[1] RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J/OL]. Nature, 2015, 521(7553): 467-475. DOI:10.1038/nature14543.
[2] YASA O, TOSHIMITSU Y, MICHELIS M Y, et al. An Overview of Soft Robotics[J/OL]. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6(1): 1-29. DOI:10.1146/annurev-control-062322-100607.
[3] AHMED F, WAQAS M, JAWED B, et al. Decade of bio-inspired soft robots: a review[J/OL]. Smart Materials and Structures, 2022, 31(7): 073002. DOI:10.1088/1361-665X/ac6e15.
[4] TOLLEY M T, SHEPHERD R F, MOSADEGH B, et al. A Resilient, Untethered Soft Robot[J/OL]. Soft Robotics, 2014, 1(3): 213-223. DOI:10.1089/soro.2014.0008.
[5] MARECHAL L, BALLAND P, LINDENROTH L, et al. Toward a Common Framework and Database of Materials for Soft Robotics[J/OL]. Soft Robotics, 2021, 8(3): 284-297. DOI:10.1089/soro.2019.0115.
[6] CHEN Y, ZHANG Y, LI H, et al. Bioinspired hydrogel actuator for soft robotics: Opportunity and challenges[J/OL]. Nano Today, 2023, 49: 101764. DOI:10.1016/j.nantod.2023.101764.
[7] YANG C, SUO Z. Hydrogel ionotronics[J/OL]. Nature Reviews Materials, 2018, 3(6): 125-142. DOI:10.1038/s41578-018-0018-7.
[8] GUPTA U, QIN L, WANG Y, et al. Soft robots based on dielectric elastomer actuators: a review[J/OL]. Smart Materials and Structures, 2019, 28(10): 103002. DOI:10.1088/1361-665X/ab3a77.
[9] ROCHE E T, HORVATH M A, WAMALA I, et al. Soft robotic sleeve supports heart function[J/OL]. Science Translational Medicine, 2017, 9(373): eaaf3925. DOI:10.1126/scitranslmed.aaf3925.
[10] POLYGERINOS P, WANG Z, GALLOWAY K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J/OL]. Robotics and Autonomous Systems, 2015, 73: 135-143. DOI:10.1016/j.robot.2014.08.014.
[11] MAHMOUDI KHOMAMI A, NAJAFI F. A survey on soft lower limb cable-driven wearable robots without rigid links and joints[J/OL]. Robotics and Autonomous Systems, 2021, 144: 103846. DOI:10.1016/j.robot.2021.103846.
[12] ZHANG Y, LI P, QUAN J, et al. Progress, Challenges, and Prospects of Soft Robotics for Space Applications[J/OL]. Advanced Intelligent Systems, 2023, 5(3): 2200071. DOI:10.1002/aisy.202200071.
[13] LI G, CHEN X, ZHOU F, et al. Self-powered soft robot in the Mariana Trench[J/OL]. Nature, 2021, 591(7848): 66-71. DOI:10.1038/s41586-020-03153-z.
[14] NACLERIO N D, KARSAI A, MURRAY-COOPER M, et al. Controlling subterranean forces enables a fast, steerable, burrowing soft robot[J/OL]. Science Robotics, 2021, 6(55): eabe2922. DOI:10.1126/scirobotics.abe2922.
[15] HEGDE C, SU J, TAN J M R, et al. Sensing in Soft Robotics[J/OL]. ACS Nano, 2023, 17(16): 15277-15307. DOI:10.1021/acsnano.3c04089.
[16] ARMANINI C, BOYER F, MATHEW A T, et al. Soft Robots Modeling: A Structured Overview[J/OL]. IEEE Transactions on Robotics, 2023, 39(3): 1728-1748. DOI:10.1109/TRO.2022.3231360.
[17] SAAVEDRA FLORES E I, FRISWELL M I, XIA Y. Variable stiffness biological and bio-inspired materials[J/OL]. Journal of Intelligent Material Systems and Structures, 2013, 24(5): 529-540. DOI:10.1177/1045389X12461722.
[18] BANERJEE H, PUSALKAR N, REN H. Preliminary Design and Performance Test of Tendon-Driven Origami-Inspired Soft Peristaltic Robot[C/OL]//2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2018: 1214-1219. DOI:10.1109/ROBIO.2018.8664842.
[19] YEH C Y, CHOU S C, HUANG H W, et al. Tube-crawling soft robots driven by multistable buckling mechanics[J/OL]. Extreme Mechanics Letters, 2019, 26: 61-68. DOI:10.1016/j.eml.2018.12.004.
[20] BERNTH J E, AREZZO A, LIU H. A Novel Robotic Meshworm With Segment-Bending Anchoring for Colonoscopy[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(3): 1718-1724. DOI:10.1109/lra.2017.2678540.
[21] KASTOR N, MUKHERJEE R, COHEN E, et al. Design and Manufacturing of Tendon-Driven Soft Foam Robots[J/OL]. Robotica, 2020, 38(1): 88-105. DOI:10.1017/s0263574719000481.
[22] VIKAS V, COHEN E, GRASSI R, et al. Design and Locomotion Control of a Soft Robot Using Friction Manipulation and Motor–Tendon Actuation[J/OL]. IEEE Transactions on Robotics, 2016, 32(4): 949-959. DOI:10.1109/tro.2016.2588888.
[23] GILBERTSON M D, MCDONALD G, KORINEK G, et al. Serially Actuated Locomotion for Soft Robots in Tube-Like Environments[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(2): 1140-1147. DOI:10.1109/LRA.2017.2662060.
[24] RAFSANJANI A, ZHANG Y, LIU B, et al. Kirigami skins make a simple soft actuator crawl[J/OL]. Science Robotics, 2018, 3(15): eaar7555. DOI:10.1126/scirobotics.aar7555.
[25] ZHANG B, FAN Y, YANG P, et al. Worm-Like Soft Robot for Complicated Tubular Environments[J/OL]. Soft Robotics, 2019, 6(3): 399-413. DOI:10.1089/soro.2018.0088.
[26] TANG Y, CHI Y, SUN J, et al. Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots[J/OL]. Science Advances, 2020, 6(19): eaaz6912. DOI:10.1126/sciadv.aaz6912.
[27] DONG X, TANG C, JIANG S, et al. Increasing the Payload and Terrain Adaptivity of an Untethered Crawling Robot Via Soft-Rigid Coupled Linear Actuators[J/OL]. IEEE Robotics and Automation Letters, 2021, 6(2): 2405-2412. DOI:10.1109/LRA.2021.3061342.
[28] JIANG H, WANG Z, JIN Y, et al. Hierarchical control of soft manipulators towards unstructured interactions[J/OL]. The International Journal of Robotics Research, 2021, 40(1): 411-434. DOI:10.1177/0278364920979367.
[29] SHEPHERD R F, STOKES A A, FREAKE J, et al. Using Explosions to Power a Soft Robot[J/OL]. Angewandte Chemie International Edition, 2013, 52(10): 2892-2896. DOI:10.1002/anie.201209540.
[30] WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J/OL]. Nature, 2016, 536(7617): 451-455. DOI:10.1038/nature19100.
[31] AUBIN C A, HEISSER R H, PERETZ O, et al. Powerful, soft combustion actuators for insect-scale robots[J/OL]. Science, 2023, 381(6663): 1212-1217. DOI:10.1126/science.adg5067.
[32] GU G Y, ZHU J, ZHU L M, et al. A survey on dielectric elastomer actuators for soft robots[J/OL]. Bioinspiration & Biomimetics, 2017, 12(1): 011003. DOI:10.1088/1748-3190/12/1/011003.
[33] GUO Y, LIU L, LIU Y, et al. Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots[J/OL]. Advanced Intelligent Systems, 2021, 3(10): 2000282. DOI:10.1002/aisy.202000282.
[34] DUDUTA M, HAJIESMAILI E, ZHAO H, et al. Realizing the potential of dielectric elastomer artificial muscles[J/OL]. Proceedings of the National Academy of Sciences, 2019, 116(7): 2476-2481. DOI:10.1073/pnas.1815053116.
[35] CHEN Y, ZHAO H, MAO J, et al. Controlled flight of a microrobot powered by soft artificial muscles[J/OL]. Nature, 2019, 575(7782): 324-329. DOI:10.1038/s41586-019-1737-7.
[36] YANG Y, TSE Y A, ZHANG Y, et al. A Low-cost Inchworm-inspired Soft Robot Driven by Supercoiled Polymer Artificial Muscle[C/OL]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). 2019: 161-166. DOI:10.1109/robosoft.2019.8722784.
[37] UMEDACHI T, VIKAS V, TRIMMER B A. Softworms : the design and control of non-pneumatic, 3D-printed, deformable robots[J/OL]. Bioinspiration & Biomimetics, 2016, 11(2): 025001. DOI:10.1088/1748-3190/11/2/025001.
[38] SCALET G. Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview[J/OL]. Actuators, 2020, 9(1): 10. DOI:10.3390/act9010010.
[39] WANG W, LEE J Y, RODRIGUE H, et al. Locomotion of inchworm-inspired robot made of smart soft composite (SSC)[J/OL]. Bioinspiration & Biomimetics, 2014, 9(4): 046006. DOI:10.1088/1748-3182/9/4/046006.
[40] PHAM L N, ABBOTT J J. A Soft Robot to Navigate the Lumens of the Body Using Undulatory Locomotion Generated by a Rotating Magnetic Dipole Field[C/OL]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 1783-1788
[2020-04-08]. https://ieeexplore.ieee.org/document/8594247/. DOI:10.1109/iros.2018.8594247.
[41] KIM Y, PARADA G A, LIU S, et al. Ferromagnetic soft continuum robots[J/OL]. Science Robotics, 2019, 4(33): eaax7329. DOI:10.1126/scirobotics.aax7329.
[42] NIU H, FENG R, XIE Y, et al. MagWorm: A Biomimetic Magnet Embedded Worm-Like Soft Robot[J/OL]. Soft Robotics, 2021, 8(5): 507-518. DOI:10.1089/soro.2019.0167.
[43] SUN L, YU Y, CHEN Z, et al. Biohybrid robotics with living cell actuation[J/OL]. Chemical Society Reviews, 2020, 49(12): 4043-4069. DOI:10.1039/D0CS00120A.
[44] PARK S J, GAZZOLA M, PARK K S, et al. Phototactic guidance of a tissue-engineered soft-robotic ray[J/OL]. Science, 2016, 353(6295): 158-162. DOI:10.1126/science.aaf4292.
[45] MOUSA M A, SOLIMAN M, SALEH M A, et al. Biohybrid Soft Robots, E-Skin, and Bioimpedance Potential to Build Up Their Applications: A Review[J/OL]. IEEE Access, 2020, 8: 184524-184539. DOI:10.1109/ACCESS.2020.3030098.
[46] MARCHESE A D, ONAL C D, RUS D. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators[J/OL]. Soft Robotics, 2014, 1(1): 75-87. DOI:10.1089/soro.2013.0009.
[47] CHEN Y, CHEN C, REHMAN H U, et al. Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges[J/OL]. Molecules, 2020, 25(18): 4246. DOI:10.3390/molecules25184246.
[48] LEE Y, KOEHLER F, DILLON T, et al. Magnetically Actuated Fiber-Based Soft Robots[J/OL]. Advanced Materials, 2023, 35(38): 2301916. DOI:10.1002/adma.202301916.
[49] WEBSTER R J, JONES B A. Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review[J/OL]. The International Journal of Robotics Research, 2010, 29(13): 1661-1683. DOI:10.1177/0278364910368147.
[50] TONDU B, LOPEZ P. The McKibben muscle and its use in actuating robot‐arms showing similarities with human arm behaviour[J/OL]. Industrial Robot: An International Journal, 1997, 24(6): 432-439. DOI:10.1108/01439919710192563.
[51] KIM Y, ZHAO X. Magnetic Soft Materials and Robots[J/OL]. Chemical Reviews, 2022, 122(5): 5317-5364. DOI:10.1021/acs.chemrev.1c00481.
[52] WANG H, ZHU Z, JIN H, et al. Magnetic soft robots: Design, actuation, and function[J/OL]. Journal of Alloys and Compounds, 2022, 922: 166219. DOI:10.1016/j.jallcom.2022.166219.
[53] JONES T J, JAMBON-PUILLET E, MARTHELOT J, et al. Bubble casting soft robotics[J/OL]. Nature, 2021, 599(7884): 229-233. DOI:10.1038/s41586-021-04029-6.
[54] PREECHAYASOMBOON P, ROMBOKAS E. Negshell casting: 3D-printed structured and sacrificial cores for soft robot fabrication[J/OL]. PLOS ONE, 2020, 15(6): e0234354. DOI:10.1371/journal.pone.0234354.
[55] FAN D, YUAN X, WU W, et al. Self-shrinking soft demoulding for complex high-aspect-ratio microchannels[J/OL]. Nature Communications, 2022, 13(1): 5083. DOI:10.1038/s41467-022-32859-z.
[56] BELL M A, BECKER K P, WOOD R J. Injection Molding of Soft Robots[J/OL]. Advanced Materials Technologies, 2022, 7(1): 2100605. DOI:10.1002/admt.202100605.
[57] STANO G, PERCOCO G. Additive manufacturing aimed to soft robots fabrication: A review[J/OL]. Extreme Mechanics Letters, 2021, 42: 101079. DOI:10.1016/j.eml.2020.101079.
[58] DONG X, LUO X, ZHAO H, et al. Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applications[J/OL]. Soft Matter, 2022, 18(40): 7699-7734. DOI:10.1039/D2SM01067D.
[59] WALLIN T J, PIKUL J, SHEPHERD R F. 3D printing of soft robotic systems[J/OL]. Nature Reviews Materials, 2018, 3(6): 84-100. DOI:10.1038/s41578-018-0002-2.
[60] SACHYANI KENETH E, KAMYSHNY A, TOTARO M, et al. 3D Printing Materials for Soft Robotics[J/OL]. Advanced Materials, 2021, 33(19): 2003387. DOI:10.1002/adma.202003387.
[61] HEIDEN A, PRENINGER D, LEHNER L, et al. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators[J/OL]. Science Robotics, 2022, 7(63): eabk2119. DOI:10.1126/scirobotics.abk2119.
[62] DEL DOTTORE E, MONDINI A, ROWE N, et al. A growing soft robot with climbing plant–inspired adaptive behaviors for navigation in unstructured environments[J/OL]. Science Robotics, 2024, 9(86): eadi5908. DOI:10.1126/scirobotics.adi5908.
[63] ZHANG P, LEI I M, CHEN G, et al. Integrated 3D printing of flexible electroluminescent devices and soft robots[J/OL]. Nature Communications, 2022, 13(1): 4775. DOI:10.1038/s41467-022-32126-1.
[64] WANG Y, WILLENBACHER N. Phase-Change-Enabled, Rapid, High-Resolution Direct Ink Writing of Soft Silicone[J/OL]. Advanced Materials, 2022, 34(15): 2109240. DOI:10.1002/adma.202109240.
[65] DIGUMARTI K M, GOSDEN D, LE N H, et al. Toward Stimuli-Responsive Soft Robots with 3D Printed Self-Healing Konjac Glucomannan Gels[J/OL]. 3D Printing and Additive Manufacturing, 2022, 9(5): 425-434. DOI:10.1089/3dp.2020.0289.
[66] ANSARI M H D, IACOVACCI V, PANE S, et al. 3D Printing of Small-Scale Soft Robots with Programmable Magnetization[J/OL]. Advanced Functional Materials, 2023, 33(15): 2211918. DOI:10.1002/adfm.202211918.
[67] LI X, ZHANG P, LI Q, et al. Direct-ink-write printing of hydrogels using dilute inks[J/OL]. iScience, 2021, 24(4): 102319. DOI:10.1016/j.isci.2021.102319.
[68] LI Z, LAI Y P, DILLER E. 3D Printing of Multilayer Magnetic Miniature Soft Robots with Programmable Magnetization[J/OL]. Advanced Intelligent Systems, 2024, 6(2): 2300052. DOI:10.1002/aisy.202300052.
[69] SUN L, WAN J, DU T. Fully 3D-printed tortoise-like soft mobile robot with muti-scenario adaptability[J/OL]. Bioinspiration & Biomimetics, 2023, 18(6): 066011. DOI:10.1088/1748-3190/acfd76.
[70] PATTERSON Z J, PATEL D K, BERGBREITER S, et al. A Method for 3D Printing and Rapid Prototyping of Fieldable Untethered Soft Robots[J/OL]. Soft Robotics, 2023, 10(2): 292-300. DOI:10.1089/soro.2022.0003.
[71] WANG R, YUAN C, CHENG J, et al. Direct 4D printing of ceramics driven by hydrogel dehydration[J/OL]. Nature Communications, 2024, 15(1): 758. DOI:10.1038/s41467-024-45039-y.
[72] QIU W, HE X, FANG Z, et al. Shape-Tunable 4D Printing of LCEs via Cooling Rate Modulation: Stimulus-Free Locking of Actuated State at Room Temperature[J/OL]. ACS Applied Materials & Interfaces, 2023, 15(40): 47509-47519. DOI:10.1021/acsami.3c10210.
[73] CECCHINI L, MARIANI S, RONZAN M, et al. 4D Printing of Humidity-Driven Seed Inspired Soft Robots[J/OL]. Advanced Science, 2023, 10(9): 2205146. DOI:10.1002/advs.202205146.
[74] ZHAI F, FENG Y, LI Z, et al. 4D-printed untethered self-propelling soft robot with tactile perception: Rolling, racing, and exploring[J/OL]. Matter, 2021, 4(10): 3313-3326. DOI:10.1016/j.matt.2021.08.014.
[75] HU H, ZHANG C, PAN C, et al. Wireless Flexible Magnetic Tactile Sensor with Super-Resolution in Large-Areas[J/OL]. ACS Nano, 2022
[2022-10-14]. https://doi.org/10.1021/acsnano.2c08664. DOI:10.1021/acsnano.2c08664.
[76] ZHANG X, HU H, TANG D, et al. Magnetic flexible tactile sensor via direct ink writing[J/OL]. Sensors and Actuators A: Physical, 2021, 327: 112753. DOI:10.1016/j.sna.2021.112753.
[77] HUANG C W, WEN S C, HSIAO C H, et al. Digital Light Processing of Soft Robotic Gripper with High Toughness and Self-Healing Capability Achieved by Deep Eutectic Solvents[J/OL]. Advanced Functional Materials, n/a(n/a): 2314101. DOI:10.1002/adfm.202314101.
[78] KE X, ZHANG S, CHAI Z, et al. Flexible discretely-magnetized configurable soft robots via laser-tuned selective transfer printing of anisotropic ferromagnetic cells[J/OL]. Materials Today Physics, 2021, 17: 100313. DOI:10.1016/j.mtphys.2020.100313.
[79] XU H, WU S, LIU Y, et al. 3D nanofabricated soft microrobots with super-compliant picoforce springs as onboard sensors and actuators[J/OL]. Nature Nanotechnology, 2024: 1-10. DOI:10.1038/s41565-023-01567-0.
[80] ZHANG S, KE X, JIANG Q, et al. Fabrication and Functionality Integration Technologies for Small-Scale Soft Robots[J/OL]. Advanced Materials, 2022, 34(52): 2200671. DOI:10.1002/adma.202200671.
[81] CALISTI M, PICARDI G, LASCHI C. Fundamentals of soft robot locomotion[J/OL]. Journal of The Royal Society Interface, 2017, 14(130): 20170101. DOI:10.1098/rsif.2017.0101.
[82] GU G, ZOU J, ZHAO R, et al. Soft wall-climbing robots[J/OL]. Science Robotics, 2018, 3(25): eaat2874. DOI:10.1126/scirobotics.aat2874.
[83] YEH C Y, CHEN C Y, JUANG J Y. Soft hopping and crawling robot for in-pipe traveling[J/OL]. Extreme Mechanics Letters, 2020, 39: 100854. DOI:10.1016/j.eml.2020.100854.
[84] CHEN S, CAO Y, SARPARAST M, et al. Soft Crawling Robots: Design, Actuation, and Locomotion[J/OL]. Advanced Materials Technologies, 2020, 5(2): 1900837. DOI:10.1002/admt.201900837.
[85] FANG H, ZHANG Y, WANG K W. Origami-based earthworm-like locomotion robots[J/OL]. Bioinspiration & Biomimetics, 2017, 12(6): 065003. DOI:10.1088/1748-3190/aa8448.
[86] LOEPFE M, SCHUMACHER C M, LUSTENBERGER U B, et al. An Untethered, Jumping Roly-Poly Soft Robot Driven by Combustion[J/OL]. Soft Robotics, 2015, 2(1): 33-41. DOI:10.1089/soro.2014.0021.
[87] AHN C, LIANG X, CAI S. Bioinspired Design of Light-Powered Crawling, Squeezing, and Jumping Untethered Soft Robot[J/OL]. Advanced Materials Technologies, 2019, 4(7): 1900185. DOI:10.1002/admt.201900185.
[88] KATZSCHMANN R K, DELPRETO J, MACCURDY R, et al. Exploration of underwater life with an acoustically controlled soft robotic fish[J/OL]. Science Robotics, 2018, 3(16): eaar3449. DOI:10.1126/scirobotics.aar3449.
[89] ZHANG J, DILLER E. Untethered Miniature Soft Robots: Modeling and Design of a Millimeter-Scale Swimming Magnetic Sheet[J/OL]. Soft Robotics, 2018, 5(6): 761-776. DOI:10.1089/soro.2017.0126.
[90] WANG R, ZHANG C, ZHANG Y, et al. Soft Underwater Swimming Robots Based on Artificial Muscle[J/OL]. Advanced Materials Technologies, 2023, 8(4): 2200962. DOI:10.1002/admt.202200962.
[91] ZARROUK D, SHARF I, SHOHAM M. Conditions for Worm-Robot Locomotion in a Flexible Environment: Theory and Experiments[J/OL]. IEEE Transactions on Biomedical Engineering, 2012, 59(4): 1057-1067. DOI:10.1109/TBME.2011.2182612.
[92] ZHANG X, PAN T, HEUNG H L, et al. A Biomimetic Soft Robot for Inspecting Pipeline with Significant Diameter Variation[C/OL]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018: 7486-7491. DOI:10.1109/iros.2018.8594390.
[93] LIU X, SONG M, FANG Y, et al. Worm-Inspired Soft Robots Enable Adaptable Pipeline and Tunnel Inspection[J/OL]. Advanced Intelligent Systems, 2021, n/a(n/a): 2100128. DOI:10.1002/aisy.202100128.
[94] VERMA M S, AINLA A, YANG D, et al. A Soft Tube-Climbing Robot[J/OL]. Soft Robotics, 2018, 5(2): 133-137. DOI:10.1089/soro.2016.0078.
[95] GE J Z, CALDERÓN A A, CHANG L, et al. An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion[J/OL]. Bioinspiration & Biomimetics, 2019, 14(3): 036004. DOI:10.1088/1748-3190/aae7bb.
[96] XIE R, SU M, ZHU H, et al. A 2D Pneumatic Soft Robot with Suckers for Locomotion[C/OL]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2019: 1325-1330. DOI:10.1109/robio49542.2019.8961784.
[97] QIN L, LIANG X, HUANG H, et al. A Versatile Soft Crawling Robot with Rapid Locomotion[J/OL]. Soft Robotics, 2019, 6(4): 455-467. DOI:10.1089/soro.2018.0124.
[98] LIU B, OZKAN-AYDIN Y, GOLDMAN D I, et al. Kirigami Skin Improves Soft Earthworm Robot Anchoring and Locomotion Under Cohesive Soil[C/OL]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). 2019: 828-833. DOI:10.1109/ROBOSOFT.2019.8722821.
[99] WEN L, WEAVER J C, LAUDER G V. Biomimetic shark skin: design, fabrication and hydrodynamic function[J/OL]. Journal of Experimental Biology, 2014, 217(10): 1656-1666. DOI:10.1242/jeb.097097.
[100] WANG N, HE M, CUI Y, et al. A Soft Pneumatic Crawling Robot with Unbalanced Inflation[C/OL]//2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2020: 138-143. DOI:10.1109/aim43001.2020.9158925.
[101] QI X, SHI H, PINTO T, et al. A Novel Pneumatic Soft Snake Robot Using Traveling-Wave Locomotion in Constrained Environments[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(2): 1610-1617. DOI:10.1109/lra.2020.2969923.
[102] DRORY L H, ZARROUK D. Locomotion Dynamics of a Miniature Wave-Like Robot, Modeling and Experiments[C/OL]//2019 International Conference on Robotics and Automation (ICRA). 2019: 8422-8428. DOI:10.1109/ICRA.2019.8794015.
[103] MOONEY M. A Theory of Large Elastic Deformation[J/OL]. Journal of Applied Physics, 1940, 11(9): 582-592. DOI:10.1063/1.1712836.
[104] OGDEN R W, HILL R. Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids[J/OL]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1997, 326(1567): 565-584. DOI:10.1098/rspa.1972.0026.
[105] TRELOAR L R G. The elasticity of a network of long-chain molecules—II[J/OL]. Transactions of the Faraday Society, 1943, 39(0): 241-246. DOI:10.1039/TF9433900241.
[106] YEOH O H. Some Forms of the Strain Energy Function for Rubber[J/OL]. Rubber Chemistry and Technology, 1993, 66(5): 754-771. DOI:10.5254/1.3538343.
[107] GEORGE THURUTHEL T, ANSARI Y, FALOTICO E, et al. Control Strategies for Soft Robotic Manipulators: A Survey[J/OL]. Soft Robotics, 2018, 5(2): 149-163. DOI:10.1089/soro.2017.0007.
[108] DELLA SANTINA C, DURIEZ C, RUS D. Model-Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges[J/OL]. IEEE Control Systems Magazine, 2023, 43(3): 30-65. DOI:10.1109/MCS.2023.3253419.
[109] CAMARILLO D B, MILNE C F, CARLSON C R, et al. Mechanics Modeling of Tendon-Driven Continuum Manipulators[J/OL]. IEEE Transactions on Robotics, 2008, 24(6): 1262-1273. DOI:10.1109/TRO.2008.2002311.
[110] KATZSCHMANN R K, SANTINA C D, TOSHIMITSU Y, et al. Dynamic Motion Control of Multi-Segment Soft Robots Using Piecewise Constant Curvature Matched with an Augmented Rigid Body Model[C/OL]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). 2019: 454-461
[2024-03-29]. https://ieeexplore.ieee.org/abstract/document/8722799. DOI:10.1109/ROBOSOFT.2019.8722799.
[111] DELLA SANTINA C, BICCHI A, RUS D. On an Improved State Parametrization for Soft Robots With Piecewise Constant Curvature and Its Use in Model Based Control[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(2): 1001-1008. DOI:10.1109/LRA.2020.2967269.
[112] RAO P, PEYRON Q, BURGNER-KAHRS J. Shape Representation and Modeling of Tendon-Driven Continuum Robots Using Euler Arc Splines[J/OL]. IEEE Robotics and Automation Letters, 2022, 7(3): 8114-8121. DOI:10.1109/LRA.2022.3185377.
[113] WIESE M, RÜSTMANN K, RAATZ A. Kinematic Modeling of a Soft Pneumatic Actuator Using Cubic Hermite Splines[C/OL]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019: 7176-7182
[2024-03-29]. https://ieeexplore.ieee.org/document/8967776. DOI:10.1109/IROS40897.2019.8967776.
[114] ALBEN S. Optimizing snake locomotion in the plane[J/OL]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469(2159): 20130236. DOI:10.1098/rspa.2013.0236.
[115] HIROSE S, YAMADA H. Snake-like robots [Tutorial][J/OL]. IEEE Robotics & Automation Magazine, 2009, 16(1): 88-98. DOI:10.1109/MRA.2009.932130.
[116] RENDA F, GIORELLI M, CALISTI M, et al. Dynamic Model of a Multibending Soft Robot Arm Driven by Cables[J/OL]. IEEE Transactions on Robotics, 2014, 30(5): 1109-1122. DOI:10.1109/TRO.2014.2325992.
[117] JANABI-SHARIFI F, JALALI A, WALKER I D. Cosserat Rod-Based Dynamic Modeling of Tendon-Driven Continuum Robots: A Tutorial[J/OL]. IEEE Access, 2021, 9: 68703-68719. DOI:10.1109/ACCESS.2021.3077186.
[118] SIMO J C. A finite strain beam formulation. The three-dimensional dynamic problem. Part I[J/OL]. Computer Methods in Applied Mechanics and Engineering, 1985, 49(1): 55-70. DOI:10.1016/0045-7825(85)90050-7.
[119] XAVIER M S, FLEMING A J, YONG Y K. Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments[J/OL]. Advanced Intelligent Systems, 2021, 3(2): 2000187. DOI:10.1002/aisy.202000187.
[120] FERRENTINO P, ROELS E, BRANCART J, et al. Finite Element Analysis-Based Soft Robotic Modeling: Simulating a Soft Actuator in SOFA[J/OL]. IEEE Robotics & Automation Magazine, 2023: 2-12. DOI:10.1109/MRA.2022.3220536.
[121] B J, PANYAYUE. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation[J/OL]. Soft Robotics, 2019
[2024-03-29]. https://www.liebertpub.com/doi/10.1089/soro.2018.0082. DOI:10.1089/soro.2018.0082.
[122] TAWK C, ALICI G. Finite Element Modeling in the Design Process of 3D Printed Pneumatic Soft Actuators and Sensors[J/OL]. Robotics, 2020, 9(3): 52. DOI:10.3390/robotics9030052.
[123] MOSELEY P, FLOREZ J M, SONAR H A, et al. Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method[J/OL]. Advanced Engineering Materials, 2016, 18(6): 978-988. DOI:10.1002/adem.201500503.
[124] YANG F, RUAN Q, MAN Y, et al. Design and Optimize of a Novel Segmented Soft Pneumatic Actuator[J/OL]. IEEE Access, 2020, 8: 122304-122313. DOI:10.1109/ACCESS.2020.3006865.
[125] POLYGERINOS P, WANG Z, OVERVELDE J T B, et al. Modeling of Soft Fiber-Reinforced Bending Actuators[J/OL]. IEEE Transactions on Robotics, 2015, 31(3): 778-789. DOI:10.1109/TRO.2015.2428504.
[126] DAWOOD A B, GODABA H, ALTHOEFER K. Modelling of a Soft Sensor for Exteroception and Proprioception in a Pneumatically Actuated Soft Robot[C/OL]//ALTHOEFER K, KONSTANTINOVA J, ZHANG K. Towards Autonomous Robotic Systems. Cham: Springer International Publishing, 2019: 99-110. DOI:10.1007/978-3-030-25332-5_9.
[127] SCHEGG P, MÉNAGER E, KHAIRALLAH E, et al. SofaGym: An Open Platform for Reinforcement Learning Based on Soft Robot Simulations[J/OL]. Soft Robotics, 2023, 10(2): 410-430. DOI:10.1089/soro.2021.0123.
[128] FAURE F, DURIEZ C, DELINGETTE H, et al. SOFA: A Multi-Model Framework for Interactive Physical Simulation[M/OL]//PAYAN Y. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Berlin, Heidelberg: Springer, 2012: 283-321
[2024-03-29]. https://doi.org/10.1007/8415_2012_125. DOI:10.1007/8415_2012_125.
[129] SOFA - Simulation Open Framework Architecture[EB/OL].
[2024-03-29]. https://www.sofa-framework.org/.
[130] CHEN Z, RENDA F, GALL A L, et al. Data-Driven Methods Applied to Soft Robot Modeling and Control: A Review[J/OL]. IEEE Transactions on Automation Science and Engineering, 2024: 1-16. DOI:10.1109/TASE.2024.3377291.
[131] FANG G, TIAN Y, YANG Z X, et al. Efficient Jacobian-Based Inverse Kinematics With Sim-to-Real Transfer of Soft Robots by Learning[J/OL]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5296-5306. DOI:10.1109/TMECH.2022.3178303.
[132] HYATT P, KILLPACK M D. Real-Time Nonlinear Model Predictive Control of Robots Using a Graphics Processing Unit[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(2): 1468-1475. DOI:10.1109/LRA.2020.2965393.
[133] BAAIJ T, KLEIN HOLKENBORG M, STÖLZLE M, et al. Learning 3D shape proprioception for continuum soft robots with multiple magnetic sensors[J/OL]. Soft Matter, 2023, 19(1): 44-56. DOI:10.1039/D2SM00914E.
[134] CIANCHETTI M, RANZANI T, GERBONI G, et al. Soft Robotics Technologies to Address Shortcomings in Today’s Minimally Invasive Surgery: The STIFF-FLOP Approach[J/OL]. Soft Robotics, 2014, 1(2): 122-131. DOI:10.1089/soro.2014.0001.
[135] NARANG Y S, VLASSAK J J, HOWE R D. Mechanically Versatile Soft Machines through Laminar Jamming[J/OL]. Advanced Functional Materials, 2018, 28(17): 1707136. DOI:10.1002/adfm.201707136.
[136] WANG T, ZHANG J, LI Y, et al. Electrostatic Layer Jamming Variable Stiffness for Soft Robotics[J/OL]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 424-433. DOI:10.1109/TMECH.2019.2893480.
[137] GUO X Y, LI W B, GAO Q H, et al. Self-locking mechanism for variable stiffness rigid–soft gripper[J/OL]. Smart Materials and Structures, 2020, 29(3): 035033. DOI:10.1088/1361-665X/ab710f.
[138] ZHANG Y F, ZHANG N, HINGORANI H, et al. Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multimaterial 3D Printing[J/OL]. Advanced Functional Materials, 2019, 29(15): 1806698. DOI:10.1002/adfm.201806698.
[139] NARANG Y S, DEGIRMENCI A, VLASSAK J J, et al. Transforming the Dynamic Response of Robotic Structures and Systems Through Laminar Jamming[J/OL]. IEEE Robotics and Automation Letters, 2018, 3(2): 688-695. DOI:10.1109/LRA.2017.2779802.
[140] TONAZZINI A, MINTCHEV S, SCHUBERT B, et al. Variable Stiffness Fiber with Self-Healing Capability[J/OL]. Advanced Materials, 2016, 28(46): 10142-10148. DOI:10.1002/adma.201602580.
[141] MATTMANN M, DE MARCO C, BRIATICO F, et al. Thermoset Shape Memory Polymer Variable Stiffness 4D Robotic Catheters[J/OL]. Advanced Science, 2022, 9(1): 2103277. DOI:10.1002/advs.202103277.
[142] SHAH D S, YANG E J, YUEN M C, et al. Jamming Skins that Control System Rigidity from the Surface[J/OL]. Advanced Functional Materials, 2021, 31(1): 2006915. DOI:10.1002/adfm.202006915.
[143] WANG Y, LI L, HOFMANN D, et al. Structured fabrics with tunable mechanical properties[J/OL]. Nature, 2021, 596(7871): 238-243. DOI:10.1038/s41586-021-03698-7.
[144] WANG W, AHN S H. Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping[J/OL]. Soft Robotics, 2017, 4(4): 379-389. DOI:10.1089/soro.2016.0081.
[145] YAN J, XU Z, SHI P, et al. A Human-Inspired Soft Finger with Dual-Mode Morphing Enabled by Variable Stiffness Mechanism[J/OL]. Soft Robotics, 2022, 9(2): 399-411. DOI:10.1089/soro.2020.0153.
[146] BILODEAU R A, YUEN M C, KRAMER-BOTTIGLIO R. Addressable, Stretchable Heating Silicone Sheets[J/OL]. Advanced Materials Technologies, 2019, 4(9): 1900276. DOI:10.1002/admt.201900276.
[147] YUAN Z, WU L, XU X, et al. Soft pneumatic gripper integrated with multi-configuration and variable-stiffness functionality[J/OL]. Cognitive Computation and Systems, 2021, 3(1): 70-77. DOI:10.1049/ccs2.12009.
[148] ZHAO D, PANG B, ZHU Y, et al. A Stiffness-Switchable, Biomimetic Smart Material Enabled by Supramolecular Reconfiguration[J/OL]. Advanced Materials, 2022, 34(10): 2107857. DOI:10.1002/adma.202107857.
[149] TAKAHASHI R, SUN T L, SARUWATARI Y, et al. Creating Stiff, Tough, and Functional Hydrogel Composites with Low-Melting-Point Alloys[J/OL]. Advanced Materials, 2018, 30(16): 1706885. DOI:10.1002/adma.201706885.
[150] JIANG Y, CHEN D, LIU C, et al. Chain-Like Granular Jamming: A Novel Stiffness-Programmable Mechanism for Soft Robotics[J/OL]. Soft Robotics, 2019, 6(1): 118-132. DOI:10.1089/soro.2018.0005.
[151] BROWN E, RODENBERG N, AMEND J, et al. Universal robotic gripper based on the jamming of granular material[J/OL]. Proceedings of the National Academy of Sciences, 2010, 107(44): 18809-18814. DOI:10.1073/pnas.1003250107.
[152] JADHAV S, MAJIT M R A, SHIH B, et al. Variable Stiffness Devices Using Fiber Jamming for Application in Soft Robotics and Wearable Haptics[J/OL]. Soft Robotics, 2022, 9(1): 173-186. DOI:10.1089/soro.2019.0203.
[153] BRANCADORO M, MANTI M, GRANI F, et al. Toward a Variable Stiffness Surgical Manipulator Based on Fiber Jamming Transition[J/OL]. Frontiers in Robotics and AI, 2019, 6
[2022-04-07]. https://www.frontiersin.org/article/10.3389/frobt.2019.00012. DOI:10.3389/frobt.2019.00012.
[154] AKTAŞ B, HOWE R D. Tunable Anisotropic Stiffness with Square Fiber Jamming[C/OL]//2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). 2020: 879-884. DOI:10.1109/RoboSoft48309.2020.9116030.
[155] KIM Y J, CHENG S, KIM S, et al. A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery[J/OL]. IEEE Transactions on Robotics, 2013, 29(4): 1031-1042. DOI:10.1109/TRO.2013.2256313.
[156] PARK W, LEE D, BAE J. A Hybrid Jamming Structure Combining Granules and a Chain Structure for Robotic Applications[J/OL]. Soft Robotics, 2021
[2022-06-07]. https://www.liebertpub.com/doi/full/10.1089/soro.2020.0209. DOI:10.1089/soro.2020.0209.
[157] YANG Y, ZHANG Y, KAN Z, et al. Hybrid Jamming for Bioinspired Soft Robotic Fingers[J/OL]. Soft Robotics, 2020, 7(3): 292-308. DOI:10.1089/soro.2019.0093.
[158] BRANCADORO M, MANTI M, TOGNARELLI S, et al. Preliminary experimental study on variable stiffness structures based on fiber jamming for soft robots[C/OL]//2018 IEEE International Conference on Soft Robotics (RoboSoft). 2018: 258-263. DOI:10.1109/ROBOSOFT.2018.8404929.
[159] CARUSO F, MANTRIOTA G, AFFERRANTE L, et al. A theoretical model for multi-layer jamming systems[J/OL]. Mechanism and Machine Theory, 2022, 172: 104788. DOI:10.1016/j.mechmachtheory.2022.104788.
[160] FANG X, WEN J, CHENG L, et al. Programmable gear-based mechanical metamaterials[J/OL]. Nature Materials, 2022, 21(8): 869-876. DOI:10.1038/s41563-022-01269-3.
[161] ZHANG X, YAN J, ZHAO J. A Gas–Ribbon-Hybrid Actuated Soft Finger with Active Variable Stiffness[J/OL]. Soft Robotics, 2021
[2022-03-03]. https://www.liebertpub.com/doi/full/10.1089/soro.2020.0031. DOI:10.1089/soro.2020.0031.
[162] WANG P, GUO S, WANG X, et al. Design and Analysis of a Novel Variable Stiffness Continuum Robot With Built-in Winding-Styled Ropes[J/OL]. IEEE Robotics and Automation Letters, 2022, 7(3): 6375-6382. DOI:10.1109/LRA.2022.3171917.
[163] WANG H, TOTARO M, BECCAI L. Toward Perceptive Soft Robots: Progress and Challenges[J/OL]. Advanced Science, 2018, 5(9): 1800541. DOI:10.1002/advs.201800541.
[164] KIM T, LEE S, HONG T, et al. Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces[J/OL]. Science Robotics, 2020, 5(49): eabc6878. DOI:10.1126/scirobotics.abc6878.
[165] LU D, LIU T, MENG X, et al. Wearable Triboelectric Visual Sensors for Tactile Perception[J/OL]. Advanced Materials, 2023, 35(7): 2209117. DOI:10.1002/adma.202209117.
[166] WAN Y, QIU Z, HONG Y, et al. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures[J/OL]. Advanced Electronic Materials, 2018, 4(4): 1700586. DOI:10.1002/aelm.201700586.
[167] PAN M, YUAN C, LIANG X, et al. Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines[J/OL]. iScience, 2020, 23(11): 101682. DOI:10.1016/j.isci.2020.101682.
[168] WANG H, DE BOER G, KOW J, et al. Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors[J/OL]. Sensors, 2016, 16(9): 1356. DOI:10.3390/s16091356.
[169] BRUDER D, FU X, GILLESPIE R B, et al. Data-Driven Control of Soft Robots Using Koopman Operator Theory[J/OL]. IEEE Transactions on Robotics, 2021, 37(3): 948-961. DOI:10.1109/TRO.2020.3038693.
[170] THURUTHEL T G, FALOTICO E, RENDA F, et al. Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators[J/OL]. IEEE Transactions on Robotics, 2019, 35(1): 124-134. DOI:10.1109/TRO.2018.2878318.
[171] DELLA SANTINA C, KATZSCHMANN R K, BICCHI A, et al. Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment[J/OL]. The International Journal of Robotics Research, 2020, 39(4): 490-513. DOI:10.1177/0278364919897292.
[172] ZHAO H, O’BRIEN K, LI S, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J/OL]. Science Robotics, 2016, 1(1): eaai7529. DOI:10.1126/scirobotics.aai7529.
[173] GALLOWAY K C, CHEN Y, TEMPLETON E, et al. Fiber Optic Shape Sensing for Soft Robotics[J/OL]. Soft Robotics, 2019, 6(5): 671-684. DOI:10.1089/soro.2018.0131.
[174] WANG X, LI Z, SU L. Soft Optical Waveguides for Biomedical Applications, Wearable Devices, and Soft Robotics: A Review[J/OL]. Advanced Intelligent Systems, 2024, 6(1): 2300482. DOI:10.1002/aisy.202300482.
[175] MASSARI L, SCHENA E, MASSARONI C, et al. A Machine-Learning-Based Approach to Solve Both Contact Location and Force in Soft Material Tactile Sensors[J/OL]. Soft Robotics, 2020, 7(4): 409-420. DOI:10.1089/soro.2018.0172.
[176] GEORGOPOULOU A, CLEMENS F. Pellet-based fused deposition modeling for the development of soft compliant robotic grippers with integrated sensing elements[J/OL]. Flexible and Printed Electronics, 2022, 7(2): 025010. DOI:10.1088/2058-8585/ac6f34.
[177] SHIH B, CHRISTIANSON C, GILLESPIE K, et al. Design Considerations for 3D Printed, Soft, Multimaterial Resistive Sensors for Soft Robotics[J/OL]. Frontiers in Robotics and AI, 2019, 6
[2024-04-01]. https://www.frontiersin.org/articles/10.3389/frobt.2019.00030. DOI:10.3389/frobt.2019.00030.
[178] HUANG X, LIU L, LIN Y H, et al. High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures[J/OL]. Science Advances, 2023, 9(34): eadh9799. DOI:10.1126/sciadv.adh9799.
[179] ALSHAWABKEH M, ALAGI H, NAVARRO S E, et al. Highly Stretchable Additively Manufactured Capacitive Proximity and Tactile Sensors for Soft Robotic Systems[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-10. DOI:10.1109/TIM.2023.3250232.
[180] LIU Z, LI S, ZHU J, et al. Fabrication of β-Phase-Enriched PVDF Sheets for Self-Powered Piezoelectric Sensing[J/OL]. ACS Applied Materials & Interfaces, 2022, 14(9): 11854-11863. DOI:10.1021/acsami.2c01611.
[181] CAO C, ZHOU P, WANG J, et al. Enhanced energy harvesting performance via interfacial polarization in ternary piezoelectric composites for self-powered flexible pressure sensing application[J/OL]. Ceramics International, 2023, 49(13): 22377-22385. DOI:10.1016/j.ceramint.2023.04.067.
[182] MA B, XU C, CUI L, et al. Magnetic Printing of Liquid Metal for Perceptive Soft Actuators with Embodied Intelligence[J/OL]. ACS Applied Materials & Interfaces, 2021, 13(4): 5574-5582. DOI:10.1021/acsami.0c20418.
[183] MITCHELL M D, HURLEY F E, ONAL C D. Fast Probabilistic 3-D Curvature Proprioception with a Magnetic Soft Sensor[C/OL]//2021 IEEE 17th International Conference on Automation Science and Engineering (CASE). 2021: 215-220
[2024-04-05]. https://ieeexplore.ieee.org/abstract/document/9551572. DOI:10.1109/CASE49439.2021.9551572.
[184] BECKER C. A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays[J/OL]. Nature Communications, 2022: 11. DOI:10.1038/s41467-022-29802-7.
[185] LU Z, GAO X, YU H. GTac: A Biomimetic Tactile Sensor With Skin-Like Heterogeneous Force Feedback for Robots[J/OL]. IEEE Sensors Journal, 2022, 22(14): 14491-14500. DOI:10.1109/JSEN.2022.3181128.
[186] REHAN M, SALEEM M M, TIWANA M I, et al. A Soft Multi-Axis High Force Range Magnetic Tactile Sensor for Force Feedback in Robotic Surgical Systems[J/OL]. Sensors, 2022, 22(9): 3500. DOI:10.3390/s22093500.
[187] TOMO T P, SCHMITZ A, WONG W K, et al. Covering a Robot Fingertip With uSkin: A Soft Electronic Skin With Distributed 3-Axis Force Sensitive Elements for Robot Hands[J/OL]. IEEE Robotics and Automation Letters, 2017, 3(1): 124-131. DOI:10.1109/LRA.2017.2734965.
[188] KAWASETSU T, HORII T, ISHIHARA H, et al. Mexican-Hat-Like Response in a Flexible Tactile Sensor Using a Magnetorheological Elastomer[J/OL]. Sensors, 2018, 18(2): 587. DOI:10.3390/s18020587.
[189] YAN Y, HU Z, YANG Z, et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling[J/OL]. Science Robotics, 2021, 6(51): eabc8801. DOI:10.1126/scirobotics.abc8801.
[190] LI Y, CHEN Z, ZHENG G, et al. A magnetized microneedle-array based flexible triboelectric-electromagnetic hybrid generator for human motion monitoring[J/OL]. Nano Energy, 2020, 69: 104415. DOI:10.1016/j.nanoen.2019.104415.
[191] ALFADHEL A, KOSEL J. Magnetic Nanocomposite Cilia Tactile Sensor[J/OL]. Advanced Materials, 2015, 27(47): 7888-7892. DOI:10.1002/adma.201504015.
[192] GE J, WANG X, DRACK M, et al. A bimodal soft electronic skin for tactile and touchless interaction in real time[J/OL]. Nature Communications, 2019, 10(1): 4405. DOI:10.1038/s41467-019-12303-5.
[193] HELLEBREKERS T, KROEMER O, MAJIDI C. Soft Magnetic Skin for Continuous Deformation Sensing[J/OL]. Advanced Intelligent Systems, 2019, 1(4): 1900025. DOI:10.1002/aisy.201900025.
[194] HELLEBREKERS T, CHANG N, CHIN K, et al. Soft Magnetic Tactile Skin for Continuous Force and Location Estimation Using Neural Networks[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(3): 3892-3898. DOI:10.1109/LRA.2020.2983707.
[195] ALFADHEL A, KHAN M A, CARDOSO DE FREITAS S, et al. Magnetic Tactile Sensor for Braille Reading[J/OL]. IEEE Sensors Journal, 2016, 16(24): 8700-8705. DOI:10.1109/JSEN.2016.2558599.
[196] RIBEIRO P, KHAN M A, ALFADHEL A, et al. Bioinspired Ciliary Force Sensor for Robotic Platforms[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(2): 971-976. DOI:10.1109/LRA.2017.2656249.
[197] ZHANG X, AI J, MA Z, et al. Magnetoelectric soft composites with a self-powered tactile sensing capacity[J/OL]. Nano Energy, 2020, 69: 104391. DOI:10.1016/j.nanoen.2019.104391.
[198] XIE S, ZHANG Y, JIN M, et al. High Sensitivity and Wide Range Soft Magnetic Tactile Sensor Based on Electromagnetic Induction[J/OL]. IEEE Sensors Journal, 2021, 21(3): 2757-2766. DOI:10.1109/JSEN.2020.3025830.
[199] MIRZANEJAD H, AGHELI M. Soft force sensor made of magnetic powder blended with silicone rubber[J/OL]. Sensors and Actuators A: Physical, 2019, 293: 108-118. DOI:10.1016/j.sna.2019.04.021.
[200] YANG X, LI B, YANG L, et al. Robust Estimation of Contact Force and Location for Magnetic-Field-Based Soft Tactile Sensor Considering Magnetic Source Inconsistency[J/OL]. Sensors, 2021, 21(16): 5388. DOI:10.3390/s21165388.
[201] YAN Y, SHEN Y, SONG C, et al. Tactile Super-Resolution Model for Soft Magnetic Skin[J/OL]. IEEE Robotics and Automation Letters, 2022, 7(2): 2589-2596. DOI:10.1109/LRA.2022.3141449.
[202] FANG B, XIA Z, SUN F, et al. Soft Magnetic Fingertip With Particle Jamming Structure for Tactile Perception and Grasping[J/OL]. IEEE Transactions on Industrial Electronics, 2022: 1-10. DOI:10.1109/TIE.2022.3201305.
[203] SIMO J C, VU-QUOC L. On the dynamics in space of rods undergoing large motions - A geometrically exact approach[J/OL]. Computer Methods in Applied Mechanics and Engineering, 1988, 66(2): 125-161. DOI:10.1016/0045-7825(88)90073-4.
[204] TAYLOR G I. Analysis of the swimming of long and narrow animals[J/OL]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1997, 214(1117): 158-183. DOI:10.1098/rspa.1952.0159.
[205] LEE J Y, SEO Y S, PARK C, et al. Shape-Adaptive Universal Soft Parallel Gripper for Delicate Grasping Using a Stiffness-Variable Composite Structure[J/OL]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12441-12451. DOI:10.1109/TIE.2020.3044811.
[206] PAN Y, LIU X J, ZHAO H. Stretchable and conformable variable stiffness device through an electrorheological fluid[J/OL]. Soft Matter, 2022
[2022-11-20]. https://pubs.rsc.org/en/content/articlelanding/2022/sm/d2sm01362b. DOI:10.1039/D2SM01362B.
[207] CHAUTEMS C, TONAZZINI A, FLOREANO D, et al. A variable stiffness catheter controlled with an external magnetic field[C/OL]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017: 181-186. DOI:10.1109/IROS.2017.8202155.
[208] PARK S, BAUGH N, SHAH H K, et al. Ultrastretchable Elastic Shape Memory Fibers with Electrical Conductivity[J/OL]. Advanced Science, 2019, 6(21): 1901579. DOI:10.1002/advs.201901579.
[209] HOANG T T, PHAN P T, THAI M T, et al. Bio-Inspired Conformable and Helical Soft Fabric Gripper with Variable Stiffness and Touch Sensing[J/OL]. Advanced Materials Technologies, 2020, 5(12): 2000724. DOI:10.1002/admt.202000724.
[210] HOANG T T, QUEK J J S, THAI M T, et al. Soft robotic fabric gripper with gecko adhesion and variable stiffness[J/OL]. Sensors and Actuators A: Physical, 2021, 323: 112673. DOI:10.1016/j.sna.2021.112673.
[211] BUCKNER T L, WHITE E L, YUEN M C, et al. A move-and-hold pneumatic actuator enabled by self-softening variable stiffness materials[C/OL]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017: 3728-3733. DOI:10.1109/IROS.2017.8206221.
[212] HINES L, ARABAGI V, SITTI M. Shape Memory Polymer-Based Flexure Stiffness Control in a Miniature Flapping-Wing Robot[J/OL]. IEEE Transactions on Robotics, 2012, 28(4): 987-990. DOI:10.1109/TRO.2012.2197313.
[213] LI Y, WANG B, LI Y, et al. Design and Output Characteristics of Magnetostrictive Tactile Sensor for Detecting Force and Stiffness of Manipulated Objects[J/OL]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 1219-1225. DOI:10.1109/TII.2018.2862912.
[214] 张三慧. 大学物理学: 力学、电磁学[M]. 清华大学出版社, 2009.
[215] BASHEER I A, HAJMEER M. Artificial neural networks: fundamentals, computing, design, and application[J/OL]. Journal of Microbiological Methods, 2000, 43(1): 3-31. DOI:10.1016/S0167-7012(00)00201-3.
[216] MAO A, MOHRI M, ZHONG Y. Cross-Entropy Loss Functions: Theoretical Analysis and Applications[C/OL]//Proceedings of the 40th International Conference on Machine Learning. PMLR, 2023: 23803-23828
[2024-03-29]. https://proceedings.mlr.press/v202/mao23b.html.
[217] AMARI S ichi. Backpropagation and stochastic gradient descent method[J/OL]. Neurocomputing, 1993, 5(4): 185-196. DOI:10.1016/0925-2312(93)90006-O.
[218] ZOU F, SHEN L, JIE Z, et al. A Sufficient Condition for Convergences of Adam and RMSProp[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 11127-11135
[2024-03-29]. https://openaccess.thecvf.com/content_CVPR_2019/html/Zou_A_Sufficient_Condition_for_Convergences_of_Adam_and_RMSProp_CVPR_2019_paper.html.
[219] KINGMA D P, BA J. Adam: A Method for Stochastic Optimization[A/OL]. arXiv, 2017
[2024-03-29]. http://arxiv.org/abs/1412.6980. DOI:10.48550/arXiv.1412.6980.
[220] PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[J/OL]. 2017
[2024-03-29]. https://openreview.net/forum?id=BJJsrmfCZ.
[221] KETKAR N, MOOLAYIL J. Introduction to PyTorch[M/OL]//KETKAR N, MOOLAYIL J. Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch. Berkeley, CA: Apress, 2021: 27-91
[2024-03-29]. https://doi.org/10.1007/978-1-4842-5364-9_2. DOI:10.1007/978-1-4842-5364-9_2.
[222] PASZKE A, GROSS S, MASSA F, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library[C/OL]//Advances in Neural Information Processing Systems: Vol. 32. Curran Associates, Inc., 2019
[2024-03-29]. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.
[223] LAI W M, RUBIN D, KREMPL E. Introduction to Continuum Mechanics[M]. Butterworth-Heinemann, 2009.
[224] GURTIN M E. An Introduction to Continuum Mechanics[M]. Academic Press, 1982.
修改评论