题名 | Efficient Deep Spiking Multilayer Perceptrons With Multiplication-Free Inference |
作者 | |
发表日期 | 2024
|
DOI | |
发表期刊 | |
ISSN | 2162-2388
|
卷号 | PP期号:99 |
摘要 | Advancements in adapting deep convolution architectures for spiking neural networks (SNNs) have significantly enhanced image classification performance and reduced computational burdens. However, the inability of multiplication-free inference (MFI) to align with attention and transformer mechanisms, which are critical to superior performance on high-resolution vision tasks, imposes limitations on these gains. To address this, our research explores a new pathway, drawing inspiration from the progress made in multilayer perceptrons (MLPs). We propose an innovative spiking MLP architecture that uses batch normalization (BN) to retain MFI compatibility and introduce a spiking patch encoding (SPE) layer to enhance local feature extraction capabilities. As a result, we establish an efficient multistage spiking MLP network that blends effectively global receptive fields with local feature extraction for comprehensive spike-based computation. Without relying on pretraining or sophisticated SNN training techniques, our network secures a top-one accuracy of 66.39% on the ImageNet-1K dataset, surpassing the directly trained spiking ResNet-34 by 2.67%. Furthermore, we curtail computational costs, model parameters, and simulation steps. An expanded version of our network compares with the performance of the spiking VGG-16 network with a 71.64% top-one accuracy, all while operating with a model capacity 2.1 times smaller. Our findings highlight the potential of our deep SNN architecture in effectively integrating global and local learning abilities. Interestingly, the trained receptive field in our network mirrors the activity patterns of cortical cells. |
相关链接 | [IEEE记录] |
收录类别 | |
学校署名 | 第一
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/778504 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 2.Advanced Computing and Storage Laboratory, Huawei Technologies Company Ltd, Shenzhen, China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Boyan Li,Luziwei Leng,Shuaijie Shen,et al. Efficient Deep Spiking Multilayer Perceptrons With Multiplication-Free Inference[J]. IEEE Transactions on Neural Networks and Learning Systems,2024,PP(99).
|
APA |
Boyan Li.,Luziwei Leng.,Shuaijie Shen.,Kaixuan Zhang.,Jianguo Zhang.,...&Ran Cheng.(2024).Efficient Deep Spiking Multilayer Perceptrons With Multiplication-Free Inference.IEEE Transactions on Neural Networks and Learning Systems,PP(99).
|
MLA |
Boyan Li,et al."Efficient Deep Spiking Multilayer Perceptrons With Multiplication-Free Inference".IEEE Transactions on Neural Networks and Learning Systems PP.99(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论