中文版 | English
题名

TAIL: A Terrain-Aware Multi-Modal SLAM Dataset for Robot Locomotion in Deformable Granular Environments

作者
通讯作者Jia,Zhenzhong
发表日期
2024-07-01
DOI
发表期刊
EISSN
2377-3766
卷号9期号:7页码:6696-6703
摘要
—Terrain-aware perception holds the potential to improve the robustness and accuracy of autonomous robot navigation in the wilds, thereby facilitating effective off-road traversals. However, the lack of multi-modal perception across various motion patterns hinders the solutions of Simultaneous Localization And Mapping (SLAM), especially when confronting non-geometric hazards in demanding landscapes. In this paper, we first propose a Terrain-Aware multI-modaL (TAIL) dataset tailored to deformable and sandy terrains. It incorporates various types of robotic proprioception and distinct ground interactions for the unique challenges and benchmark of multi-sensor fusion SLAM. The versatile sensor suite comprises stereo frame cameras, multiple ground-pointing RGB-D cameras, a rotating 3D LiDAR, an IMU, and an RTK device. This ensemble is hardware-synchronized, well-calibrated, and self-contained. Utilizing both wheeled and quadrupedal locomotion, we efficiently collect comprehensive sequences to capture rich unstructured scenarios. It spans the spectrum of scope, terrain interactions, scene changes, ground-level properties, and dynamic robot characteristics. We benchmark several state-of-the-art SLAM methods against ground truth and provide performance validations. Corresponding challenges and limitations are also reported.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
EI入藏号
20242316203517
EI主题词
Benchmarking ; Cameras ; Landforms ; Mapping ; Off road vehicles ; Robots ; Stereo image processing
EI分类号
Surveying:405.3 ; Geology:481.1 ; Radar Systems and Equipment:716.2 ; Data Processing and Image Processing:723.2 ; Robotics:731.5 ; Optical Devices and Systems:741.3 ; Photographic Equipment:742.2
Scopus记录号
2-s2.0-85194879902
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778494
专题工学院_机械与能源工程系
南方科技大学
作者单位
1.the Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Department of Mechanical and Energy Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,518055,China
2.the Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,SUSTech,Shenzhen,518055,China
3.the Department of Electronic and Computer Engineering,The Hong Kong University of Science and Technology,Hong Kong
第一作者单位机械与能源工程系;  南方科技大学
通讯作者单位机械与能源工程系;  南方科技大学
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Yao,Chen,Ge,Yangtao,Shi,Guowei,et al. TAIL: A Terrain-Aware Multi-Modal SLAM Dataset for Robot Locomotion in Deformable Granular Environments[J]. IEEE Robotics and Automation Letters,2024,9(7):6696-6703.
APA
Yao,Chen.,Ge,Yangtao.,Shi,Guowei.,Wang,Zirui.,Yang,Ningbo.,...&Jia,Zhenzhong.(2024).TAIL: A Terrain-Aware Multi-Modal SLAM Dataset for Robot Locomotion in Deformable Granular Environments.IEEE Robotics and Automation Letters,9(7),6696-6703.
MLA
Yao,Chen,et al."TAIL: A Terrain-Aware Multi-Modal SLAM Dataset for Robot Locomotion in Deformable Granular Environments".IEEE Robotics and Automation Letters 9.7(2024):6696-6703.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yao,Chen]的文章
[Ge,Yangtao]的文章
[Shi,Guowei]的文章
百度学术
百度学术中相似的文章
[Yao,Chen]的文章
[Ge,Yangtao]的文章
[Shi,Guowei]的文章
必应学术
必应学术中相似的文章
[Yao,Chen]的文章
[Ge,Yangtao]的文章
[Shi,Guowei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。