[1] HARTWIG J F. Carbon-heteroatom bond formation catalysed by organometallic complexes[J]. Nature, 2008, 455(7211): 314-322.
[2] CUI Y-M, LIN Y, XU L-W. Catalytic synthesis of chiral organoheteroatom compounds of silicon, phosphorus, and sulfur via asymmetric transition metal-catalyzed C–H functionalization[J]. Coordination Chemistry Reviews, 2017, 330: 37-52.
[3] BROWN D G, BOSTROM J. Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone?[J]. Journal of Medicinal Chemistry, 2016, 59(10): 4443-4458.
[4] MIYAURA N, BUCHWALD S. Cross-coupling reactions: a practical guide[M]. Germany: Springer, 2002.
[5] BUSKES M J, BLANCO M J. Impact of cross-coupling reactions in drug discovery and development[J]. Molecules, 2020, 25(15)
[6] JOHANSSON SEECHURN C C, KITCHING M O, COLACOT T J, et al. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize[J]. Angewandte Chemie International Edition, 2012, 51(21): 5062-5085.
[7] BHAT V, WELIN E R, GUO X, et al. Advances in stereoconvergent catalysis from 2005 to 2015: Transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations[J]. Chemical Reviews, 2017, 117(5): 4528-4561.
[8] CHERNEY A H, KADUNCE N T, REISMAN S E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C-C bonds[J]. Chemical Reviews, 2015, 115(17): 9587-9652.
[9] DONG X-Y, LI Z-L, GU Q-S, et al. Ligand development for copper-catalyzed enantioconvergent radical cross-coupling of racemic alkyl halides[J]. Journal of the American Chemical Society, 2022, 144(38): 17319-17329.
[10] FRISCH A C, BELLER M. Catalysts for cross-coupling reactions with non-activated alkyl halides[J]. Angewandte Chemie International Edition, 2005, 44(5): 674-688.
[11] KAMBE N, IWASAKI T, TERAO J. Pd-catalyzed cross-coupling reactions of alkyl halides[J]. Chemical Society Reviews, 2011, 40(10): 4937-4947.
[12] RUDOLPH A, LAUTENS M. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions[J]. Angewandte Chemie International Edition, 2009, 48(15): 2656-2670.
[13] FU G C. Transition-metal catalysis of nucleophilic substitution reactions: A radical alternative to SN1 and SN2 Processes[J]. ACS Central Science, 2017, 3(7): 692-700.
[14] MAO J, LIU F, WANG M, et al. Cobalt–bisoxazoline-catalyzed asymmetric Kumada cross-coupling of racemic alpha-bromo esters with aryl Grignard reagents[J]. Journal of the American Chemical Society, 2014, 136(50): 17662-17668.
[15] JIN M, ADAK L, NAKAMURA M. Iron-catalyzed enantioselective cross-coupling reactions of α-chloroesters with aryl grignard reagents[J]. Journal of the American Chemical Society, 2015, 137(22): 7128-7134.
[16] CHOI J, FU G C. Transition metal-catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry[J]. Science, 2017, 356(6334)
[17] HUANG C X, WAN Z L, ZHU A P, et al. Copper catalyzed enantioconvergent nucleophilic substitutions[J]. Chinese Journal of Chemistry, 2024, 42: 1161-1174.
[18] KORCH K M, WATSON D A. Cross-coupling of heteroatomic electrophiles[J]. Chemical Reviews, 2019, 119(13): 8192-8228.
[19] SAMBIAGIO C, MARSDEN S P, BLACKER A J, et al. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development[J]. Chemical Society Reviews, 2014, 43(10): 3525-3550.
[20] TORRES G M, LIU Y, ARNDTSEN B A. A dual light-driven palladium catalyst: Breaking the barriers in carbonylation reactions[J]. Science, 2020, 368(6488): 318-323.
[21] KOHL S W, WEINER L, SCHWARTSBURD L, et al. Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex[J]. Science, 2009, 324(5923): 74-77.
[22] TASKER S Z, STANDLEY E A, JAMISON T F. Recent advances in homogeneous nickel catalysis[J]. Nature, 2014, 509(7500): 299-309.
[23] SHU T, COSSY J. Enantioselective cross-couplings between halide derivatives and organometallics by using iron and cobalt catalysts: Formation of C–C bonds[J]. Chemistry-A European Journal, 2021, 27(43): 11021-11029.
[24] YUS M, NAJERA C, FOUBELO F, et al. Metal-catalyzed enantioconvergent transformations[J]. Chemical Reviews, 2023, 123(20): 11817-11893.
[25] ANILKUMAR G, SARANYA S. Copper catalysis in organic synthesis[M]. Weinheim: Wiley-VCH, 2020.
[26] WANG D, ZHU N, CHEN P, et al. Enantioselective decarboxylative cyanation employing cooperative photoredox catalysis and copper catalysis[J]. Journal of the American Chemical Society, 2017, 139(44): 15632-15635.
[27] CHEN H W, LU F D, CHENG Y, et al. Asymmetric deoxygenative cyanation of benzyl alcohols enabled by synergistic photoredox and copper catalysis[J]. Chinese Journal of Chemistry, 2020, 38(12): 1671-1675.
[28] LU F-D, LIU D, ZHU L, et al. Asymmetric propargylic radical cyanation enabled by dual organophotoredox and copper catalysis[J]. Journal of the American Chemical Society, 2019, 141(15): 6167-6172.
[29] DONG X-Y, ZHANG Y-F, MA C-L, et al. A general asymmetric copper-catalysed Sonogashira C(sp3)-C(sp) coupling[J]. Nature Chemistry, 2019, 11(12): 1158-1166.
[30] SLADOJEVICH F, TRABOCCHI A, GUARNA A, et al. A new family of cinchona-derived amino phosphine precatalysts: application to the highly enantio- and diastereoselective silver-catalyzed isocyanoacetate aldol reaction[J]. Journal of the American Chemical Society, 2011, 133(6): 1710-1713.
[31] XIA H-D, LI Z-L, GU Q-S, et al. Photoinduced copper-catalyzed asymmetric decarboxylative alkynylation with terminal alkynes[J]. Angewandte Chemie International Edition, 2020, 59(39): 16926-16932.
[32] WANG Z, YIN H, FU G C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins[J]. Nature, 2018, 563(7731): 379-383.
[33] WANG Z, YANG Z-P, FU G C. Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides[J]. Nature Chemistry, 2021, 13(3): 236-242.
[34] WANG F-L, YANG C-J, LIU J-R, et al. Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)-C(sp) cross-coupling of tertiary electrophiles with alkynes[J]. Nature Chemistry, 2022, 14(8): 949-957.
[35] MO X, CHEN B, ZHANG G. Copper-catalyzed enantioselective Sonogashira type coupling of alkynes with α-bromoamides[J]. Angewandte Chemie International Edition, 2020, 59(33): 13998-14002.
[36] GUO R, SANG J, XIAO H, et al. Development of novel phosphino‐oxazoline ligands and their application in asymmetric alkynlylation of benzylic halides[J]. Chinese Journal of Chemistry, 2022, 40(11): 1337-1345.
[37] LI J, NING L, TAN Q, et al. Asymmetric Sonogashira C(sp3)–C(sp) bond coupling enabled by a copper(I) complex of a new guanidine-hybrid ligand[J]. Organic Chemistry Frontiers, 2022, 9(22): 6312-6318.
[38] HUANG W, WAN X, SHEN Q. Enantioselective construction of trifluoromethoxylated stereogenic centers by a nickel-catalyzed asymmetric Suzuki-Miyaura coupling of secondary benzyl bromides[J]. Angewandte Chemie International Edition, 2017, 56(39): 11986-11989.
[39] HUANG W, HU M, WAN X, et al. Facilitating the transmetalation step with aryl-zincates in nickel-catalyzed enantioselective arylation of secondary benzylic halides[J]. Nature Communications, 2019, 10(1): 2963.
[40] WU L, YANG G, ZHANG W. Ni-catalyzed enantioconvergent coupling of epoxides with alkenylboronic acids: Construction of oxindoles bearing quaternary carbons[J]. CCS Chemistry, 2020, 2(2): 623-631.
[41] TYROL C C, YONE N S, GALLIN C F, et al. Iron-catalysed enantioconvergent Suzuki-Miyaura cross-coupling to afford enantioenriched 1,1-diarylalkanes[J]. Chemical Communications, 2020, 56(93): 14661-14664.
[42] JIANG S-P, DONG X-Y, GU Q-S, et al. Copper-catalyzed enantioconvergent radical Suzuki-Miyaura C(sp3)–C(sp2) cross-coupling[J]. Journal of the American Chemical Society, 2020, 142(46): 19652-19659.
[43] WANG P-F, YU J, GUO K-X, et al. Design of hemilabile N,N,N-ligands in copper-catalyzed enantioconvergent radical cross-coupling of benzyl/propargyl halides with alkenylboronate esters[J]. Journal of the American Chemical Society, 2022, 144(14): 6442-6452.
[44] WANG F-L, LIU L, YANG C-J, et al. Synthesis of α-quaternary β-lactams via copper-catalyzed enantioconvergent radical C(sp3)-C(sp2) cross-coupling with organoboronate esters[J]. Angewandte Chemie International Edition, 2023, 62(2): e202214709.
[45] SU X-L, YE L, CHEN J-J, et al. Copper-catalyzed enantioconvergent cross-coupling of racemic alkyl bromides with azole C(sp2)-H bonds[J]. Angewandte Chemie International Edition, 2021, 60(1): 380-384.
[46] LI C, CHEN B, MA X, et al. Light‐promoted copper‐catalyzed enantioselective alkylation of azoles[J]. Angewandte Chemie International Edition, 2020, 60(4): 2130-2134.
[47] CAVEDON C, SEEBERGER P H, PIEBER B. Photochemical strategies for carbon–heteroatom bond formation[J]. European Journal of Organic Chemistry, 2019, 2020(10): 1379-1392.
[48] NUGENT T C. Chiral amine synthesis: methods, developments and applications[M]. Weinheim: WILEY-VCH, 2010.
[49] BISSEMBER A C, LUNDGREN R J, CREUTZ S E, et al. Transition-metal-catalyzed alkylations of amines with alkyl halides: photoinduced, copper-catalyzed couplings of carbazoles[J]. Angewandte Chemie International Edition, 2013, 52(19): 5129-5133.
[50] KAINZ Q M, MATIER C D, BARTOSZEWICZ A, et al. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light[J]. Science, 2016, 351(6274): 681-684.
[51] LEE H, AHN J M, OYALA P H, et al. Investigation of the C-N bond-forming step in a photoinduced, copper-catalyzed enantioconvergent N-alkylation: Characterization and application of a stabilized organic radical as a mechanistic probe[J]. Journal of the American Chemical Society, 2022, 144(9): 4114-4123.
[52] CHEN C, PETERS J C, FU G C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity[J]. Nature, 2021, 596(7871): 250-256.
[53] CHO H, SUEMATSU H, OYALA P H, et al. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: Synthesis and mechanism[J]. Journal of the American Chemical Society, 2022, 144(10): 4550-4558.
[54] ZHANG Y-F, DONG X-Y, CHENG J-T, et al. Enantioconvergent Cu-catalyzed radical C–N coupling of racemic secondary alkyl halides to access α-chiral primary amines[J]. Journal of the American Chemical Society, 2021, 143(37): 15413-15419.
[55] ZHANG Y-F, WANG J-H, YANG N-Y, et al. Copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling: Access to α,α-disubstituted amino acids[J]. Angewandte Chemie International Edition, 2023, 62(27): e202302983.
[56] CHEN J-J, ZHANG J-Y, FANG J-H, et al. Copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions[J]. Journal of the American Chemical Society, 2023, 145(27): 14686-14696.
[57] CHEN J-J, FANG J-H, DU X-Y, et al. Enantioconvergent Cu-catalysed N-alkylation of aliphatic amines[J]. Nature, 2023, 618(7964): 294-300.
[58] CHEN C, FU G C. Copper-catalysed enantioconvergent alkylation of oxygen nucleophiles[J]. Nature, 2023, 618(7964): 301-307.
[59] XU X, PENG L, CHANG X, et al. Ni/chiral sodium carboxylate dual catalyzed asymmetric O-propargylation[J]. Journal of the American Chemical Society, 2021, 143(49): 21048-21055.
[60] LI R-Z, LIU D-Q, NIU D. Asymmetric O-propargylation of secondary aliphatic alcohols[J]. Nature Catalysis, 2020, 3(8): 672-680.
[61] NAKAJIMA K, SHIBATA M, NISHIBAYASHI Y. Copper-catalyzed enantioselective propargylic etherification of propargylic esters with alcohols[J]. Journal of the American Chemical Society, 2015, 137(7): 2472-2475.
[62] LI R-Z, TANG H, WAN L, et al. Site-divergent delivery of terminal propargyls to carbohydrates by synergistic catalysis[J]. Chem, 2017, 3(5): 834-845.
[63] CHAUHAN P, MAHAJAN S, ENDERS D. Organocatalytic carbon-sulfur bond-forming reactions[J]. Chemical Reviews, 2014, 114(18): 8807-8864.
[64] ZHANG X, TAN C-H. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers[J]. Chem, 2021, 7(6): 1451-1486.
[65] KIKUCHI J, TERADA M. Enantioconvergent substitution reactions of racemic electrophiles by organocatalysis[J]. Chemistry–A European Journal, 2021, 27(40): 10215-10225.
[66] TIAN Y, LI X T, LIU J R, et al. A general copper-catalysed enantioconvergent C(sp(3))-S cross-coupling via biomimetic radical homolytic substitution[J]. Nature Chemistry, 2024, 16(3): 466-475.
[67] DENG Q-H, MELEN R L, GADE L H. Anionic chiral tridentate N-donor pincer ligands in asymmetric catalysis[J]. Accounts of Chemical Research, 2014, 47(10): 3162-3173.
[68] ZHANG W, TIAN Y, LIU X-D, et al. Copper-catalyzed enantioselective C(sp3)-SCF3 coupling of carbon-centered benzyl radicals with (Me4N)SCF3[J]. Angewandte Chemie International Edition, 2024: e202319850.
[69] SANDFORD C, AGGARWAL V K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters[J]. Chemical Communications, 2017, 53(40): 5481-5494.
[70] DUDNIK A S, FU G C. Nickel-catalyzed coupling reactions of alkyl electrophiles, including unactivated tertiary halides, to generate carbon-boron bonds[J]. Journal of the American Chemical Society, 2012, 134(25): 10693-10697.
[71] YANG C-T, ZHANG Z-Q, TAJUDDIN H, et al. Alkylboronic esters from copper-catalyzed borylation of primary and secondary alkyl halides and pseudohalides[J]. Angewandte Chemie International Edition, 2012, 51(2): 528-532.
[72] ITO H, KUBOTA K. Copper(I)-catalyzed boryl substitution of unactivated alkyl halides[J]. Organic Letters, 2012, 14(3): 890-893.
[73] WANG Z, BACHMAN S, DUDNIK A S, et al. Nickel-catalyzed enantioconvergent borylation of racemic secondary benzylic electrophiles[J]. Angewandte Chemie International Edition, 2018, 57(44): 14529-14532.
[74] BELETSKAYA I, MOBERG C. Element-element additions to unsaturated carbon-carbon bonds catalyzed by transition metal complexes[J]. Chemical Reviews, 2006, 106(6): 2320-2354.
[75] WALDMAN A J, NG T L, WANG P, et al. Heteroatom-heteroatom bond formation in natural product biosynthesis[J]. Chemical Reviews, 2017, 117(8): 5784-5863.
[76] ERTL P, ALTMANN E, MCKENNA J M. The most common functional groups in bioactive molecules and how their popularity has evolved over time[J]. Journal of Medicinal Chemistry, 2020, 63(15): 8408-8418.
[77] MELEN R L. Frontiers in molecular p-block chemistry: From structure to reactivity[J]. Science, 2019, 363(6426): 479-484.
[78] LEITAO E M, JURCA T, MANNERS I. Catalysis in service of main group chemistry offers a versatile approach to p-block molecules and materials[J]. Nature Chemistry, 2013, 5(10): 817-829.
[79] PENG K, DONG Z B. Recent advances in sulfur‐centered S–X (X = N, P, O) bond formation catalyzed by transition metals[J]. European Journal of Organic Chemistry, 2020, 2020(34): 5488-5495.
[80] MAMPUYS P, MCELROY C R, CLARK J H, et al. Thiosulfonates as emerging reactants: Synthesis and applications[J]. Advanced Synthesis & Catalysis, 2019, 362(1): 3-64.
[81] MULINA O M, ILOVAISKY A I, TERENT'EV A O. Oxidative coupling with S–N bond formation[J]. European Journal of Organic Chemistry, 2018, 2018(34): 4648-4672.
[82] BAI J, CUI X, WANG H, et al. Copper-catalyzed reductive coupling of aryl sulfonyl chlorides with H-phosphonates leading to S-aryl phosphorothioates[J]. Chemical Communications, 2014, 50(64): 8860-8863.
[83] LI Y-B, TIAN H, ZHANG S, et al. Copper(I)-catalyzed asymmetric synthesis of P-chiral aminophosphinites[J]. Angewandte Chemie International Edition, 2022, 61(13): e202117760.
[84] CHENG Y-F, YU Z-L, TIAN Y, et al. Cu-catalysed enantioselective radical heteroatomic S-O cross-coupling[J]. Nature Chemistry, 2023, 15(3): 395-404.
[85] GUARINO V R, KARUNARATNE V, STELLA V J. Sulfenamides as prodrugs of NH-acidic compounds: a new prodrug option for the amide bond[J]. Bioorganic & Medicinal Chemistry Letters 2007, 17(17): 4910-4913.
[86] GREENWOOD N S, CHAMPLIN A T, ELLMAN J A. Catalytic enantioselective sulfur alkylation of sulfenamides for the asymmetric synthesis of sulfoximines[J]. Journal of the American Chemical Society, 2022, 144(39): 17808-17814.
[87] ZHANG X-S, ZHANG X-H. Mild synthesis of N-acylsulfenamides from arylamides and disulfides[J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2016, 191(1): 89-94.
[88] MONTCHAMP J-L. Phosphorus chemistry I: asymmetric synthesis and bioactive compounds[M]. Switzerland: Springer, 2015.
[89] TANG W, ZHANG X. New chiral phosphorus ligands for enantioselective hydrogenation[J]. Chemical Reviews, 2003, 103(8): 3029-3070.
[90] TEICHERT J F, FERINGA B L. Phosphoramidites: privileged ligands in asymmetric catalysis[J]. Angewandte Chemie International Edition, 2010, 49(14): 2486-2528.
[91] XIE J H, ZHU S F, ZHOU Q L. Transition metal-catalyzed enantioselective hydrogenation of enamines and imines[J]. Chemical Reviews, 2011, 111(3): 1713-1760.
[92] FERNANDEZ-PEREZ H, ETAYO P, PANOSSIAN A, et al. Phosphine-phosphinite and phosphine-phosphite ligands: preparation and applications in asymmetric catalysis[J]. Chemical Reviews, 2011, 111(3): 2119-2176.
[93] NI H, CHAN W-L, LU Y. Phosphine-catalyzed asymmetric organic reactions[J]. Chemical Reviews, 2018, 118(18): 9344-9411.
[94] GUO H, FAN Y C, SUN Z, et al. Phosphine Organocatalysis[J]. Chemical Reviews, 2018, 118(20): 10049-10293.
[95] XU G, SENANAYAKE C H, TANG W. P-Chiral phosphorus ligands based on a 2,3-dihydrobenzo[d]
[1,3]oxaphosphole motif for asymmetric catalysis[J]. Accounts of Chemical Research, 2019, 52(4): 1101-1112.
[96] KURZ T, SCHLUTER K, KAULA U, et al. Synthesis and antimalarial activity of chain substituted pivaloyloxymethyl ester analogues of Fosmidomycin and FR900098[J]. Bioorganic & Medicinal Chemistry, 2006, 14(15): 5121-5135.
[97] ANDALOUSSI M, HENRIKSSON L M, WIECKOWSKA A, et al. Design, synthesis, and X-ray crystallographic studies of α-aryl substituted fosmidomycin analogues as inhibitors of mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase[J]. Journal of Medicinal Chemistry, 2011, 54(14): 4964-4976.
[98] JANSSON A M, WIECKOWSKA A, BJORKELID C, et al. DXR inhibition by potent mono- and disubstituted fosmidomycin analogues[J]. Journal of Medicinal Chemistry, 2013, 56(15): 6190-6199.
[99] GLUECK D S. Catalytic asymmetric synthesis of chiral phosphanes[J]. Chemistry, 2008, 14(24): 7108-7117.
[100] ALBRECHT L, ALBRECHT A, KRAWCZYK H, et al. Organocatalytic asymmetric synthesis of organophosphorus compounds[J]. Chemistry, 2010, 16(1): 28-48.
[101] OESTREICH M, TAPPE F, TREPOHL V. Transition-metal-catalyzed C-P cross-coupling reactions[J]. Synthesis, 2010, 2010(18): 3037-3062.
[102] ZHAO D, WANG R. Recent developments in metal catalyzed asymmetric addition of phosphorus nucleophiles[J]. Chemical Society Reviews, 2012, 41(6): 2095-2108.
[103] FENG J-J, CHEN X-F, SHI M J O T A C S, et al. Palladium-catalyzed asymmetric addition of diarylphosphines to enones toward the synthesis of chiral phosphines[J]. Journal of the American Chemical Society, 2010, 132(16): 5562-5563.
[104] YIN L, BAO Y, KUMAGAI N, et al. Catalytic asymmetric hydrophosphonylation of ketimines[J]. Journal of the American Chemical Society, 2013, 135(28): 10338-10341.
[105] NIE S-Z, DAVISON R T, DONG V M. Enantioselective coupling of dienes and phosphine oxides[J]. Journal of the American Chemical Society, 2018, 140(48): 16450-16454.
[106] LI Y-B, TIAN H, YIN L. Copper(I)-catalyzed asymmetric 1,4-conjugate hydrophosphination of α,β-unsaturated amides[J]. Journal of the American Chemical Society, 2020, 142(47): 20098-20106.
[107] YUE W-J, XIAO J-Z, ZHANG S, et al. Rapid synthesis of chiral 1,2-bisphosphine derivatives through copper(I)-catalyzed asymmetric conjugate hydrophosphination[J]. Angewandte Chemie International Edition, 2020, 59(18): 7057-7062.
[108] CHEN Y, YU Z, JIANG Z, et al. Asymmetric construction of tertiary/secondary carbon–phosphorus bonds via bifunctional phosphonium salt catalyzed 1,6-addition[J]. ACS Catalysis, 2021, 11(22): 14168-14180.
[109] MAITI R, YAN J-L, YANG X, et al. Carbene-catalyzed enantioselective hydrophosphination of α-bromoenals to prepare phosphine-containing chiral molecules[J]. Angewandte Chemie International Edition, 2021, 60(51): 26616-26621.
[110] BUTTI P, ROCHAT R, SADOW A D, et al. Palladium-catalyzed enantioselective allylic phosphination[J]. Angewandte Chemie International Edition, 2008, 47(26): 4878-4881.
[111] ZHANG L, LIU W, ZHAO X. Carbon–phosphorus bond formation by enantioselective palladium‐catalyzed allylation of diphenylphosphine oxide[J]. European Journal of Organic Chemistry, 2014, 2014(31): 6846-6849.
[112] LIU S, TANABE Y, KURIYAMA S, et al. Ruthenium-catalyzed enantioselective propargylic phosphinylation of propargylic alcohols with phosphine oxides[J]. Angewandte Chemie International Edition, 2021, 60(20): 11231-11236.
[113] MICHAELIS A, BECKER T. The structure of phosphorous acid[J]. Chemische Berichte, 1897, 30: 1003-1009.
[114] MONDAL S, DUMUR F, GIGMES D, et al. Enantioselective radical reactions using chiral catalysts[J]. Chemical Reviews, 2022, 122(6): 5842-5976.
[115] GU Q-S, LI Z-L, LIU X-Y. Copper(I)-catalyzed asymmetric reactions involving radicals[J]. Accounts of Chemical Research, 2020, 53(1): 170-181.
[116] ZHOU H, LI Z-L, GU Q-S, et al. Ligand-enabled copper(I)-catalyzed asymmetric radical C(sp3)–C cross-coupling reactions[J]. ACS Catalysis, 2021, 11(13): 7978-7986.
[117] SUTRA P, IGAU A. Anionic phosph(in)ito (“phosphoryl”) ligands: Non-classical “actor” phosphane-type ligands in coordination chemistry[J]. Coordination Chemistry Reviews, 2016, 308: 97-116.
[118] ZHOU Y, YIN S, GAO Y, et al. Selective P-P and P-O-P bond formations through copper-catalyzed aerobic oxidative dehydrogenative couplings of H-phosphonates[J]. Angewandte Chemie International Edition, 2010, 49(38): 6852-6855.
[119] WANG D Y, HU X P, DENG J, et al. Enantioselective synthesis of chiral α-aryl or α-alkyl substituted ethylphosphonates via Rh-catalyzed asymmetric hydrogenation with a P-stereogenic BoPhoz-type ligand[J]. The Journal of Organic Chemistry, 2009, 74(11): 4408-4410.
[120] TIAN R, ZHANG C, XU Y, et al. The chemistry of 1-acylphosphirane complexes: A phosphorus snalogue of the Cloke-Wilson rearrangement[J]. Chemistry-A European Journal, 2017, 23(53): 13006-13009.
[121] LEBEL H, MORIN S, PAQUET V. Alkylation of phosphine boranes by phase-transfer catalysis[J]. Organic Letters, 2003, 5(13): 2347-2349.
[122] MAERTEN E, CABRERA S, KJAERSGAARD A, et al. Organocatalytic asymmetric direct phosphonylation of α,β-unsaturated aldehydes: mechanism, scope, and application in synthesis[J]. The Journal of Organic Chemistry, 2007, 72(23): 8893-8903.
[123] CHERUKU P, PAPTCHIKHINE A, CHURCH T L, et al. Iridium-N,P-ligand-catalyzed enantioselective hydrogenation of diphenylvinylphosphine oxides and vinylphosphonates[J]. Journal of the American Chemical Society, 2009, 131(23): 8285-8289.
[124] DONG K, WANG Z, DING K. Rh(I)-catalyzed enantioselective hydrogenation of α-substituted ethenylphosphonic acids[J]. Journal of the American Chemical Society, 2012, 134(30): 12474-12477.
[125] WU T Y, HASSIG C, WU Y, et al. Design, synthesis, and activity of HDAC inhibitors with a N-formyl hydroxylamine head group[J]. Bioorganic & Medicinal Chemistry Letters 2004, 14(2): 449-453.
[126] LAUDER K, TOSCANI A, SCALACCI N, et al. Synthesis and reactivity of propargylamines in organic chemistry[J]. Chemical Reviews, 2017, 117(24): 14091-14200.
[127] GRECO M N, HAWKINS M J, POWELL E T, et al. Discovery of potent, selective, orally active, nonpeptide inhibitors of human mast cell chymase[J]. Journal of Medicinal Chemistry, 2007, 50(8): 1727-1730.
[128] MELLAH M, VOITURIEZ A, SCHULZ E. Chiral sulfur ligands for asymmetric catalysis[J]. Chemical Reviews, 2007, 107(11): 5133-5209.
[129] OTOCKA S, KWIATKOWSKA M, MADALINSKA L, et al. Chiral organosulfur ligands/catalysts with a stereogenic sulfur atom: Applications in asymmetric synthesis[J]. Chemical Reviews, 2017, 117(5): 4147-4181.
[130] SCOTT K A, NJARDARSON J T. Analysis of US FDA-approved drugs containing sulfur Atoms[J]. Top Curr Chem (Cham), 2018, 376(1): 5.
[131] FENG M, TANG B, LIANG S H, et al. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry[J]. Current Topics in Medicinal Chemistry, 2016, 16(11): 1200-1216.
[132] ZHANG Z-X, WILLIS M C. Sulfondiimidamides as new functional groups for synthetic and medicinal chemistry[J]. Chem, 2022, 8(4): 1137-1146.
[133] SEHGELMEBLE F, JANSON J, RAY C, et al. Sulfonimidamides as sulfonamides bioisosteres: rational evaluation through synthetic, in vitro, and in vivo studies with γ-secretase inhibitors[J]. ChemMedChem, 2012, 7(3): 396-399.
[134] HANN M M, KESERü G M. Finding the sweet spot: the role of nature and nurture in medicinal chemistry[J]. Nature Reviews Drug Discovery, 2012, 11(5): 355-365.
[135] BENTLEY R. Role of sulfur chirality in the chemical processes of biology[J]. Chemical Society Reviews, 2005, 34(7): 609-624.
[136] NANDI G C, ARVIDSSON P I. Sulfonimidamides: Synthesis and applications in preparative organic chemistry[J]. Advanced Synthesis & Catalysis, 2018, 360(16): 2976-3001.
[137] BARRETT A G, GRAY A A, HILL M S, et al. Imino sulfinamidines: synthesis and coordination chemistry of a novel class of chiral bidentate ligands[J]. Inorganic Chemistry, 2006, 45(8): 3352-3358.
[138] ZHANG Z-X, BELL C, DING M, et al. Modular two-step route to sulfondiimidamides[J]. Journal of the American Chemical Society, 2022, 144(26): 11851-11858.
[139] ANDRESINI M, SPENNACCHIO M, ROMANAZZI G, et al. Synthesis of sulfinamidines and sulfinimidate esters by transfer of nitrogen to sulfenamides[J]. Organic Letters, 2020, 22(18): 7129-7134.
[140] YANG G-F, HUANG H-S, NIE X-K, et al. One-pot tandem oxidative bromination and amination of sulfenamide for the synthesis of sulfinamidines[J]. The Journal of Organic Chemistry, 2023, 88(7): 4581-4591.
[141] HUANG G, YE J, TAN M, et al. Copper-catalyzed aerobic S-amination of sulfenamides for the synthesis of sulfinamidines[J]. The Journal of Organic Chemistry, 2023, 88(23): 16116-16121.
[142] HUANG G, YE J, BASHIR M A, et al. Hypervalent iodine mediated synthesis of sulfinamidines from sulfenamides[J]. The Journal of Organic Chemistry, 2023, 88(16): 11728-11734.
[143] WALTON J C. Homolytic substitution: A molecular ménage à Trois[J]. Accounts of Chemical Research, 1998, 31(3): 99-107.
[144] TROFIMENKO S. Boron-pyrazole chemistry. II. Poly(1-pyrazolyl)-borates[J]. Journal of the American Chemical Society, 2002, 89(13): 3170-3177.
[145] SALLMANN M, LIMBERG C. Utilizing the trispyrazolyl borate ligand for the mimicking of O2-activating mononuclear nonheme iron enzymes[J]. Accounts of Chemical Research, 2015, 48(10): 2734-2743.
[146] LIN Y, ZHU D-P, DU Y-R, et al. Tris(pyrazolyl)borate cobalt-catalyzed hydrogenation of C=O, C=C, and C=N Bonds: An assistant role of a lewis base[J]. Organic Letters, 2019, 21(8): 2693-2698.
[147] CHEN Y, WU X, YANG S, et al. Asymmetric radical cyclization of alkenes by stereospecific homolytic substitution of sulfinamides[J]. Angewandte Chemie International Edition, 2022, 61(29): e202201027.
[148] GARRIDO-CASTRO A F, SALAVERRI N, MAESTRO M C, et al. Intramolecular homolytic substitution enabled by photoredox catalysis: Sulfur, phosphorus, and silicon heterocycle synthesis from aryl halides[J]. Organic Letters, 2019, 21(13): 5295-5300.
[149] FERNANDEZ-SALAS J A, RODRIGUEZ-FERNANDEZ M M, MAESTRO M C, et al. Stereochemical aspects and the synthetic scope of the SHi at the sulfur atom. Preparation of enantiopure 3-substituted 2,3-dihydro-1,2-benzoisothiazole 1-oxides and 1,1-dioxides[J]. Chemical Communications, 2014, 50(45): 6046-6048.
[150] LIU W, LAVAGNINO M N, GOULD C A, et al. A biomimetic SH2 cross-coupling mechanism for quaternary sp3-carbon formation[J]. Science, 2021, 374(6572): 1258-1263.
[151] VAN DIJKMAN T F, DE BRUIJN H M, BREVE T G, et al. Extremely bulky copper(I) complexes of [HB(3,5-1-naphthyl(2)pz)(3)](-) and [HB(3,5-2-naphthyl(2)pz)(3)](-) and their self-assembly on graphene[J]. Dalton Transactions, 2017, 46(19): 6433-6446.
[152] CHAMPLIN A T, ELLMAN J A. Preparation of sulfilimines by sulfur-alkylation of N-acyl sulfenamides with alkyl halides[J]. The Journal of Organic Chemistry, 2023, 88(11): 7607-7614.
[153] YAMAGISHI F G, RAYNER D R, ZWICKER E T, et al. Stereochemistry of sulfur compounds. V. Stereochemical reaction cycles that involve cyclic sulfoxides, sulfimides, and sulfoximides[J]. Journal of the American Chemical Society, 2002, 95(6): 1916-1925.
[154] PAN S, PASSIA M T, WANG X, et al. Matching carbenes and sulfoximines via ketenes generated from α‐diazoketones by blue Light[J]. Advanced Synthesis & Catalysis, 2023, 365(1): 31-36.
[155] NANDI G C, JESIN C P I, KATARIA R. Synthesis of α-sulfoximino tetrazoles via azido-Ugi four-component reaction[J]. SynOpen, 2022, 06(04): 319-328.
[156] THOTA N, MAKAM P, RAJBONGSHI K K, et al. N-Trifluoromethylthiolated sulfonimidamides and sulfoximines: Anti-microbial, snti-mycobacterial, and cytotoxic activity[J]. ACS Medicinal Chemistry Letters, 2019, 10(10): 1457-1461.
修改评论