中文版 | English
题名

Twin Fuzzy Networks With Interpolation Consistency Regularization for Weakly-Supervised Anomaly Detection

作者
发表日期
2024
DOI
发表期刊
ISSN
1941-0034
卷号PP期号:99
摘要
Weakly-supervised anomaly detection (WSAD) has gained increasing attention due to its core idea of enhancing the performance of unsupervised anomaly detection by leveraging prior knowledge from a limited number of labeled anomalies. In this paper, we introduce a novel WSAD framework that surpasses current state-of-the-art methods in terms of accuracy, exhibits greater robustness to data uncertainty, and is more efficient in utilizing limited labeled anomalies. Our method is built upon twin fuzzy networks (TFN) that learn robust fuzzy if-then rules from a pairwise training set. TFN can extract informative prototypes of training instances, exploiting the very few labeled anomalies efficiently. A two-stage sequential training scheme, comprising fuzzy C-means clustering and interpolation consistency regularization, ensures that the fuzzy rules form a solid foundation for anomaly detection while improving TFN's generalization ability. The training process of TFN relies on closed-form optimization rather than gradient-based methods, leading to significantly faster training speeds. Comprehensive experiments conducted on numerous real-world datasets confirm the advantages of the TFN framework over existing alternatives.
相关链接[IEEE记录]
收录类别
学校署名
第一
ESI学科分类
ENGINEERING
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778468
专题工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.CIBCI lab, Australian AI Institute, the School of Computer Science, University of Technology, Sydney, NSW, Australia
3.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
4.School of Data Science, Lingnan University, Hong Kong SAR, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhi Cao,Ye Shi,Yu-Cheng Chang,et al. Twin Fuzzy Networks With Interpolation Consistency Regularization for Weakly-Supervised Anomaly Detection[J]. IEEE Transactions on Fuzzy Systems,2024,PP(99).
APA
Zhi Cao,Ye Shi,Yu-Cheng Chang,Xin Yao,&Chin-Teng Lin.(2024).Twin Fuzzy Networks With Interpolation Consistency Regularization for Weakly-Supervised Anomaly Detection.IEEE Transactions on Fuzzy Systems,PP(99).
MLA
Zhi Cao,et al."Twin Fuzzy Networks With Interpolation Consistency Regularization for Weakly-Supervised Anomaly Detection".IEEE Transactions on Fuzzy Systems PP.99(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhi Cao]的文章
[Ye Shi]的文章
[Yu-Cheng Chang]的文章
百度学术
百度学术中相似的文章
[Zhi Cao]的文章
[Ye Shi]的文章
[Yu-Cheng Chang]的文章
必应学术
必应学术中相似的文章
[Zhi Cao]的文章
[Ye Shi]的文章
[Yu-Cheng Chang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。