中文版 | English
题名

Efficient Deep Spiking Multilayer Perceptrons With Multiplication-Free Inference

作者
发表日期
2024
DOI
发表期刊
ISSN
2162-2388
卷号PP期号:99
摘要
Advancements in adapting deep convolution architectures for spiking neural networks (SNNs) have significantly enhanced image classification performance and reduced computational burdens. However, the inability of multiplication-free inference (MFI) to align with attention and transformer mechanisms, which are critical to superior performance on high-resolution vision tasks, imposes limitations on these gains. To address this, our research explores a new pathway, drawing inspiration from the progress made in multilayer perceptrons (MLPs). We propose an innovative spiking MLP architecture that uses batch normalization (BN) to retain MFI compatibility and introduce a spiking patch encoding (SPE) layer to enhance local feature extraction capabilities. As a result, we establish an efficient multistage spiking MLP network that blends effectively global receptive fields with local feature extraction for comprehensive spike-based computation. Without relying on pretraining or sophisticated SNN training techniques, our network secures a top-one accuracy of 66.39% on the ImageNet-1K dataset, surpassing the directly trained spiking ResNet-34 by 2.67%. Furthermore, we curtail computational costs, model parameters, and simulation steps. An expanded version of our network compares with the performance of the spiking VGG-16 network with a 71.64% top-one accuracy, all while operating with a model capacity 2.1 times smaller. Our findings highlight the potential of our deep SNN architecture in effectively integrating global and local learning abilities. Interestingly, the trained receptive field in our network mirrors the activity patterns of cortical cells.
相关链接[IEEE记录]
收录类别
SCI ; EI
学校署名
第一
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778504
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Advanced Computing and Storage Laboratory, Huawei Technologies Company Ltd, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Boyan Li,Luziwei Leng,Shuaijie Shen,et al. Efficient Deep Spiking Multilayer Perceptrons With Multiplication-Free Inference[J]. IEEE Transactions on Neural Networks and Learning Systems,2024,PP(99).
APA
Boyan Li.,Luziwei Leng.,Shuaijie Shen.,Kaixuan Zhang.,Jianguo Zhang.,...&Ran Cheng.(2024).Efficient Deep Spiking Multilayer Perceptrons With Multiplication-Free Inference.IEEE Transactions on Neural Networks and Learning Systems,PP(99).
MLA
Boyan Li,et al."Efficient Deep Spiking Multilayer Perceptrons With Multiplication-Free Inference".IEEE Transactions on Neural Networks and Learning Systems PP.99(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Boyan Li]的文章
[Luziwei Leng]的文章
[Shuaijie Shen]的文章
百度学术
百度学术中相似的文章
[Boyan Li]的文章
[Luziwei Leng]的文章
[Shuaijie Shen]的文章
必应学术
必应学术中相似的文章
[Boyan Li]的文章
[Luziwei Leng]的文章
[Shuaijie Shen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。