中文版 | English
题名

垂直石墨烯/硅/碳负极材料制备及其储锂性能研究

其他题名
PREPARATION AND LITHIUM STORAGE PERFORMANCE OF VERTICAL GRAPHENE/ SILICON/ CARBON ANODE
姓名
姓名拼音
DENG Chengfang
学号
12232375
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
魏磊
导师单位
机械与能源工程系
论文答辩日期
2024-05-09
论文提交日期
2024-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

在近年来,随着锂离子电池储能系统在电动汽车、便携式设备和可穿 戴设备中的广泛应用,对电池性能的要求日益提高。尽管石墨作为传统的 负极材料在使用中普遍存在,但其有限的容量成为了提升锂离子电池能量 密度的瓶颈。鉴于硅具有高比容量和低工作电压平台等优点,它成为了研 究者关注的焦点。然而,硅在充放电过程中会发生严重的体积膨胀,以及 其本征电导率较低,这些问题限制了其在锂离子电池中的应用。 为了解决上述问题,本研究采用纳米硅作为原材料,通过热化学气相 沉积法成功制备了垂直石墨烯/硅(VGs@Si,简称:烯硅)复合材料,以 此来改善硅的导电性能,并通过沥青复合的方式提高材料的首次库伦效率。 此外,本研究还探索了一种柔性氮掺杂多孔碳骨架制备的新方法,将所得 VGs@Si 与其复合得到氮掺杂多孔碳/烯硅复合材料(PNCF/VGs@Si),并 对合成材料的理化性质及电化学性能进行了深入研究。本文的主要工作如 下: (1)采用 CH4 作为碳源,H2 作为刻蚀剂,通过对生长时间和气体流 量比等关键参数的细致调整,优化了制备工艺。实验结果显示,经过优化 的 VGs@Si 复合材料展现出了优秀的电化学性能,包括高质量比容量 (2563.5 mAh/g),高倍率性能(20 A/g,572.3 mAh/g),以及良好的循环 稳定性(0.1 A/g,100圈,98.5%)。 (2)基于VGs@Si 复合材料首次库伦效率低(72.2%)的问题,本研 究以沥青为碳源对 VGs@Si包覆,经碳化后成功地在 VGs@Si表面形成了 一层均匀、连续的碳层,经过测试复合材料的首次库伦效率显著提升 (82.5%),表明沥青碳层可以明显的改善初始库伦效率。 (3)以非溶剂诱导相分离工艺为基础制备氮掺杂多孔碳(PNCF)并 将 VGs@Si 与其复合制备了 PNCF/VGs@Si 复合材料,并对复合材料储锂 性能进行研究,实验结果表明,PNCF/VGs@Si 表现出优秀的循环性能 (0.1 A/g,100 圈,90.1%)。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] CHEN Q, ZHU R, LIU S, et al. Self-templating synthesis of silicon nanorods from natural sepiolite for high-performance lithium-ion battery anodes [J]. Journal of Materials Chemistry A, 2018, 6(15): 6356-6362.
[2] MANTHIRAM A. An outlook on lithium ion battery technology [J]. ACS Central Science, 2017, 3(10): 1063-1069.
[3] SHI Q, ZHOU J, ULLAH S, et al. A review of recent developments in Si/C composite materials for Li-ion batteries [J]. Energy Storage Materials, 2021, 34: 735-754.
[4] 邱鑫豪, 陈世杰. 全球锂电池市场状况和应用发展综述 [J]. 工业设计, 2016, (06): 178-181.
[5] 周忠仁, 张英杰, 董鹏, 等. 锂离子电池负极材料研究概述 [J]. 有色设备, 2020, (02): 7-11.
[6] 戎泽, 李子坤, 杨书展, 等. 锂离子电池用碳负极材料综述 [J]. 广东化工, 2018, 45(02): 117-119.
[7] YU X, WU X, LIANG Y, et al. Recent progress and challenges in multivalent metal-ion hybrid capacitors [J]. Batteries & Supercaps, 2021, 4(8): 1201-1220.
[8] KASAVAJJULA U, WANG C, APPLEBY A J. Nano and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J]. Journal of Power Sources, 2007, 163(2): 1003-1039.
[9] FEREYDOONI A, YUE C, CHAO Y. A brief overview of silicon nanoparticles as anode material: A transition from lithium-ion to sodium-ion batteries [J]. Small, 2023: e2307275.
[10] FUKATA N, MITOME M, BANDO Y, et al. Lithium ion battery anodes using Si-Fe based nanocomposite structures [J]. Nano Energy, 2016, 26: 37-42.
[11] QIAO S, ZHOU Q, MA M, et al. Advanced anode materials for rechargeable sodium-ion batteries [J]. ACS Nano, 2023, 17(12): 11220-11252.
[12] NOWAK S, WINTER M. Elemental analysis of lithium ion batteries [J]. Journal of Analytical Atomic Spectrometry, 2017, 32(10): 1833-1847.
[13] WANG D, ZHOU C, CAO B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries [J]. Energy Storage Materials, 2020, 24: 312-318.
[14] DING R, ZHANG J, QI J, et al. N-doped dual carbon-confined 3D architecture rGO/Fe3O4/AC nanocomposite for high-performance lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13470-13478.
[15] TAO J, LU L, WU B, et al. Dramatic improvement enabled by incorporating thermal conductive TiN into Si-based anodes for lithium ion batteries [J]. Energy Storage Materials, 2020, 29: 367-376.
[16] ZHU X, YANG D, LI J, et al. Nanostructured Si-based anodes for lithium-ion batteries [J]. Journal of Nanoscience and Nanotechnology, 2015, 15(1): 15-30.
[17] WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries [J]. Nano Today, 2012, 7(5): 414-429.
[18] XIE Z, MA Z, WANG Y, et al. A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries [J]. RSC Advances, 2016, 6(27): 22383-22388.
[19] LI H, Huang X, Chen L, et al. A High capacity nano-Si composite anode material for lithium rechargeable batteries [J]. Electrochemical and Solid-State Letters, 1999, 2(11): 547.
[20] WANG R, LIU P, LANG J, et al. Coupling effect between ultra-small Mn3O4 nanoparticles and porous carbon microrods for hybrid supercapacitors [J]. Energy Storage Materials, 2017, 6: 53-60.
[21] WU J, CAO Y, ZHAO H, et al. The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries [J]. Carbon Energy, 2019, 1(1): 57-76.
[22] CHEN C, WANG Z, ZHANG B, et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries [J]. Energy Storage Materials, 2017, 8: 161-168.
[23] AZAM M A, SAFIE N E, AHMAD A S, et al. Recent advances of silicon, carbon composites and tin oxide as new anode materials for lithium-ion battery: A comprehensive review [J]. Journal of Energy Storage, 2021, 33: 102096.
[24] LEE D G, CHO J Y, KIM J H, et al. Dispersant-free colloidal and interfacial engineering of Si-nanocarbon hybrid anode materials for high-performance Li-ion batteries [J]. Advanced Functional Materials, 2023: 2311353.
[25] LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes [J]. Nano Letters, 2012, 12(6): 3315-3321.
[26] LIU N, LU Z, ZHAO J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes [J]. Nature Nanotechnology, 2014, 9(3): 187-192.
[27] DI F, WANG Z, GE C, et al. Hierarchical pomegranate-structure design enables stress management for volume release of Si anode [J]. Journal of Materials Science & Technology, 2023, 157: 1-10.
[28] ZHANG Z, HUANG X, ZHANG L, et al. Study on the evolution of oxygenated structures in low-temperature coal tar during the preparation of needle coke by co-carbonization [J]. Fuel, 2022, 307.
[29] 周颖, 安光, 王六平, 等. 中间相沥青及其应用研究进展 [J]. 化工进展, 2011, 30(11): 2456-2460+2531.
[30] 魏强强, 刘秀军, 樊帧, 等. 中间相沥青族组成制备C/C复合材料及性能研究 [J]. 材料导报, 2014, 28(22): 63-66+71.
[31] CHOI S H, NAM G, CHAE S, et al. Robust pitch on silicon nanolayer-embedded graphite for suppressing undesirable volume expansion [J]. Advanced Energy Materials, 2019, 9(4): 1803121.
[32] HUANG Y, LI W, PENG J, et al. Structure design and performance of the graphite/silicon/carbon nanotubes/carbon (GSCC) composite as the anode of a Li-ion battery [J]. Energy & Fuels, 2021, 35(16): 13491-13498.
[33] LI H, LI H, LAI Y, et al. Revisiting the preparation progress of nano-structured Si anodes toward industrial application from the perspective of cost and scalability [J]. Advanced Energy Materials, 2022, 12(7): 2102181.
[34] JUN S, LEE G, SONG Y B, et al. Interlayer engineering and prelithiation: empowering Si anodes for low-pressure-operating all-solid-state batteries [J]. Small, 2024: e2309437.
[35] MU Y, HAN M, WU B, et al. Nitrogen, oxygen-codoped vertical graphene arrays coated 3D flexible carbon nanofibers with high silicon content as an ultrastable anode for superior lithium storage [J]. Advance Science, 2022, 9(6): e2104685.
[36] ZHANG H, ZONG P, CHEN M, et al. In situ synthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as Anode for Li-ion batteries [J]. ACS Nano, 2019, 13(3): 3054-3062.
[37] LI W, SUN X, YU Y. Si-, Ge-, Sn-based anode materials for lithium-ion batteries: from structure design to electrochemical performance[J]. Small Methods, 2017, 1(3): 1600037.
[38] SHEN C, FANG X, GE M, et al. Hierarchical carbon-coated ball-milled silicon: synthesis and applications in free-standing electrodes and high-voltage full lithium-ion batteries [J]. ACS Nano, 2018, 12(6): 6280-6291.
[39] LIANG Y, ZHANG L, WANG H, et al. Fabrication of a novel electrochemical sensor based on tin disulfide/multi-walled carbon nanotunbes-modified electrode for rutin determination in natural vegetation [J]. Arabian Journal of Chemistry, 2023, 16(5): 104613.
[40] SI L, SONG B, YAN H, et al. A first-principles study of the lithium insertion behaviors in graphene/Si composites anodes [J]. Computational Materials Science, 2024, 233: 112754.
[41] SUI D, SI L, LI C, et al. A comprehensive review of graphene-based anode materials for lithium-ion capacitors [J]. Chemistry, 2021, 3(4): 1215-1246.
[42] SUN F, HUANG K, QI X, et al. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode [J]. Nanoscale, 2013, 5(18): 8586-8592.
[43] AN Y, TIAN Y, LIU C, et al. One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li ion and MXene-based Li metal batteries [J]. ACS Nano, 2022, 16(3): 4560-4577.
[44] THIRUMAL V, YUVAKKUMAR R, KUMAR P S, et al. Si@MXene/graphene crumbled spherical nanocomposites [J]. International Journal of Energy Research, 2022, 46(15): 21548-21557.
[45] JIANG T T, XIONG Q L, YANG H, et al. Performance and application of Si/TiCT (MXene) composites in lithium ion battery [J]. Journal of Physics: Energy, 2023, 5(1): 014020.
[46] MAN Q, AN Y, LIU C, et al. Interfacial design of silicon/carbon anodes for rechargeable batteries: A review [J]. Journal of Energy Chemistry, 2023, 76: 576-600.
[47] SUN L, JIANG X W, JIN Z. Interfacial engineering of porous SiOx@C composite anodes toward high-performance lithium-ion batteries [J]. Chemical Engineering Journal, 2023, 474: 145960.
[48] GAO P B, WU H M, LIU W H, et al. Heterogeneous isomorphism hollow SiGe nanospheres with porous carbon reinforcing for superior electrochemical lithium storage [J]. Chemical Engineering Journal, 2023, 79: 222-231.
[49] LI Z P, LIANG Z, MA Z H, et al. Boosting the anode performance of the porous Si coated with polydopamine and cross-linked with sodium alginate [J]. Journal of Alloys and Compounds, 2024, 971: 172738.
[50] LI S S, WANG G Y, MENG T, et al. An interconnected silicon-carbon conductive framework for dissipating mechanical strain for advanced Li-ion storage [J]. Journal of Materials Chemistry A, 2023, 11(16): 8747-8756.
[51] HAN M S, MU Y B, WEI L, et al. Multilevel carbon architecture of subnanoscopic silicon for fast-charging high-energy-density lithium-ion batteries [J]. Carbon Energy, 2023: e377.
[52] BAI X, ZHANG H, LIN J P. A three-dimensionally hierarchical interconnected silicon-based composite for long-cycle-life anodes towards advanced Li-ion batteries [J]. Journal of Alloys and Compounds, 2022, 925: 166563.
[53] KIM H, HAN B, CHOO J, et al. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries [J]. Angewandte Chemie International Edition, 2008, 47(52): 10151-10154.
[54] REN Y, YIN X C, XIAO R, et al. Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries [J]. Chemical Engineering Journal, 2022, 431: 133982.
[55] XIE C, XU N, SHI P, et al. Flexible and robust silicon/carbon nanotube anodes exhibiting high areal capacities [J]. Journal of Colloid and Interface Science, 2022, 625: 871-878.
[56] LV Z Q, LING M X, YUE M, et al. Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: Toward high-energy and high-power applications [J]. Journal of Energy Chemistry, 2021, 55: 361-390.
[57] GUILLEN G R, PAN Y, LI M, et al. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review [J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 3798-3817.
[58] WANG H H, JUNG J T, KIM J F, et al. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS) [J]. Journal of Membrane Science, 2019, 574: 44-54.
[59] WANG D-M, LAI J-Y. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation [J]. Current Opinion in Chemical Engineering, 2013, 2(2): 229-237.
[60] GHOSH A K, JEONG B-H, HUANG X, et al. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties [J]. Journal of Membrane Science, 2008, 311(1-2): 34-45.
[61] LOU S, CHENG X, ZHAO Y, et al. Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability [J]. Nano Energy, 2017, 34: 15-25.
[62] LIU J, WANG J, XU C, et al. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design [J]. Advanced Science, 2018, 5(1): 1700322.
[63] HAN M, LIN Z, JI X, et al. Growth of flexible and porous surface layers of vertical graphene sheets for accommodating huge volume change of silicon in lithium-ion battery anodes [J]. Materials Today Energy, 2020, 17: 100445.
[64] HE Z, XIAO Z, YUE H, et al. Single-Walled carbon nanotube film as an efficient conductive network for Si-based anodes [J]. Advanced Functional Materials, 2023, 33(26): 2300094.
[65] YANG N, SHAO R, ZHANG Z, et al. Gelatin-derived carbon: Carbonization mechanism and application in K-ion storage [J]. Carbon, 2021, 178: 775-782.

所在学位评定分委会
材料与化工
国内图书分类号
TQ152
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778453
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
邓程方. 垂直石墨烯/硅/碳负极材料制备及其储锂性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232375-邓程方-机械与能源工程(5915KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[邓程方]的文章
百度学术
百度学术中相似的文章
[邓程方]的文章
必应学术
必应学术中相似的文章
[邓程方]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。