中文版 | English
题名

Robust $k$ -Means-Type Clustering for Noisy Data

作者
发表日期
2024
DOI
发表期刊
ISSN
2162-2388
卷号PP期号:99
摘要
Data clustering is a fundamental machine learning task that seeks to categorize a dataset into homogeneous groups. However, real data usually contain noise, which poses significant challenges to clustering algorithms. In this article, motivated by how the $k$ -means algorithm is derived from a Gaussian mixture model (GMM), we propose a robust $k$ -means-type algorithm, named $k$ -means-type clustering based on $t$ -distribution (KMTD), by assuming that the data points are drawn from a special multivariate $t$ -mixture model (TMM). Compared to the Gaussian distribution, the $t$ -distribution has a fatter tail. The proposed algorithm is more robust to noise. Like the $k$ -means algorithm, the proposed algorithm is simpler than those based on a full TMM. Both synthetic and actual data are used to illustrate the proposed algorithm’s performance and efficiency. The experimental results demonstrated that the proposed algorithm operates more quickly than other sophisticated algorithms and, in most cases, achieves higher accuracy than the other algorithms.
相关链接[IEEE记录]
收录类别
SCI ; EI
学校署名
其他
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778472
专题南方科技大学
作者单位
1.Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
2.Sichuan University, Key Laboratory of Data Protection and Intelligent Management, Ministry of Education, Chengdu, China
3.Department of Mathematics, University of Connecticut, Storrs, CT, USA
4.Future Network Research Institute, Southern University of Science and Technology, Shenzhen, China
5.Department of Strategic and Advanced Interdisciplinary Research, Peng Cheng Laboratory, Shenzhen, China
6.Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China
推荐引用方式
GB/T 7714
Xi Xiao,Hailong Ma,Guojun Gan,et al. Robust $k$ -Means-Type Clustering for Noisy Data[J]. IEEE Transactions on Neural Networks and Learning Systems,2024,PP(99).
APA
Xi Xiao,Hailong Ma,Guojun Gan,Qing Li,Bin Zhang,&Shutao Xia.(2024).Robust $k$ -Means-Type Clustering for Noisy Data.IEEE Transactions on Neural Networks and Learning Systems,PP(99).
MLA
Xi Xiao,et al."Robust $k$ -Means-Type Clustering for Noisy Data".IEEE Transactions on Neural Networks and Learning Systems PP.99(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xi Xiao]的文章
[Hailong Ma]的文章
[Guojun Gan]的文章
百度学术
百度学术中相似的文章
[Xi Xiao]的文章
[Hailong Ma]的文章
[Guojun Gan]的文章
必应学术
必应学术中相似的文章
[Xi Xiao]的文章
[Hailong Ma]的文章
[Guojun Gan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。