中文版 | English
题名

脂质激酶分子 Pip5k1γ 在老年小鼠椎间盘退变中的功能及分子机制研究

其他题名
THE ROLE OF THE LIPID KINASE MOLECULE PIP5K1γ IN INTERVERTEBRAL DISC DEGENERATION PATHWAY IN AGED MICE
姓名
姓名拼音
JIN Xiaowan
学号
12133114
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
肖国芝
导师单位
南方科技大学医学院
论文答辩日期
2024-04-25
论文提交日期
2024-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

椎间盘退行性病变(Degenerative disc disease,DDD)是世界范围内的主要公共健康问题之一,但其分子机制尚不明确。在本研究中,我们发现,在老龄小鼠和人类 DDD 患者的髓核(nucleus pulposus, NP)细胞中, Pip5k1γ(Phosphatidylinositol -4-phosphate 5 -kinases γ)的蛋白表达水平显著下调。条件性敲除髓核细胞中的 Pip5k1γ 会导致老年小鼠出现严重的 DDD 样表型,但对成年小鼠无影响。尤其重要的是,Pip5k1γ 的缺失会减弱二甲双胍对小鼠腰椎失稳(Lumbar spine instability,LSI)诱发的椎间盘病变的改善作用。在新陈代谢水平上,Pip5k1γ 的缺失会减弱 NP 细胞的合成代谢,但不会促进其分解代谢。在细胞水平上,Pip5k1γ 可抑制NP 细胞的细胞衰老,而 Pip5k1γ 的缺失在很大程度上降低了 NP 组织中细胞的活力。此外,Pip5k1γ 还能通过促进 NP 细胞中 CaMKII 的磷酸化来激活 Ampk 信号。总之,我们首次发现了 Pip5k1γ 在促进 NP 细胞新陈代谢和维持椎间盘稳态中的作用,并为治疗 DDD 提供了一个潜在的分子靶点。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] NEIDLINGER-WILKE C, GALBUSERA F, PRATSINIS H, et al. 2014. Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level. Eur Spine J [J], 23 Suppl 3: S333 -343.
[2] CHAN S C, FERGUSON S J, GANTENBEIN-RITTER B 2011. The effects of dynamic loading on the intervertebral disc. Eur Spine J [J], 20: 1796 -1812.
[3] FEARING B V, HERNANDEZ P A, SETTON L A, et al. 2018. Mechanotransduction and cell biomechanics of the intervertebral disc. JOR Spine [J], 1.
[4] WONG J, SAMPSON S L, BELL-BRIONES H, et al. 2019. Nutrient supply and nucleus pulposus cell function: effects of the transport properties of the cartilage endplate and potential implications for intradiscal biologic therapy. Osteoarthritis Cartilage [J], 27: 956-964.
[5] TOMASZEWSKI K A, SAGANIAK K, GLADYSZ T, et al. 2015. The biology behind the human intervertebral disc and its endplates. Folia Morphol (Warsz) [J], 74: 157-168.
[6] RUSTENBURG C M E, EMANUEL K S, PEETERS M, et al. 2018. Osteoarthritis and intervertebral disc degeneration: Quite different, quite similar. JOR Spine [J], 1: e1033.
[7] ADAMS M A, MCNALLY D S, DOLAN P 1996. 'Stress' distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br [J], 78: 965-972.
[8] WANG Y, BAI B, HU Y, et al. 2021. Hydrostatic Pressure Modulates Intervertebral Disc Cell Survival and Extracellular Matrix Homeostasis via Regulating Hippo-YAP/TAZ Pathway. Stem Cells Int [J], 2021: 5626487.
[9] BUCKWALTER J A 1995. Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) [J], 20: 1307 -1314.
[10] WANG M, TANG D, SHU B, et al. 2012. Conditional activation of beta -catenin signaling in mice leads to severe defects in intervertebral disc tissue. Arthritis Rheum [J], 64: 2611-2623.
[11] WU J, WANG D, RUAN D, et al. 2014. Prolonged expansion of human nucleus pulposus cells expressing human telomerase reverse transcriptase mediated by lentiviral vector. J Orthop Res [J], 32: 159 -166.
[12] MAIDHOF R, JACOBSEN T, PAPATHEODOROU A, et al. 2014. Inflammation induces irreversible biophysical changes in isolated nucleus pulposus cells. PLoS One [J], 9: e99621.
[13] CHEN S, CHEN M, WU X, et al. 2022. Global, regional and national burden of low back pain 1990-2019: A systematic analysis of the Global Burden of Disease study 2019. J Orthop Translat [J], 32: 49 -58.
[14] PENG B, LI Y 2022. Concerns about cell therapy for intervertebral disc degeneration. NPJ Regen Med [J], 7: 46.
[15] HARTVIGSEN J, HANCOCK M J, KONGSTED A, et al. 2018. What low back pain is and why we need to pay attention. Lancet [J], 391: 2356 -2367.
[16] ALLEN K D, THOMA L M, GOLIGHTLY Y M 2022. Epidemiology of osteoarthritis. Osteoarthritis Cartilage [J], 30: 184 -195.
[17] WANG R, LI Z, LIU S, et al. 2023. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open [J], 13: e065186.
[18] MAHER C, UNDERWOOD M, BUCHBINDER R 2017. Non -specific low back pain. Lancet [J], 389: 736-747.

[19] ANDERSSON G B 1999. Epidemiological features of chronic low -back pain. Lancet [J], 354: 581-585.

[20] KATZ J N 2006. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J Bone Joint Surg Am [J], 88 Suppl 2: 21 -24.

[21] GALLUCCI M, PUGLIELLI E, SPLENDIANI A, et al. 2005. Degenerative disorders of the spine. Eur Radiol [J], 15: 591 -598.

[22] LUOMA K, RIIHIMAKI H, LUUKKONEN R, et al. 2000. Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976) [J], 25: 487 -492.

[23] YAMASHITA K, SUGIURA K, MANABE H, et al. 2019. Accurate diagnosis of low back pain in adult elite athletes. J Med Invest [J], 66: 252 -257.

[24] RAHYUSSALIM A J, ZUFAR M L L, KURNIAWATI T 2020. Significance of the Association between Disc Degeneration Changes on Imaging and Low Back Pain: A Review Article. Asian Spine J [J], 14: 245 -257.

[25] KUSHCHAYEV S V, GLUSHKO T, JARRAYA M, et al. 2018. ABCs of the degenerative spine. Insights Imaging [J], 9: 253 -274.

[26] DUDLI S, SING D C, HU S S, et al. 2017. ISSLS PRIZE IN BASIC SCIENCE 2017: Intervertebral disc/bone marrow cross-talk with Modic changes. Eur Spine J [J], 26: 1362-1373.

[27] DUDLI S, FIELDS A J, SAMARTZIS D, et al. 2016. Pathobiology of Modic changes. Eur Spine J [J], 25: 3723 -3734.

[28] ANDERSON D G, TANNOURY C 2005. Molecular pathogenic factors in symptomatic disc degeneration. Spine J [J], 5: 260S -266S.

[29] SILAGI E S, SCHIPANI E, SHAPIRO I M, et al. 2021. The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat Rev Rheumatol [J], 17: 426 -439.

[30] WANG Y, CHE M, XIN J, et al. 2020. The role of IL-1beta and TNF-alpha in intervertebral disc degeneration. Biomed Pharmacother [J], 131: 110660.

[31] BINCH A L A, FITZGERALD J C, GROWNEY E A, et al. 2021. Cell-based strategies for IVD repair: clinical progress and translational obstacles. Nat Rev Rheumatol [J], 17: 158-175.

[32] ADAMS M A, ROUGHLEY P J 2006. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) [J], 31: 2151 -2161.

[33] ZHANG H J, LIAO H Y, BAI D Y, et al. 2021. MAPK /ERK signaling pathway: A potential target for the treatment of intervertebral disc degeneration. Biomed Pharmacother [J], 143: 112170.

[34] WEBER K T, JACOBSEN T D, MAIDHOF R, et al. 2015. Developments in intervertebral disc disease research: pathophysiology, mechanobiology, and therapeutics. Curr Rev Musculoskelet Med [J], 8: 18 -31.

[35] KADOW T, SOWA G, VO N, et al. 2015. Molecular basis of intervertebral disc degeneration and herniations: what are the important translational questions? Clin Orthop Relat Res [J], 473: 1903 -1912.

[36] RISBUD M V, SHAPIRO I M 2014. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol [J], 10: 44 -56.

[37] ZHANG W, SUN T, LI Y, et al. 2022. Application of stem cells in the repair of intervertebral disc degeneration. Stem Cell Res Ther [J], 13: 70.

[38] ERWIN W M, ASHMAN K, O'DONNEL P, et al. 2006. Nucleus pulposus notochord cells secrete connective tissue growth factor and up -regulate proteoglycan expression by intervertebral disc chondrocytes. Arthritis Rheum [J], 54: 3859-3867.

[39] COLOMBIER P, CLOUET J, BOYER C, et al. 2016. TGF -beta1 and GDF5 Act Synergistically to Drive the Differentiation of Human Adipose Stromal Cells toward Nucleus Pulposus-like Cells. Stem Cells [J], 34: 653 -667.

[40] ROMANIYANTO, MAHYUDIN F, SIGIT PRAKOESWA C R, et al. 2022. An update of current therapeutic approach for Intervertebral Disc Degeneration: A review article. Ann Med Surg (Lond) [J], 77: 103619.

[41] KIRNAZ S, CAPADONA C, WONG T, et al. 2022. Fundamentals of Intervertebral Disc Degeneration. World Neurosurg [J], 157: 264 -273.

[42] CRADDOCK R J, HODSON N W, OZOLS M, et al. 2018. Extracellular matrix fragmentation in young, healthy cartilaginous tissues. Eur Cell Mater [J], 35: 34-53.

[43] BACHMEIER B E, NERLICH A, MITTERMAIER N, et al. 2009. Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur Spine J [J], 18: 1573 -1586.

[44] POCKERT A J, RICHARDSON S M, LE MAITRE C L, et al. 2009. Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum [J], 60: 482 - 491.

[45] FRAPIN L, CLOUET J, DELPLACE V, et al. 2019. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv Drug Deliv Rev [J], 149-150: 49-71.

[46] VASILIADIS E S, PNEUMATICOS S G, EVANGELOPOULOS D S, et al. 2014. Biologic treatment of mild and moderate intervertebral disc degeneration. Mol Med [J], 20: 400-409.

[47] SONG Y, WANG Y, ZHANG Y, et al. 2017. Advanced glycation end products regulate anabolic and catabolic activities via NLRP3 -inflammasome activation in human nucleus pulposus cells. J Cell Mol Med [J], 21: 1373 -1387.

[48] WANG J, NISAR M, HUANG C, et al. 2018. Small molecule natural compound agonist of SIRT3 as a therapeutic target for the treatment of intervertebral disc degeneration. Exp Mol Med [J], 50: 1 -14.

[49] AIGNER T, GRESK-OTTER K R, FAIRBANK J C, et al. 1998. Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs. Calcif Tissue Int [J], 63: 263 -268.

[50] PAIETTA R C, BURGER E L, FERGUSON V L 2013. Mineralization and collagen orientation throughout aging at the vertebral endplate in the human lumbar spine. J Struct Biol [J], 184: 310 -320.

[51] GRANT M P, EPURE L M, BOKHARI R, et al. 2016. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium - sensing receptor in the intervertebral disc. Eur Cell Mater [J], 32: 137 -151.

[52] HUANG Y C, URBAN J P, LUK K D 2014. Intervertebral disc regeneration: do nutrients lead the way? Nat Rev Rheumatol [J], 10: 561 -566.

[53] KAMALI A, ZIADLOU R, LANG G, et al. 2021. Small molecule -based treatment approaches for intervertebral disc degeneration: Current options and future directions. Theranostics [J], 11: 27 -47.

[54] DOWDELL J, ERWIN M, CHOMA T, et al. 2017. Intervertebral Disk Degeneration and Repair. Neurosurgery [J], 80: S46 -S54.

[55] O'CONNELL G D, GUERIN H L, ELLIOTT D M 2009. Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J Biomech Eng [J], 131: 111007.

[56] KONGSTED A, LEBOEUF-YDE C 2009. The Nordic back pain subpopulation program--individual patterns of low back pain established by means of text messaging: a longitudinal pilot study. Chiropr Osteopat [J], 17: 11.

[57] MODIC M T, STEINBERG P M, ROSS J S, et al. 1988. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology [J], 166: 193 -199.

[58] PFIRRMANN C W, METZDORF A, ZANETTI M, et al. 2001. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) [J], 26: 1873-1878.

[59] CLOUET J, FUSELLIER M, CAMUS A, et al. 2019. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev [J], 146: 306 -324.

[60] COLELLA F, GARCIA J P, SORBONA M, et al. 2020. Drug delivery in intervertebral disc degeneration and osteoarthritis: Selecting the optimal platform for the delivery of disease -modifying agents. J Control Release [J], 328: 985-999.

[61] BLANQUER S B, GRIJPMA D W, POOT A A 2015. Delivery systems for the treatment of degenerated intervertebral discs. Adv Drug Deliv Rev [J], 84: 172-187.

[62] FOSTER N E, ANEMA J R, CHERKIN D, et al. 2018. Prevention and treatment of low back pain: evidence, challenges, and promising directions. Lancet [J], 391: 2368-2383.

[63]KLOPPENBURG M, BERENBAUM F 2020. Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthritis Cartilage [J], 28: 242 -248.

[64] KRUT Z, PELLED G, GAZIT D, et al. 2021. Stem Cells and Exosomes: New Therapies for Intervertebral Disc Degeneration. Cells [J], 10.

[65] FERNANDEZ-MOURE J, MOORE C A, KIM K, et al. 2018. Novel therapeutic strategies for degenerative disc disease: Review of cell biology and intervertebral disc cell therapy. SAGE Open Med [J], 6: 2050312118761674.

[66] LEE Y C, ZOTTI M G, OSTI O L 2016. Operative Management of Lumbar Degenerative Disc Disease. Asian Spine J [J], 10: 801 -819.

[67] FRITZELL P, HAGG O, WESSBERG P, et al. 2001. 2001 Volvo Award Winner in Clinical Studies: Lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine (Phila Pa 1976) [J], 26: 2521-2532; discussion 2532-2524.

[68] HAN I, ROPPER A E, KONYA D, et al. 2015. Biological approaches to treating intervertebral disk degeneration: devising stem cell therapies. Cell Transplant [J], 24: 2197-2208.

[69] VAN DEN EERENBEEMT K D, OSTELO R W, VAN ROYEN B J, et al. 2010. Total disc replacement surgery for symptomatic degenerative lumbar disc disease: a systematic review of the literature. Eur Spine J [J], 19: 1262 -1280.

[70]DEYO R A, MIRZA S K 2006. Trends and variations in the use of spine surgery. Clin Orthop Relat Res [J], 443: 139 -146.

[71] HECK J N, MELLMAN D L, LING K, et al. 2007. A conspicuous connection: structure defines function for the phosphatidylinositol-phosphate kinase family. Crit Rev Biochem Mol Biol [J], 42: 15 -39.

[72] NAGATA K, NOZAWA Y 1992. [Role of GTP-binding proteins in phospholipid metabolism in human platelets]. Nihon Rinsho [J], 50: 223 -229.

[73] HASEGAWA H, NOGUCHI J, YAMASHITA M, et al. 2012. Phosphatidylinositol 4-phosphate 5-kinase is indispensable for mouse spermatogenesis. Biol Reprod [J], 86: 136, 131 -112.

[74] SEMENAS J, HEDBLOM A, MIFTAKHOVA R R, et al. 2014. The role of PI3K/AKT-related PIP5K1alpha and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc Natl Acad Sci U S A [J], 111: E3689-3698.

[75] LOIJENS J C, ANDERSON R A 1996. Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J Biol Chem [J], 271: 32937-32943.

[76] LARSSON P, SYED KHAJA A S, SEMENAS J, et al. 2020. The functional interlink between AR and MMP9/VEGF signaling axis is mediated through PIP5K1alpha/pAKT in prostate cancer. Int J Cancer [J], 146: 1686 -1699.

[77] SARWAR M, SYED KHAJA A S, ALESKANDARANY M, et al. 2019. The role of PIP5K1alpha/pAKT and targeted inhibition of growth of subtypes of breast cancer using PIP5K1alpha inhibitor. Oncogene [J], 38: 375 -389.

[78] DRAKE J M, HUANG J 2014. PIP5K1alpha inhibition as a therapeutic strategy for prostate cancer. Proc Natl Acad Sci U S A [J], 111: 12578 -12579.

[79] DI PAOLO G, MOSKOWITZ H S, GIPSON K, et al. 2004. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature [J], 431: 415 -422.

[80] SASAKI J, SASAKI T, YAMAZAKI M, et al. 2005. Regulation of anaphylactic responses by phosphatidylinositol phosphate kinase type I alpha. J Exp Med [J], 201: 859-870.

[81] WANG Y, LIAN L, GOLDEN J A, et al. 2007. PIP5KI gamma is required for cardiovascular and neuronal development. Proc Natl Acad Sci U S A [J], 104: 11748-11753.

[82] WANG Y, CHEN X, LIAN L, et al. 2008. Loss of PIP5KIbeta demonstrates that PIP5KI isoform-specific PIP2 synthesis is required for IP3 formation. Proc Natl Acad Sci U S A [J], 105: 14064 -14069.

[83] ISHIHARA H, SHIBASAKI Y, KIZUKI N, et al. 1996. Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5- kinase. J Biol Chem [J], 271: 23611 -23614.

[84] LING K, DOUGHMAN R L, FIRESTONE A J, et al. 2002. Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature [J], 420: 89-93.

[85] NADER G P, EZRATTY E J, GUNDERSEN G G 2016. FAK, talin and PIPKIgamma regulate endocytosed integrin activation to polarize focal adhesion assembly. Nat Cell Biol [J], 18: 491 -503.

[86] LING K, DOUGHMAN R L, IYER V V, et al. 2003. Tyrosine phosphorylation of type Igamma phosphatidylinositol phosphate kinase by Src regulates an integrin-talin switch. J Cell Biol [J], 163: 1339 -1349.

[87] DI PAOLO G, PELLEGRINI L, LETINIC K, et al. 2002. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature [J], 420: 85 -89.

[88] HUANG G, YANG C, GUO S, et al. 2022. Adipocyte -specific deletion of PIP5K1c reduces diet-induced obesity and insulin resistance by increasing energy expenditure. Lipids Health Dis [J], 21: 6.

[89] SCHRAMP M, THAPA N, HECK J, et al. 2011. PIPKIgamma regulates beta - catenin transcriptional activity downstream of growth factor receptor signaling. Cancer Res [J], 71: 1282 -1291.

[90] SCHILL N J, HEDMAN A C, CHOI S, et al. 2014. Isoform 5 of PIPKIgamma regulates the endosomal trafficking and degradation of E -cadherin. J Cell Sci [J], 127: 2189-2203.

[91] RODRIGUEZ L, SIMEONATO E, SCIMEMI P, et al. 2012. Reduced phosphatidylinositol 4,5-bisphosphate synthesis impairs inner ear Ca2+ signaling and high-frequency hearing acquisition. Proc Natl Acad Sci U S A [J], 109: 14013-14018.

[92] XUE J, GE X, ZHAO W, et al. 2019. PIPKIgamma Regulates CCL2 Expression in Colorectal Cancer by Activating AKT-STAT3 Signaling. J Immunol Res [J], 2019: 3690561.

[93] PENG J M, LIN S H, YU M C, et al. 2021. CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. J Clin Invest [J], 131.

[94] WRIGHT B D, LOO L, STREET S E, et al. 2014. The lipid kinase PIP5K1C regulates pain signaling and sensitization. Neuron [J], 82: 836 -847.

[95] XU W, WANG P, PETRI B, et al. 2010. Integrin -induced PIP5K1C kinase polarization regulates neutrophil polarization, directionality, and in vivo infiltration. Immunity [J], 33: 340 -350.

[96] LOO L, ZYLKA M 2017. Conditional deletion of Pip5k1c in sensory ganglia and effects on nociception and inflammatory sensitization. Mol Pain [J], 13: 1744806917737907.

[97] VOLPATTI J R, AL-MAAWALI A, SMITH L, et al. 2019. The expanding spectrum of neurological disorders of phosphoinositide metabolism. Dis Model Mech [J], 12.

[98] ZHU T, CHAPPEL J C, HSU F F, et al. 2013. Type I phosphotidylinosotol 4 - phosphate 5-kinase gamma regulates osteoclasts in a bifunctional manner. J Biol Chem [J], 288: 5268-5277.

[99] YAN Q, GAO H, YAO Q, et al. 2022. Loss of phosphatidylinositol-4-phosphate 5-kinase type-1 gamma (Pip5k1c) in mesenchymal stem cells leads to osteopenia by impairing bone remodeling. J Biol Chem [J], 298: 101639.

[100]HARDIE D G, ROSS F A, HAWLEY S A 2012. AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol [J], 19: 1222 -1236.

[101]TANG C H, LU M E 2009. Adiponectin increases motility of human prostate cancer cells via adipoR, p38, AMPK, and NF -kappaB pathways. Prostate [J], 69: 1781-1789.

[102]HUANG C Y, LEE C Y, CHEN M Y, et al. 2010. Adiponectin increases BMP - 2 expression in osteoblasts via AdipoR receptor signaling pathway. J Cell Physiol [J], 224: 475-483.

[103]BENITO M J, VEALE D J, FITZGERALD O, et al. 2005. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis [J], 64: 1263 - 1267.

[104]DING C, LI L, SU Y C, et al. 2013. Adiponectin increases secretion of rat submandibular gland via adiponectin receptors-mediated AMPK signaling. PLoS One [J], 8: e63878.

[105]TANG C H, CHIU Y C, TAN T W, et al. 2007. Adiponectin enhances IL -6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-kappa B pathway. J Immunol [J], 179: 5483 -5492.

[106]CHEN H T, TSOU H K, CHEN J C, et al. 2014. Adiponectin enhances intercellular adhesion molecule -1 expression and promotes monocyte adhesion in human synovial fibroblasts. PLoS One [J], 9: e92741.

[107]WOODS A, JOHNSTONE S R, DICKERSON K, et al. 2003. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol [J], 13: 2004-2008.

[108]MENG Y, DING P, WANG H, et al. 2022. Ca(2+)/calmodulin -dependent protein kinase II inhibition reduces myocardial fatty acid uptake and oxidation after myocardial infarction. Biochim Biophys Acta Mol Cell Biol Lipids [J], 1867: 159120.

[109]TOMAS E, TSAO T S, SAHA A K, et al. 2002. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylaseinhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A [J], 99: 16309-16313.

[110]LIU Q, GAUTHIER M S, SUN L, et al. 2010. Activation of AMP -activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio. FASEB J [J], 24: 4229 -4239.

[111]HURLEY R L, ANDERSON K A, FRANZONE J M, et al. 2005. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem [J], 280: 29060 -29066.

[112]ZHOU L, DEEPA S S, ETZLER J C, et al. 2009. Adiponectin activates AMP - activated protein kinase in muscle cells via APPL1/LKB1 -dependent and phospholipase C/Ca2+/Ca2+/calmodulin -dependent protein kinase kinase - dependent pathways. J Biol Chem [J], 284: 22426-22435.

[113]OZCAN L, WONG C C, LI G, et al. 2012. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab [J], 15: 739-751.

[114]RANEY M A, TURCOTTE L P 2008. Evidence for the involvement of CaMKII and AMPK in Ca2+-dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle. J Appl Physiol (1985) [J], 104: 1366 - 1373.

[115]QU M, CHEN M, GONG W, et al. 2023. Pip5k1c Loss in Chondrocytes Causes Spontaneous Osteoarthritic Lesions in Aged Mice. Aging Dis [J], 14: 502 -514.

[116]CHEN S, WU X, LAI Y, et al. 2022. Kindlin -2 inhibits Nlrp3 inflammasome activation in nucleus pulposus to maintain homeostasis of the intervertebral disc. Bone Res [J], 10: 5.

[117]CHEN S, QIN L, WU X, et al. 2020. Moderate Fluid Shear Stress Regulates Heme Oxygenase-1 Expression to Promote Autophagy and ECM Homeostasis in the Nucleus Pulposus Cells. Front Cell Dev Biol [J], 8: 127.

[118]OH C D, IM H J, SUH J, et al. 2016. Rho -Associated Kinase Inhibitor Immortalizes Rat Nucleus Pulposus and Annulus Fibrosus Cells: Establishment of Intervertebral Disc Cell Lines With Novel Approaches. Spine (Phila Pa 1976) [J], 41: E255-261.

[119]LAI Y, ZHENG W, QU M, et al. 2022. Kindlin -2 loss in condylar chondrocytes causes spontaneous osteoarthritic lesions in the temporomandibular joint in mice. Int J Oral Sci [J], 14: 33.

[120]WU X, LAI Y, CHEN S, et al. 2022. Kindlin -2 preserves integrity of the articular cartilage to protect against osteoarthritis. Nat Aging [J], 2: 332 -347.

[121]WU X, CHEN M, LIN S, et al. 2023. Loss of Pinch Proteins Causes Severe Degenerative Disc Disease -Like Lesions in Mice. Aging Dis [J], 14: 1818 - 1833.

[122]LI J, ZHANG B, LIU W X, et al. 2020. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann Rheum Dis [J], 79: 635 -645.

[123]LEI Y, FU X, LI P, et al. 2020. LIM domain proteins Pinch1/2 regulate chondrogenesis and bone mass in mice. Bone Res [J], 8: 37.

[124]TAM V, CHAN W C W, LEUNG V Y L, et al. 2018. Histological and reference system for the analysis of mouse intervertebral disc. J Orthop Res [J], 36: 233-243.

[125]ZHU X, WANG K, ZHOU F, et al. 2018. Paeoniflorin attenuates atRAL - induced oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress in retinal pigment epithelial cells via triggering Ca(2+)/CaMKII-dependent activation of AMPK. Arch Pharm Res [J], 41: 1009-1018.

[126]XIE Q, WU Q, HORBINSKI C M, et al. 2015. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci [J], 18: 501 -510.

[127]WRIGHT D C, HUCKER K A, HOLLOSZY J O, et al. 2004. Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes [J], 53: 330 -335.

[128]MENG S, CAO J, HE Q, et al. 2015. Metformin activates AMP -activated protein kinase by promoting formation of the alphabetagamma heterotrimeric complex. J Biol Chem [J], 290: 3793 -3802.

[129]HEMANTA D, JIANG X X, FENG Z Z, et al. 2016. Etiology for Degenerative Disc Disease. Chin Med Sci J [J], 31: 185 -191.

[130]SCHOENFELD A J, NELSON J H, BURKS R, et al. 2011. Incidence and risk factors for lumbar degenerative disc disease in the United States military 1999-2008. Mil Med [J], 176: 1320 -1324.

[131]ZHANG S, LIU W, CHEN S, et al. 2022. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res [J], 390: 1 -22.

[132]BONNANS C, CHOU J, WERB Z 2014. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol [J], 15: 786 -801.

[133]ASZODI A, CHAN D, HUNZIKER E, et al. 1998. Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Cell Biol [J], 143: 1399-1412.

[134]ATTIA M, SANTERRE J P, KANDEL R A 2011. The response of annulus fibrosus cell to fibronectin -coated nanofibrous polyurethane -anionic dihydroxyoligomer scaffolds. Biomaterials [J], 32: 450 -460.

[135]BOYD L M, RICHARDSON W J, ALLEN K D, et al. 2008. Early -onset degeneration of the intervertebral disc and vertebral end plate in mice deficient in type IX collagen. Arthritis Rheum [J], 58: 164 -171.

[136]BRIDGEN D T, GILCHRIST C L, RICHARDSON W J, et al. 2013. Integrin - mediated interactions with extracellular matrix proteins for nucleus pulposus cells of the human intervertebral disc. J Orthop Res [J], 31: 1661 -1667.

[137]LI X C, LUO S J, FAN W, et al. 2022. Macrophage polarization regulates intervertebral disc degeneration by modulating cell proliferation, inflammation mediator secretion, and extracellular matrix metabolism. Front Immunol [J], 13: 922173.

[138]BUSER Z, LIU J, THORNE K J, et al. 2014. Inflammatory response of intervertebral disc cells is reduced by fibrin sealant scaffold in vitro. J Tissue Eng Regen Med [J], 8: 77-84.

[139]CHEN L, LIAO J, KLINEBERG E, et al. 2017. Small leucine -rich proteoglycans (SLRPs): characteristics and function in the intervertebral disc. J Tissue Eng Regen Med [J], 11: 602 -608.

[140]FENG C, HE J, ZHANG Y, et al. 2017. Collagen -derived N-acetylated proline - glycine-proline upregulates the expression of pro -inflammatory cytokines and extracellular matrix proteases in nucleus pulposus cells via the NF -kappaB and MAPK signaling pathways. Int J Mol Med [J], 40: 164 -174.

[141]FENG C, ZHANG Y, YANG M, et al. 2015. Collagen -Derived N-Acetylated Proline-Glycine-Proline in Intervertebral Discs Modulates CXCR1/2 Expression and Activation in Cartilage Endplate Stem Cells to Induce Migration and Differentiation Toward a Pro -Inflammatory Phenotype. Stem Cells [J], 33: 3558-3568.

[142]PATIL P, NIEDERNHOFER L J, ROBBINS P D, et al. 2018. Cellular senescence in intervertebral disc aging and degeneration. Curr Mol Biol Rep [J], 4: 180-190.

[143]ASHRAF S, SANTERRE P, KANDEL R 2021. Induced senescence of healthy nucleus pulposus cells is mediated by paracrine signaling from TNF -alphaactivated cells. FASEB J [J], 35: e21795.

[144]VEROUTIS D, KOUROUMALIS A, LAGOPATI N, et al. 2021. Evaluation of senescent cells in intervertebral discs by lipofuscin staining. Mech Ageing Dev [J], 199: 111564.

[145]ZHANG K, ZHANG Y, ZHANG C, et al. 2021. Upregulation of P53 promotes nucleus pulposus cell apoptosis in intervertebral disc degeneration through upregulating NDRG2. Cell Biol Int [J], 45: 1966 -1975.

[146]SUN Y, WANG X, FU G, et al. 2021. MicroRNA-199a-5p accelerates nucleus pulposus cell apoptosis and IVDD by inhibiting SIRT1 -mediated deacetylation of p21. Mol Ther Nucleic Acids [J], 24: 634 -645.

[147]FENG C, LIU H, YANG M, et al. 2016. Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways. Cell Cycle [J], 15: 1674 - 1684.

[148]WANG F, CAI F, SHI R, et al. 2016. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis Cartilage [J], 24: 398-408.

[149]FENG C, YANG M, ZHANG Y, et al. 2018. Cyclic mechanical tension reinforces DNA damage and activates the p53 -p21-Rb pathway to induce premature senescence of nucleus pulposus cells. Int J Mol Med [J], 41: 3316 - 3326.

[150]WU Y, SHEN S, SHI Y, et al. 2022. Senolytics: Eliminating Senescent Cells and Alleviating Intervertebral Disc Degeneration. Front Bioeng Biotechnol [J], 10: 823945.

[151]SHAO Z, WANG B, SHI Y, et al. 2021. Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF -kappaB axis. Osteoarthritis Cartilage [J], 29: 413-422.

[152]NOVAIS E J, TRAN V A, JOHNSTON S N, et al. 2021. Long -term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age -dependent intervertebral disc degeneration in mice. Nat Commun [J], 12: 5213.

[153]CHEN Z, YANG X, ZHOU Y, et al. 2021. Dehydrocostus Lactone Attenuates the Senescence of Nucleus Pulposus Cells and Ameliorates Intervertebral Disc Degeneration via Inhibition of STING-TBK1/NF-kappaB and MAPK Signaling. Front Pharmacol [J], 12: 641098.

[154]ZHOU C, YAO S, FU F, et al. 2022. Morroniside attenuates nucleus pulposus cell senescence to alleviate intervertebral disc degeneration via inhibiting ROS-Hippo-p53 pathway. Front Pharmacol [J], 13: 942435.

[155]CARLING D 2017. AMPK signalling in health and disease. Curr Opin Cell Biol [J], 45: 31-37.

[156]SALT I P, JOHNSON G, ASHCROFT S J, et al. 1998. AMP -activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Biochem J [J], 335 ( Pt 3): 533 -539.

[157]MARSIN A S, BERTRAND L, RIDER M H, et al. 2000. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol [J], 10: 1247 -1255.

[158]RUSSELL R R, 3RD, LI J, COVEN D L, et al. 2004. AMP -activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest [J], 114: 495 -503.

[159]HARDIE D G 2007. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol [J], 8: 774 -785.

[160]HARDIE D G 2014. AMPK--sensing energy while talking to other signaling pathways. Cell Metab [J], 20: 939 -952.

[161]MIHAYLOVA M M, SHAW R J 2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol [J], 13: 1016-1023.

[162]HERZIG S, SHAW R J 2018. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol [J], 19: 121 -135.

[163]WANG Z, SHEN J, FENG E, et al. 2021. AMPK as a Potential Therapeutic Target for Intervertebral Disc Degeneration. Front Mol Biosci [J], 8: 789087.

[164]SONG Y, LI S, GENG W, et al. 2018. Sirtuin 3 -dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration. Redox Biol [J], 19: 339 -353.

[165]LIU Y, LIN J, WU X, et al. 2019. Aspirin -Mediated Attenuation of Intervertebral Disc Degeneration by Ameliorating Reactive Oxygen Species In Vivo and In Vitro. Oxid Med Cell Longev [J], 2019: 7189854.

[166]HAN X, TAI H, WANG X, et al. 2016. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell [J], 15: 416 -427.

[167]CHEN D, XIA D, PAN Z, et al. 2016. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo. Cell Death Dis [J], 7: e2441.

[168]WANG X H, ZHU L, HONG X, et al. 2016. Resveratrol attenuated TNF -alphainduced MMP-3 expression in human nucleus pulposus cells by activating autophagy via AMPK/SIRT1 signaling pathway. Exp Biol Med (Maywood) [J], 241: 848-853.

[169]REN C, JIN J, LI C, et al. 2022. Metformin inactivates the cGAS -STING pathway through autophagy and suppresses senescence in nucleus pulposus cells. J Cell Sci [J], 135.

[170]SONG Y, WU Z, ZHAO P 2022. The Function of Metformin in Aging -Related Musculoskeletal Disorders. Front Pharmacol [J], 13: 865524.

[171]BAHRAMBEIGI S, YOUSEFI B, RAHIMI M, et al. 2019. Metformin; an old antidiabetic drug with new potentials in bone disorders. Biomed Pharmacother [J], 109: 1593-1601.

[172]CHEN S, GAN D, LIN S, et al. 2022. Metformin in aging and aging -related diseases: clinical applications and relevant mechanisms. Theranostics [J], 12: 2722-2740.

[173]FENG X, PAN J, LI J, et al. 2020. Metformin attenuates cartilage degeneration in an experimental osteoarthritis model by regulating AMPK/mTOR. Aging (Albany NY) [J], 12: 1087 -1103.

[174]LIAO Z, LI S, LU S, et al. 2021. Metformin facilitates mesenchymal stem cell-derived extracellular nanovesicles release and optimizes therapeutic efficacy in intervertebral disc degeneration. Biomaterials [J], 274: 120850.

[175]RAMANATHAN R, FIRDOUS A, DONG Q, et al. 2022. Investigation into the anti-inflammatory properties of metformin in intervertebral disc cells. JOR Spine [J], 5: e1197.

[176]HAN Y, YUAN F, DENG C, et al. 2019. Metformin decreases LPS -induced inflammatory response in rabbit annulus fibrosus stem/progenitor cells by blocking HMGB1 release. Aging (Albany NY) [J], 11: 10252 -10265.

[177]ZHENG Y, FU X, LIU Q, et al. 2019. Characterization of Cre recombinase mouse lines enabling cell type -specific targeting of postnatal intervertebral discs. J Cell Physiol [J], 234: 14422 -14431.

所在学位评定分委会
生物学
国内图书分类号
Q593
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778450
专题南方科技大学医学院
推荐引用方式
GB/T 7714
金小琬. 脂质激酶分子 Pip5k1γ 在老年小鼠椎间盘退变中的功能及分子机制研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133114-金小琬-南方科技大学医(4930KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[金小琬]的文章
百度学术
百度学术中相似的文章
[金小琬]的文章
必应学术
必应学术中相似的文章
[金小琬]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。