题名 | Towards High Efficient Long-Horizon Planning With Expert-Guided Motion-Encoding Tree Search |
作者 | |
通讯作者 | Wang,Jiaole |
发表日期 | 2024-07-01
|
DOI | |
发表期刊 | |
EISSN | 2377-3766
|
卷号 | 9期号:7页码:6272-6279 |
摘要 | Autonomous driving holds promise for increased safety, optimized traffic management, and a new level of convenience in transportation. While model-based reinforcement learning approaches such as MuZero enables long-term planning, the exponentially increase of the number of search nodes as the tree goes deeper significantly effect the searching efficiency. To deal with this problem, in this letter we proposed the expert-guided motion-encoding tree search (EMTS) algorithm. EMTS extends the MuZero algorithm by representing possible motions with a comprehensive motion primitives latent space and incorporating expert policies to improve the searching efficiency. The comprehensive motion primitives latent space enables EMTS to sample arbitrary trajectories instead of raw action to reduce the depth of the search tree. And the incorporation of expert policies guided the search and training phases the EMTS algorithm to enable early convergence. In the experiment section, the EMTS algorithm is compared with other four algorithms in three challenging scenarios. The experiment result verifies the effectiveness and the searching efficiency of the proposed EMTS algorithm. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
EI入藏号 | 20242116123858
|
EI主题词 | Efficiency
; Encoding (symbols)
; Job analysis
; Signal encoding
; Trees (mathematics)
|
EI分类号 | Information Theory and Signal Processing:716.1
; Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
; Production Engineering:913.1
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
Scopus记录号 | 2-s2.0-85193476565
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/778508 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.The Chinese University of Hong Kong,Department of Electronic Engineering,Hong Kong,999077,Hong Kong 2.Macao Polytechnic University,Faculty of Applied Science,999078,Macao 3.Harbin Institute of Technology (Shenzhen),School of Mechanical Engineering and Automation,Shenzhen,518055,China 4.Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,518055,China 5.The Chinese University of Hong Kong,Department of Electronic Engineering,Hong Kong 6.The Chinese University of Hong Kong,Shenzhen Research Institute,Shenzhen,518057,China |
推荐引用方式 GB/T 7714 |
Zhou,Tong,Lyu,Erli,Cen,Guangdu,et al. Towards High Efficient Long-Horizon Planning With Expert-Guided Motion-Encoding Tree Search[J]. IEEE Robotics and Automation Letters,2024,9(7):6272-6279.
|
APA |
Zhou,Tong.,Lyu,Erli.,Cen,Guangdu.,Zha,Ziqi.,Qi,Senmao.,...&Meng,Max Q.H..(2024).Towards High Efficient Long-Horizon Planning With Expert-Guided Motion-Encoding Tree Search.IEEE Robotics and Automation Letters,9(7),6272-6279.
|
MLA |
Zhou,Tong,et al."Towards High Efficient Long-Horizon Planning With Expert-Guided Motion-Encoding Tree Search".IEEE Robotics and Automation Letters 9.7(2024):6272-6279.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论