中文版 | English
题名

Network Learning in Quadratic Games From Best-Response Dynamics

作者
发表日期
2024
DOI
发表期刊
ISSN
1558-2566
卷号PP期号:99
摘要
We investigate the capacity of an adversary to learn the underlying interaction network through repeated best response actions in linear-quadratic games. The adversary strategically perturbs the decisions of a set of action-compromised players and observes the sequential decisions of a set of action-leaked players. The central question pertains to whether such an adversary can fully reconstruct or effectively estimate the underlying interaction structure among the players. To begin with, we establish a series of results that characterize the learnability of the interaction graph from the adversary’s perspective by drawing connections between this network learning problem in games and classical system identification theory. Subsequently, taking into account the inherent stability and sparsity constraints inherent in the network interaction structure, we propose a stable and sparse system identification framework for learning the interaction graph based on complete player action observations. Moreover, we present a stable and sparse subspace identification framework for learning the interaction graph when only partially observed player actions are available. Finally, we demonstrate the efficacy of the proposed learning frameworks through numerical examples.
相关链接[IEEE记录]
收录类别
SCI ; EI
学校署名
第一
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778473
专题工学院_系统设计与智能制造学院
作者单位
1.Shenzhen Key Laboratory of Control Theory and Intelligent Systems and the School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
2.School of Aerospace, Mechanical and Mechatronic Engineering, Australian Center for Robotics, The University of Sydney, Sydney, NSW, Australia
3.College of Control Science and Engineering, Zhejiang University, Hangzhou, China
4.School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
第一作者单位系统设计与智能制造学院
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Kemi Ding,Yijun Chen,Lei Wang,et al. Network Learning in Quadratic Games From Best-Response Dynamics[J]. IEEE/ACM Transactions on Networking,2024,PP(99).
APA
Kemi Ding,Yijun Chen,Lei Wang,Xiaoqiang Ren,&Guodong Shi.(2024).Network Learning in Quadratic Games From Best-Response Dynamics.IEEE/ACM Transactions on Networking,PP(99).
MLA
Kemi Ding,et al."Network Learning in Quadratic Games From Best-Response Dynamics".IEEE/ACM Transactions on Networking PP.99(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kemi Ding]的文章
[Yijun Chen]的文章
[Lei Wang]的文章
百度学术
百度学术中相似的文章
[Kemi Ding]的文章
[Yijun Chen]的文章
[Lei Wang]的文章
必应学术
必应学术中相似的文章
[Kemi Ding]的文章
[Yijun Chen]的文章
[Lei Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。