题名 | TAIL: A Terrain-Aware Multi-Modal SLAM Dataset for Robot Locomotion in Deformable Granular Environments |
作者 | |
通讯作者 | Jia,Zhenzhong |
发表日期 | 2024-07-01
|
DOI | |
发表期刊 | |
EISSN | 2377-3766
|
卷号 | 9期号:7页码:6696-6703 |
摘要 | —Terrain-aware perception holds the potential to improve the robustness and accuracy of autonomous robot navigation in the wilds, thereby facilitating effective off-road traversals. However, the lack of multi-modal perception across various motion patterns hinders the solutions of Simultaneous Localization And Mapping (SLAM), especially when confronting non-geometric hazards in demanding landscapes. In this paper, we first propose a Terrain-Aware multI-modaL (TAIL) dataset tailored to deformable and sandy terrains. It incorporates various types of robotic proprioception and distinct ground interactions for the unique challenges and benchmark of multi-sensor fusion SLAM. The versatile sensor suite comprises stereo frame cameras, multiple ground-pointing RGB-D cameras, a rotating 3D LiDAR, an IMU, and an RTK device. This ensemble is hardware-synchronized, well-calibrated, and self-contained. Utilizing both wheeled and quadrupedal locomotion, we efficiently collect comprehensive sequences to capture rich unstructured scenarios. It spans the spectrum of scope, terrain interactions, scene changes, ground-level properties, and dynamic robot characteristics. We benchmark several state-of-the-art SLAM methods against ground truth and provide performance validations. Corresponding challenges and limitations are also reported. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
EI入藏号 | 20242316203517
|
EI主题词 | Benchmarking
; Cameras
; Landforms
; Mapping
; Off road vehicles
; Robots
; Stereo image processing
|
EI分类号 | Surveying:405.3
; Geology:481.1
; Radar Systems and Equipment:716.2
; Data Processing and Image Processing:723.2
; Robotics:731.5
; Optical Devices and Systems:741.3
; Photographic Equipment:742.2
|
Scopus记录号 | 2-s2.0-85194879902
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/778494 |
专题 | 工学院_机械与能源工程系 南方科技大学 |
作者单位 | 1.the Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Department of Mechanical and Energy Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,518055,China 2.the Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,SUSTech,Shenzhen,518055,China 3.the Department of Electronic and Computer Engineering,The Hong Kong University of Science and Technology,Hong Kong |
第一作者单位 | 机械与能源工程系; 南方科技大学 |
通讯作者单位 | 机械与能源工程系; 南方科技大学 |
第一作者的第一单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Yao,Chen,Ge,Yangtao,Shi,Guowei,et al. TAIL: A Terrain-Aware Multi-Modal SLAM Dataset for Robot Locomotion in Deformable Granular Environments[J]. IEEE Robotics and Automation Letters,2024,9(7):6696-6703.
|
APA |
Yao,Chen.,Ge,Yangtao.,Shi,Guowei.,Wang,Zirui.,Yang,Ningbo.,...&Jia,Zhenzhong.(2024).TAIL: A Terrain-Aware Multi-Modal SLAM Dataset for Robot Locomotion in Deformable Granular Environments.IEEE Robotics and Automation Letters,9(7),6696-6703.
|
MLA |
Yao,Chen,et al."TAIL: A Terrain-Aware Multi-Modal SLAM Dataset for Robot Locomotion in Deformable Granular Environments".IEEE Robotics and Automation Letters 9.7(2024):6696-6703.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论