中文版 | English
题名

准二维双分散胶体玻璃结构与动力学研究

其他题名
STRUCTURE AND DYNAMICS OF QUASI-TWO-DIMENSIONAL COLLOIDAL GLASS
姓名
姓名拼音
ZHU Shengliang
学号
12132961
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
马晓光
导师单位
复杂流动及软物质研究中心(筹)
论文答辩日期
2024-05-14
论文提交日期
2024-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

玻璃态广泛存在于自然与人工合成材料中。然而,其物理机制目前仍然是凝聚态物理有待解决的问题。其中,理解玻璃态中微观单元的结构与动力学之间的关系对理解玻璃态至关重要。本研究选取了玻璃态物理前沿领域中两个重要的动力学现象,通过胶体实验、数值模拟以及机器学习理解现象背后的结构物理机制。第一个现象为再进入玻璃化转变,指增加玻璃系统中粒子间吸引力引起的先融化再固化的非单调动力学转变。实验采用准二维双分散胶体玻璃,利用温敏表面活性剂胶束的排空效应,原位改变胶体间吸引力强度,在特定胶体体积分数区间发现了再进入玻璃化转变现象。为了厘清其结构机制,采用包括三角剖分在内的多种结构分析手段,发现吸引力增强使大粒子排列更紧密,进而增加了其他粒子的自由体积与迁移率,再次启动本已停滞的结构弛豫过程。同时,吸引力增强引发大粒子间键长变短,导致结构重排列更慢。上述两种效果相反的机制产生竞争,造成了非单调的动力学现象,构成了再进入玻璃化转变定性半定量的结构机制。第二个研究针对玻璃弛豫过程中的准空位现象。准空位是玻璃中协助粒子线状运动的局域自由体积,可通过线状运动的起始与终止状态判断。本研究尝试为准空位提供基于静态局域结构的诠释。研究利用数值模拟玻璃的粒子轨迹信息,训练二元分类支持向量机模型预测准空位位置。完成训练的模型在测试中实现了高于85%的测试分数,证明准空位与粒子局域结构具有强相关性,为建立准空位结构机制提供了重要支持。

其他摘要

Glass is ubiquitous in natural and artificial materials. However, the mechanism of glass transition remains unsolved in condensed matter physics; it requires understanding the connection between structure of its microscopic constituent components and their dynamics. In this thesis, we investigate two important phenomena in glassy state. We employ colloidal experiments, computer simulation, and machine learning methods to study the structural mechanism. The first problem is called reentrant glass transition: a glass state first melts and then freezes again upon increasing the inter-particle attraction strength. In our experiment, we use quasi-two-dimensional bidisperse colloidal samples with tunable depletion attraction strength, and locate reentrant glass transition in its phase diagram. To understand the underlying structural mechanism, we carry out a systematic structural analysis. Our results show that when increasing the attraction strength, big particles exhibit denser packing so that other particles in the neighborhood gain more free volume; this enhances their mobility and ultimately melts the glass. Meanwhile, the bonds between big particles are observed to become stronger and eventually freeze the sample at strong attraction strength. These two mechanisms with opposite effects result in a non-monotonic dynamical transition. Thus, our result provides a semi-quantitative mechanism for the reentrant glass transition. The second study focuses on quasi-void in glass relaxation dynamics. Quai-voids are the free volume in glass which facilitate stringlike motions of particles; they can be determined by following the stringlike particle movements but a structural signature is still lacking. We try to provide a static structural explanation for quasi-voids in glasses. Support vector machine model is trained using data from simulations of binary glasses to predict quasi-voids’ location. The trained model achieves good testing scores (>85%), indicating structural features of quasi-voids are strongly correlated with their dynamics; this finding confirms our hypothesis that quasi-voids can be determined by static structure and this correlation can be utilized to predict quasi-voids.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] LANGER J S. Theories of glass formation and the glass transition[J]. Reports on Progress in Physics, 2014, 77(4): 042501.
[2] LILYQUIST C, BRILL R H, WYPYSKI M T. Studies in early Egyptian glass[M]. New York: Metropolitan Museum of Art, 1993.
[3] 汪卫华. 非晶物质 常规物质第四态 第一卷[M]. 北京: 科学出版社, 2023.
[4] GRAVISH N, GOLD G, ZANGWILL A, et al. Glass-like dynamics in confined and congested ant traffic[J]. Soft Matter, 2015, 11(33): 6552-6561.
[5] MéZARD M, PARISI G, VIRASORO M A. Spin Glass Theory And Beyond: An Introduction To The Replica Method And Its Applications, F, 1986 [C].
[6] EITEL W. Der Glaszustand. Von G. Tammann. 123 Seiten mit 86 Abbildungen im Text. Verlag Leop. Voß, Leipzig 1933. Preis RM. 8,70[J]. Angewandte Chemie, 1933, 46(33): 541-541.
[7] SIMON F. Fünfundzwanzig Jahre Nernstscher Wärmesatz[M]. Ergebnisse der Exakten Naturwissenschaften: Neunter Band. Berlin, Heidelberg; Springer Berlin Heidelberg. 1930: 222-274.
[8] SIMON F. Über den Zustand der unterkühlten Flüssigkeiten und Gläser[J]. Zeitschrift für anorganische und allgemeine Chemie, 2004, 203: 219-227.
[9] WOOD R M. The Physics of Amorphous Solids[J]. Physics Bulletin, 1984, 35(7): 276.
[10] EYRING H. Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates[J]. The Journal of Chemical Physics, 1936, 4(4): 283-291.
[11] COHEN M H, TURNBULL D M. Molecular Transport in Liquids and Glasses[J]. Journal of Chemical Physics, 1959, 31: 1164-1169.
[12] SPAEPEN F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metallurgica, 1977, 25(4): 407-415.
[13] GOLDSTEIN M N. On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids—Comment on a Paper by Adam and Gibbs[J]. Journal of Chemical Physics, 1965, 43: 1852-1853.
[14] STEVENSON J D, SCHMALIAN J, WOLYNES P G. The shapes of cooperatively rearranging regions in glass-forming liquids[J]. Nature Physics, 2006, 2(4): 268-274.
[15] WALES D. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses[M]. Cambridge: Cambridge University Press, 2004.
[16] ANGELL C A, NGAI K L, MCKENNA G B, et al. Relaxation in glassforming liquids and amorphous solids[J]. Journal of Applied Physics, 2000, 88(6): 3113-3157.
[17] GOTZE W, SJOGREN L. Relaxation processes in supercooled liquids[J]. Reports on Progress in Physics, 1992, 55(3): 241.
[18] PUSEY P N, VAN MEGEN W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres[J]. Nature, 1986, 320(6060): 340-342.
[19] VAN BLAADEREN A, WILTZIUS P. Real-Space Structure of Colloidal Hard-Sphere Glasses[J]. Science, 1995, 270(5239): 1177-1179.
[20] WEEKS E R, CROCKER J C, LEVITT A C, et al. Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition[J]. Science, 2000, 287(5453): 627-631.
[21] HUNTER G L, WEEKS E R. The physics of the colloidal glass transition[J]. Reports on Progress in Physics, 2012, 75(6): 066501.
[22] WEEKS E. Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition[J]. Science, 2000, 287: 627-631.
[23] LU Y, LU X, QIN Z, SHEN J. Direct visualization of free-volume-triggered activation of beta relaxation in colloidal glass[J]. Physical Review E, 2016, 94(1): 012606.
[24] TUINIER R, FAN T H, TANIGUCHI T. Depletion and the dynamics in colloid-polymer mixtures[J]. Current Opinion in Colloid & Interface Science, 2015, 20(1): 66-70.
[25] TUINIER R, RIEGER J, DE KRUIF C G. Depletion-induced phase separation in colloid-polymer mixtures[J]. Advances in Colloid and Interface Science, 2003, 103(1): 1-31.
[26] ASAKURA S, OOSAWA F. On Interaction between Two Bodies Immersed in a Solution of Macromolecules[J]. The Journal of Chemical Physics, 1954, 22(7): 1255-1256.
[27] MARENDUZZO D, FINAN K, COOK P. The depletion attraction: An underappreciated force driving cellular organization[J]. The Journal of cell biology, 2006, 175: 681-686.
[28] GRATALE M D, STILL T, MATYAS C, et al. Tunable depletion potentials driven by shape variation of surfactant micelles[J]. Physical Review E, 2016, 93(5): 050601.
[29] MA X, MISHRA C, HABDAS P, YODH A. Structural and short-time vibrational properties of colloidal glasses and supercooled liquids in the vicinity of the re-entrant glass transition[J]. The Journal of Chemical Physics, 2021, 155: 074902.
[30] CROCKER J C, GRIER D G. Methods of Digital Video Microscopy for Colloidal Studies[J]. Journal of Colloid and Interface Science, 1996, 179(1): 298-310.
[31] PHAM K N, PUERTAS A M, BERGENHOLTZ J, et al. Multiple Glassy States in a Simple Model System[J]. Science, 2002, 296(5565): 104-106.
[32] ECKERT T, BARTSCH E. Re-entrant Glass Transition in a Colloid-Polymer Mixture with Depletion Attractions[J]. Physical Review Letters, 2002, 89: 125701.
[33] MISHRA C K, RANGARAJAN A, GANAPATHY R. Two-Step Glass Transition Induced by Attractive Interactions in Quasi-Two-Dimensional Suspensions of Ellipsoidal Particles[J]. Physical Review Letters, 2013, 110(18): 188301.
[34] LIU H Q, ZONG Y W, HOU Z L, et al. Phase behavior of rotationally asymmetric Brownian kites containing 90° internal angles*[J]. Chinese Physics B, 2021, 30(12): 6.
[35] ROCKS S, HOY R S. Structure of jammed ellipse packings with a wide range of aspect ratios[J]. Soft Matter, 2023, 19(30): 5701-5710.
[36] ITO Y. Delaunay Triangulation[M]//ENGQUIST B. Encyclopedia of Applied and Computational Mathematics. Berlin, Heidelberg; Springer Berlin Heidelberg. 2015: 332-334.
[37] FOWLER W B. Point Defects[M]. Reference Module in Materials Science and Materials Engineering. Elsevier. 2016.
[38] WOLLENBERGER H J. CHAPTER 18 - POINT DEFECTS[M]//CAHN R W, HAASEN† P. Physical Metallurgy (Fourth Edition). Oxford; North-Holland. 1996: 1621-1721.
[39] SILLESCU H. Heterogeneity at the glass transition: a review[J]. Journal of Non-Crystalline Solids, 1999, 243(2): 81-108.
[40] KOB W. Computer Simulations of Supercooled Liquids[M]//FERRARIO M, CICCOTTI G, BINDER K. Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 2. Berlin, Heidelberg; Springer Berlin Heidelberg. 2006: 1-30.
[41] FRIS J A R, APPIGNANESI G A, WEEKS E R. Experimental Verification of Rapid, Sporadic Particle Motions by Direct Imaging of Glassy Colloidal Systems[J]. Physical Review Letters, 2011, 107(6): 065704.
[42] KEGEL W K, VAN BLAADEREN, ALFONS. Direct Observation of Dynamical Heterogeneities in Colloidal Hard-Sphere Suspensions[J]. Science, 2000, 287(5451): 290-293.
[43] DONATI C, DOUGLAS J F, KOB W, et al. Stringlike Cooperative Motion in a Supercooled Liquid[J]. Physical Review Letters, 1998, 80(11): 2338-2341.
[44] YIP C-T, ISOBE M, CHAN C-H, et al. Direct Evidence of Void-Induced Structural Relaxations in Colloidal Glass Formers[J]. Physical Review Letters, 2020, 125(25): 258001.
[45] CUBUK E D, SCHOENHOLZ S S, RIESER J M, et al. Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods[J]. Physical Review Letters, 2015, 114(10): 108001.
[46] MA X, DAVIDSON Z S, STILL T, et al. Heterogeneous Activation, Local Structure, and Softness in Supercooled Colloidal Liquids[J]. Physical Review Letters, 2019, 122(2): 028001.
[47] 邓乃扬, 田英杰. 支持向量机:理论、算法与拓展[M]. 北京: 科学出版社, 2009.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778444
专题理学院_物理系
推荐引用方式
GB/T 7714
朱晟良. 准二维双分散胶体玻璃结构与动力学研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132961-朱晟良-物理系.pdf(4527KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[朱晟良]的文章
百度学术
百度学术中相似的文章
[朱晟良]的文章
必应学术
必应学术中相似的文章
[朱晟良]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。