中文版 | English
题名

Towards High Efficient Long-Horizon Planning With Expert-Guided Motion-Encoding Tree Search

作者
通讯作者Wang,Jiaole
发表日期
2024-07-01
DOI
发表期刊
EISSN
2377-3766
卷号9期号:7页码:6272-6279
摘要
Autonomous driving holds promise for increased safety, optimized traffic management, and a new level of convenience in transportation. While model-based reinforcement learning approaches such as MuZero enables long-term planning, the exponentially increase of the number of search nodes as the tree goes deeper significantly effect the searching efficiency. To deal with this problem, in this letter we proposed the expert-guided motion-encoding tree search (EMTS) algorithm. EMTS extends the MuZero algorithm by representing possible motions with a comprehensive motion primitives latent space and incorporating expert policies to improve the searching efficiency. The comprehensive motion primitives latent space enables EMTS to sample arbitrary trajectories instead of raw action to reduce the depth of the search tree. And the incorporation of expert policies guided the search and training phases the EMTS algorithm to enable early convergence. In the experiment section, the EMTS algorithm is compared with other four algorithms in three challenging scenarios. The experiment result verifies the effectiveness and the searching efficiency of the proposed EMTS algorithm.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20242116123858
EI主题词
Efficiency ; Encoding (symbols) ; Job analysis ; Signal encoding ; Trees (mathematics)
EI分类号
Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Production Engineering:913.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85193476565
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778508
专题工学院_电子与电气工程系
作者单位
1.The Chinese University of Hong Kong,Department of Electronic Engineering,Hong Kong,999077,Hong Kong
2.Macao Polytechnic University,Faculty of Applied Science,999078,Macao
3.Harbin Institute of Technology (Shenzhen),School of Mechanical Engineering and Automation,Shenzhen,518055,China
4.Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,518055,China
5.The Chinese University of Hong Kong,Department of Electronic Engineering,Hong Kong
6.The Chinese University of Hong Kong,Shenzhen Research Institute,Shenzhen,518057,China
推荐引用方式
GB/T 7714
Zhou,Tong,Lyu,Erli,Cen,Guangdu,et al. Towards High Efficient Long-Horizon Planning With Expert-Guided Motion-Encoding Tree Search[J]. IEEE Robotics and Automation Letters,2024,9(7):6272-6279.
APA
Zhou,Tong.,Lyu,Erli.,Cen,Guangdu.,Zha,Ziqi.,Qi,Senmao.,...&Meng,Max Q.H..(2024).Towards High Efficient Long-Horizon Planning With Expert-Guided Motion-Encoding Tree Search.IEEE Robotics and Automation Letters,9(7),6272-6279.
MLA
Zhou,Tong,et al."Towards High Efficient Long-Horizon Planning With Expert-Guided Motion-Encoding Tree Search".IEEE Robotics and Automation Letters 9.7(2024):6272-6279.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhou,Tong]的文章
[Lyu,Erli]的文章
[Cen,Guangdu]的文章
百度学术
百度学术中相似的文章
[Zhou,Tong]的文章
[Lyu,Erli]的文章
[Cen,Guangdu]的文章
必应学术
必应学术中相似的文章
[Zhou,Tong]的文章
[Lyu,Erli]的文章
[Cen,Guangdu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。