:10.1109/TIE.2020.3044811.
[206] PAN Y, LIU X J, ZHAO H. Stretchable and conformable variable stiffness device through an electrorheological fluid[J/OL]. Soft Matter, 2022
[2022-11-20]. https://pubs.rsc.org/en/content/articlelanding/2022/sm/d2sm01362b. DOI:10.1039/D2SM01362B.
[207] CHAUTEMS C, TONAZZINI A, FLOREANO D, et al. A variable stiffness catheter controlled with an external magnetic field[C/OL]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017: 181-186. DOI:10.1109/IROS.2017.8202155.
[208] PARK S, BAUGH N, SHAH H K, et al. Ultrastretchable Elastic Shape Memory Fibers with Electrical Conductivity[J/OL]. Advanced Science, 2019, 6(21): 1901579. DOI:10.1002/advs.201901579.
[209] HOANG T T, PHAN P T, THAI M T, et al. Bio-Inspired Conformable and Helical Soft Fabric Gripper with Variable Stiffness and Touch Sensing[J/OL]. Advanced Materials Technologies, 2020, 5(12): 2000724. DOI:10.1002/admt.202000724.
[210] HOANG T T, QUEK J J S, THAI M T, et al. Soft robotic fabric gripper with gecko adhesion and variable stiffness[J/OL]. Sensors and Actuators A: Physical, 2021, 323: 112673. DOI:10.1016/j.sna.2021.112673.
[211] BUCKNER T L, WHITE E L, YUEN M C, et al. A move-and-hold pneumatic actuator enabled by self-softening variable stiffness materials[C/OL]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017: 3728-3733. DOI:10.1109/IROS.2017.8206221.
[212] HINES L, ARABAGI V, SITTI M. Shape Memory Polymer-Based Flexure Stiffness Control in a Miniature Flapping-Wing Robot[J/OL]. IEEE Transactions on Robotics, 2012, 28(4): 987-990. DOI:10.1109/TRO.2012.2197313.
[213] LI Y, WANG B, LI Y, et al. Design and Output Characteristics of Magnetostrictive Tactile Sensor for Detecting Force and Stiffness of Manipulated Objects[J/OL]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 1219-1225. DOI:10.1109/TII.2018.2862912.
[214] 张三慧. 大学物理学: 力学、电磁学[M]. 清华大学出版社, 2009.
[215] BASHEER I A, HAJMEER M. Artificial neural networks: fundamentals, computing, design, and application[J/OL]. Journal of Microbiological Methods, 2000, 43(1): 3-31. DOI:10.1016/S0167-7012(00)00201-3.
[216] MAO A, MOHRI M, ZHONG Y. Cross-Entropy Loss Functions: Theoretical Analysis and Applications[C/OL]//Proceedings of the 40th International Conference on Machine Learning. PMLR, 2023: 23803-23828
[2024-03-29]. https://proceedings.mlr.press/v202/mao23b.html.
[217] AMARI S ichi. Backpropagation and stochastic gradient descent method[J/OL]. Neurocomputing, 1993, 5(4): 185-196. DOI:10.1016/0925-2312(93)90006-O.
[218] ZOU F, SHEN L, JIE Z, et al. A Sufficient Condition for Convergences of Adam and RMSProp[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 11127-11135
[2024-03-29]. https://openaccess.thecvf.com/content_CVPR_2019/html/Zou_A_Sufficient_Condition_for_Convergences_of_Adam_and_RMSProp_CVPR_2019_paper.html.
[219] KINGMA D P, BA J. Adam: A Method for Stochastic Optimization[A/OL]. arXiv, 2017
[2024-03-29]. http://arxiv.org/abs/1412.6980. DOI:10.48550/arXiv.1412.6980.
[220] PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[J/OL]. 2017
[2024-03-29]. https://openreview.net/forum?id=BJJsrmfCZ.
[221] KETKAR N, MOOLAYIL J. Introduction to PyTorch[M/OL]//KETKAR N, MOOLAYIL J. Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch. Berkeley, CA: Apress, 2021: 27-91
[2024-03-29]. https://doi.org/10.1007/978-1-4842-5364-9_2. DOI:10.1007/978-1-4842-5364-9_2.
[222] PASZKE A, GROSS S, MASSA F, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library[C/OL]//Advances in Neural Information Processing Systems: Vol. 32. Curran Associates, Inc., 2019
[2024-03-29]. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.
[223] LAI W M, RUBIN D, KREMPL E. Introduction to Continuum Mechanics[M]. Butterworth-Heinemann, 2009.
[224] GURTIN M E. An Introduction to Continuum Mechanics[M]. Academic Press, 1982.

所在学位评定分委会
力学
国内图书分类号
O3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778439
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
于文凯. 基于力学的软体机器人运动模式、变刚度与传感技术研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031088-于文凯-力学与航空航天(25643KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[于文凯]的文章
百度学术
百度学术中相似的文章
[于文凯]的文章
必应学术
必应学术中相似的文章
[于文凯]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。