[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-49.
[2] SIEGEL R L, MILLER K D, GODING SAUER A, et al. Colorectal cancer statistics, 2020 [J]. CA: A Cancer Journal for Clinicians, 2020, 70(3): 145-64.
[3] BILLER L H, SCHRAG D. Diagnosis and Treatment of Metastatic Colorectal Cancer [J]. JAMA, 2021, 325(7): 669.
[4] CIARDIELLO F, CIARDIELLO D, MARTINI G, et al. Clinical management of metastatic colorectal cancer in the era of precision medicine [J]. CA: A Cancer Journal for Clinicians, 2022, 72(4): 372-401.
[5] XU L, YIN Y, LI Y, et al. A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer [J]. Proceedings of the National Academy of Sciences, 2021, 118(13): e2012748118.
[6] ISLAM MR A S, RAHMAN MM, et al. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products [J]. Chem Biol Interact, 2022, 368: 110-70.
[7] THANIKACHALAM K K G. Colorectal Cancer and Nutrition [J]. Nutrients, 2019, 11(1): 164.
[8] HE K, GAN W-J. Wnt/β-Catenin Signaling Pathway in the Development and Progression of Colorectal Cancer [J]. Cancer Management and Research, 2023, Volume 15: 435-48.
[9] CHEN X, GUO F, HOFFMEISTER M, et al. Non‐steroidal anti‐inflammatory drugs, polygenic risk score and colorectal cancer risk [J]. Alimentary Pharmacology & Therapeutics, 2021, 54(2): 167-75.
[10] SANDLER R S, HALABI S, BARON J A, et al. A Randomized Trial of Aspirin to Prevent Colorectal Adenomas in Patients with Previous Colorectal Cancer [J]. New England Journal of Medicine, 2003, 348(10): 883-90.
[11] BARON J A, COLE B F, SANDLER R S, et al. A Randomized Trial of Aspirin to Prevent Colorectal Adenomas [J]. New England Journal of Medicine, 2003, 348(10): 891-9.
[12] FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression [J]. Science, 2020, 368(6487): eaaw5473.
[13] REINFELD B I, MADDEN M Z, WOLF M M, et al. Cell-programmed nutrient partitioning in the tumour microenvironment [J]. Nature, 2021, 593(7858): 282-8.
[14] KOPPENOL W H, BOUNDS P L, DANG C V. Otto Warburg's contributions to current concepts of cancer metabolism [J]. Nature Reviews Cancer, 2011, 11(5): 325-37.
[15] GATENBY RA G R. Why do cancers have high aerobic glycolysis? [J]. Nat Rev Cancer, 2004, 4(11): 891-9.
[16] LI T, COPELAND C, LE A. Glutamine Metabolism in Cancer [M]. Springer International Publishing. 2021: 17-38.
[17] CHEN Y, JR., MAHIEU N G, HUANG X, et al. Lactate metabolism is associated with mammalian mitochondria [J]. Nature Chemical Biology, 2016, 12(11): 937-43.
[18] NETEA-MAIER RT S J, NETEA MG. Metabolic changes in tumor cells and tumor-associated macrophages [J]. 2018, 413: 102-9.
[19] PATRA K C, HAY N. The pentose phosphate pathway and cancer [J]. Trends in Biochemical Sciences, 2014, 39(8): 347-54.
[20] GIACOMINI I R E, PASUT G, MONTOPOLI M. The Pentose Phosphate Pathway and Its Involvement in Cisplatin Resistance [J]. Int J Mol Sci, 2020, 21(3): 937.
[21] YANG L, VENNETI S, NAGRATH D. Glutaminolysis: A Hallmark of Cancer Metabolism [J]. Annual Review of Biomedical Engineering, 2017, 19(1): 163-94.
[22] FENG Y P G, HEYNEN-GENEL S, et al. Identification and Characterization of IMD-0354 as a Glutamine Carrier Protein Inhibitor in Melanoma [J]. Mol Cancer Ther, 2021, 20(5): 816-32.
[23] SCALISE M P L, GALLUCCIO M, et al. Glutamine Transport and Mitochondrial Metabolism in Cancer Cell Growth [J]. Front Oncol, 2017, 7: 306.
[24] YOO HC P S, NAM M, ET et al. A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells [J]. Cell Metab, 2020, 31(2): 267-83.
[25] WANG JB E J, FUJI R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation [J]. Cancer Cell, 2010, 18(3): 207-19.
[26] LUKEY MJ C A, KATT WP, et al. Liver-Type Glutaminase GLS2 Is a Druggable Metabolic Node in Luminal-Subtype Breast Cancer [J]. Cell Rep, 2019, 29(1): 76-88.
[27] LI B C Y, MENG G, et al. Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway [J]. EBioMedicine, 2019, 39: 239-54.
[28] STINE ZE D C. Glutamine Skipping the Q into Mitochondria [J]. Trends Mol Med, 2020, 26(1): 6-7.
[29] METALLO C M, GAMEIRO P A, BELL E L, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia [J]. Nature, 2012, 481(7381): 380-4.
[30] SUN RC D N. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth [J]. Cell Metab, 2014, 19(2): 285-92.
[31] LU V T M. Alpha-ketoglutarate: a "magic" metabolite in early germ cell development [J]. EMBO J, 2019, 38(1).
[32] DINARDO CD P K, LOREN AW, et al. Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia [J]. Blood, 2013, 121(24): 4917-24.
[33] DANG L, WHITE D W, GROSS S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate [J]. Nature, 2009, 462(7274): 739-44.
[34] CHANG S, YIM S, PARK H. The cancer driver genes IDH1/2, JARID1C/ KDM5C, and UTX/ KDM6A: crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism [J]. Experimental & Molecular Medicine, 2019, 51(6): 1-17.
[35] YOO HC Y Y, SUNG Y, HAN JM. Glutamine reliance in cell metabolism [J]. Exp Mol Med, 2020, 52(9): 1496-516.
[36] YANG S, LIAN G. ROS and diseases: role in metabolism and energy supply [J]. Molecular and Cellular Biochemistry, 2020, 467(1-2): 1-12.
[37] ZHANG J, WANG X, VIKASH V, et al. ROS and ROS-Mediated Cellular Signaling [J]. Oxidative Medicine and Cellular Longevity, 2016, 2016: 1-18.
[38] GORRINI C, HARRIS I S, MAK T W. Modulation of oxidative stress as an anticancer strategy [J]. Nature Reviews Drug Discovery, 2013, 12(12): 931-47.
[39] SAPPINGTON DR S E, HIATT G, et al. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines [J]. Biochim Biophys Acta, 2016, 1860(4): 836-43.
[40] TOMPKINS SC S R, RAUCKHORST AJ, et al. Disrupting Mitochondrial Pyruvate Uptake Directs Glutamine into the TCA Cycle away from Glutathione Synthesis and Impairs Hepatocellular Tumorigenesis [J]. Cell Rep, 2019, 28(10): 2608-19.
[41] XIANG L, MOU J, SHAO B, et al. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization [J]. Cell Death & Disease, 2019, 10(2).
[42] XIANG Y S Z, XIA J, et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis [J]. J Clin Invest, 2015, 125(6): 2293-306.
[43] WANG JB E J, FUJI R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation [J]. Cancer Cell, 2010, 18(3): 207-19.
[44] LE A L A, HAMAKER M, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells [J]. Cell Metab, 2012, 15(1): 110-21.
[45] ROBINSON MM M S, TSUKAMOTO T, et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) [J]. Biochem J, 2007, 406(3): 407-14.
[46] ELGADI KM M R, QIAN M, et al. Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol Genomics [J]. Physiol Genomics, 1999, 1(2): 51-62.
[47] SHUKLA K F D, THOMAS AG, et al. Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors [J]. J Med Chem, 2012, 55(23): 10551-63.
[48] NABI K L A. The Intratumoral Heterogeneity of Cancer Metabolism [J]. Adv Exp Med Biol, 2018, 1063: 131-45.
[49] ELGOGARY A X Q, POORE B, et al. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer [J]. Proc Natl Acad Sci U S A, 2016, 113(36): 5328-36.
[50] WISE DR D R, MANCUSO A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction [J]. Proc Natl Acad Sci U S A, 2008, 105(48): 18782-7.
[51] LUKEY M J, WILSON K F, CERIONE R A. Therapeutic strategies impacting cancer cell glutamine metabolism [J]. Future Medicinal Chemistry, 2013, 5(14): 1685-700.
[52] FUCHS BC B B. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? [J]. Semin Cancer Biol, 2005, 15(4): 254-66.
[53] HASSANEIN M H M, SHIOTA M, et al. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival [J]. Clin Cancer Res, 2013, 19(3): 560-70.
[54] CHIU M S C, TAURINO G, et al. GPNA inhibits the sodium-independent transport system L for neutral amino acids [J]. Amino Acids, 2017, 49(8): 1365-73.
[55] BRöER A F S, BRöER S. Disruption of Amino Acid Homeostasis by Novel ASCT2 Inhibitors Involves Multiple Targets [J]. Front Pharmacol, 2018, 9: 785.
[56] THANGAVELU K, CHONG Q Y, LOW B C, et al. Structural Basis for the Active Site Inhibition Mechanism of Human Kidney-Type Glutaminase (KGA) [J]. Scientific Reports, 2014, 4(1).
[57] AHLUWALIA G S, GREM J L, HAO Z, et al. Metabolism and action of amino acid analog anti-cancer agents [J]. Pharmacology & Therapeutics, 1990, 46(2): 243-71.
[58] HUA Q Z B, XU G, et al. CEMIP, a novel adaptor protein of OGT, promotes colorectal cancer metastasis through glutamine metabolic reprogramming via reciprocal regulation of β-catenin [J]. Oncogene, 2021, 40(46): 6443-55.
[59] HAO Y S Y, LI Q, et al. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer [J]. Nat Commun, 2016, 7(1): 11971.
[60] WANG Z L F, FAN N, et al. Targeting Glutaminolysis: New Perspectives to Understand Cancer Development and Novel Strategies for Potential Target Therapies [J]. Front Oncol, 2020, 10: 508-89.
[61] ARDLIE K G, DELUCA D S, SEGRè A V, et al. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans [J]. Science, 2015, 348(6235): 648-60.
[62] SUZUKI S, TANAKA T, POYUROVSKY M V, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species [J]. Proceedings of the National Academy of Sciences, 2010, 107(16): 7461-6.
[63] ZHANG J W C, CHEN M, et al. Epigenetic silencing of glutaminase 2 in human liver and colon cancers [J]. BMC Cancer, 2013, 13(1): 601.
[64]
[64] CASSAGO A F A, FERREIRA IM, et al. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism [J]. Proc Natl Acad Sci U S A, 2012, 109(4): 1092-7.
[65] XU L Y Y, LI Y, et al. A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer [J]. Proc Natl Acad Sci U S A, 2021, 118(13).
[66]
[66] WANG S, LV W, LI T, et al. Dynamic regulation and functions of mRNA m6A modification [J]. Cancer Cell International, 2022, 22(1).
[67] LIU Z, GAO L, CHENG L, et al. The roles of N6-methyladenosine and its target regulatory noncoding RNAs in tumors: classification, mechanisms, and potential therapeutic implications [J]. Experimental & Molecular Medicine, 2023, 55(3): 487-501.
[68] PARK O H, HA H, LEE Y, et al. Endoribonucleolytic Cleavage of m6A-Containing RNAs by RNase P/MRP Complex [J]. Molecular Cell, 2019, 74(3): 494-507.e8.
[69] HUANG H, WENG H, SUN W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation [J]. Nature Cell Biology, 2018, 20(3): 285-95.
[70] LIU J, DOU X, CHEN C, et al. N6 -methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription [J]. Science, 2020, 367(6477): 580-6.
[71] ZHANG F, KANG Y, WANG M, et al. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets [J]. Human Molecular Genetics, 2018, 27(22): 3936-50.
[72] KE S, PANDYA-JONES A, SAITO Y, et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover [J]. Genes & Development, 2017, 31(10): 990-1006.
[73] FISH L, NAVICKAS A, CULBERTSON B, et al. Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay [J]. Molecular Cell, 2019, 75(5): 967-81.e9.
[74] PENDLETON KE C B, LIU K, et al. The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention [J]. Cell, 2017, 169(5): 824-35.
[75] XIAO W, ADHIKARI S, DAHAL U, et al. Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing [J]. Molecular Cell, 2016, 61(4): 507-19.
[76] DL B. Mechanisms of alternative pre-messenger RNA splicing [J]. Annu Rev Biochem, 2003, 72: 291-336.
[77] REIXACHS-SOLé M E E. Uncovering the impacts of alternative splicing on the proteome with current omics techniques [J]. Wiley Interdiscip Rev RNA, 2022, 13(4): e1707.
[78] KAHLES A L K, TOUSSAINT NC, et al. Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients [J]. Cancer Cell, 2018, 34(2): 211-24.
[79] DVINGE H K E, ABDEL-WAHAB O, et al. RNA splicing factors as oncoproteins and tumour suppressors [J]. Nat Rev Cancer, 2016, 16(7): 413-30.
[80] URBANSKI LM L N, ANCZUKóW O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics [J]. Wiley Interdiscip Rev RNA, 2018, 9(4): e1476.
[81] BRADLEY RK A O. RNA splicing dysregulation and the hallmarks of cancer [J]. Nat Rev Cancer, 2023, 23(3): 135-55.
[82] JIN X, DEMERE Z, NAIR K, et al. A metastasis map of human cancer cell lines [J]. Nature, 2020, 588(7837): 331-6.
[83] LI T, HU P-S, ZUO Z, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma [J]. Molecular Cancer, 2019, 18(1).
修改评论