中文版 | English
题名

Chance-Constrained Multiple-Choice Knapsack Problem: Model, Algorithms, and Applications

作者
发表日期
2024
DOI
发表期刊
ISSN
2168-2275
卷号PP期号:99
摘要
The multiple-choice knapsack problem (MCKP) is a classic NP-hard combinatorial optimization problem. Motivated by several significant real-world applications, this work investigates a novel variant of MCKP called the chance-constrained MCKP (CCMCKP), where item weights are random variables. In particular, we focus on the practical scenario of CCMCKP, in which the probability distributions of random weights are unknown and only sample data is available. We first present the problem formulation of CCMCKP and then establish the two benchmark sets. The first set contains synthetic instances, while the second set is designed to simulate a real-world application scenario of a telecommunication company. To solve CCMCKP, we propose a data-driven adaptive local search (DDALS) algorithm. Compared to existing stochastic optimization and distributionally robust optimization methods, the main novelty of DDALS lies in its data-driven solution evaluation approach, which does not make any assumptions about the underlying distributions and is highly effective even when faced with a high intensity of the chance constraint and a limited amount of sample data. Experimental results demonstrate the superiority of DDALS over the baselines on both the benchmarks. Finally, DDALS can serve as the baseline for future research, and the benchmark sets are open-sourced to further promote research on this challenging problem.
相关链接[IEEE记录]
收录类别
SCI ; EI
学校署名
第一
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778482
专题工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Centre for Frontier AI Research, Agency for Science, Technology and Research, Singapore, Singapore
3.Reliability Laboratory, Huawei Technologies Co Ltd, Shenzhen, China
4.College of Computing and Data Science, Nanyang Technological University, Singapore, Singapore
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Xuanfeng Li,Shengcai Liu,Jin Wang,et al. Chance-Constrained Multiple-Choice Knapsack Problem: Model, Algorithms, and Applications[J]. IEEE Transactions on Cybernetics,2024,PP(99).
APA
Xuanfeng Li,Shengcai Liu,Jin Wang,Xiao Chen,Yew-Soon Ong,&Ke Tang.(2024).Chance-Constrained Multiple-Choice Knapsack Problem: Model, Algorithms, and Applications.IEEE Transactions on Cybernetics,PP(99).
MLA
Xuanfeng Li,et al."Chance-Constrained Multiple-Choice Knapsack Problem: Model, Algorithms, and Applications".IEEE Transactions on Cybernetics PP.99(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xuanfeng Li]的文章
[Shengcai Liu]的文章
[Jin Wang]的文章
百度学术
百度学术中相似的文章
[Xuanfeng Li]的文章
[Shengcai Liu]的文章
[Jin Wang]的文章
必应学术
必应学术中相似的文章
[Xuanfeng Li]的文章
[Shengcai Liu]的文章
[Jin Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。