中文版 | English
题名

Automatic Estimation of Fresnel Zones in Migrated Dip-Angle Gathers Using Semantic Segmentation Model

作者
发表日期
2024
DOI
发表期刊
ISSN
1558-0644
卷号62
摘要
Implementing Fresnel zones-based stacking is a pursuit in various seismic imaging methods. However, the estimation of Fresnel zones remains a challenge in 3-D migration. Migrated dip-angle gathers provide a visible domain for estimating Fresnel zones. An analytical estimation (i.e., a model-driven method) faces limitations in automatically estimating Fresnel zones in migrated dip-angle gathers in real-world situations due to complex reflections, nonuniform coverage, and noises. Human interaction remains necessary for precisely estimating Fresnel zones in migrated dip-angle gathers. Due to the high number of Fresnel zones in 3-D cases, interpolation is necessary to fill in the gaps between manually estimated zones. Aiming to reduce the workload of human interaction and mitigate interpolation errors, we propose a semantic segmentation model (i.e., a deep learning-based data-driven method) to estimate Fresnel zones in migrated dip-angle gathers automatically. We transform the estimation of Fresnel zones into a binary classification task of each pixel in dip-angle gathers. Instead of training the network using the entire dip-angle gather images, we train the network using patches to make the network focus on learning the detailed and general features within the patches. Our proposed network, named deep-supervised attention-UNet, is trained using a deep-supervised method along with a hierarchical hybrid loss function to segment the dip-angle gather on different scales. This approach yields superior segmentation results compared to the UNet model in qualitative and quantitative aspects. We test the efficiency and practicability of our method using a marine field dataset. The signal-to-noise ratio (SNR) of migration results obtained using the Fresnel zones estimated by our method is improved significantly.
相关链接[IEEE记录]
收录类别
SCI ; EI
学校署名
第一
ESI学科分类
GEOSCIENCES
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778510
专题理学院_地球与空间科学系
南方科技大学
作者单位
1.Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China
2.Guangdong Provincial Key Laboratory of Geophysical High-Resolution Imaging Technology, Southern University of Science and Technology, Shenzhen, China
第一作者单位地球与空间科学系;  南方科技大学
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Feng Zhu,Jincheng Xu,Zhengwei Li,et al. Automatic Estimation of Fresnel Zones in Migrated Dip-Angle Gathers Using Semantic Segmentation Model[J]. IEEE Transactions on Geoscience and Remote Sensing,2024,62.
APA
Feng Zhu,Jincheng Xu,Zhengwei Li,Kai Yang,&Jianfeng Zhang.(2024).Automatic Estimation of Fresnel Zones in Migrated Dip-Angle Gathers Using Semantic Segmentation Model.IEEE Transactions on Geoscience and Remote Sensing,62.
MLA
Feng Zhu,et al."Automatic Estimation of Fresnel Zones in Migrated Dip-Angle Gathers Using Semantic Segmentation Model".IEEE Transactions on Geoscience and Remote Sensing 62(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Feng Zhu]的文章
[Jincheng Xu]的文章
[Zhengwei Li]的文章
百度学术
百度学术中相似的文章
[Feng Zhu]的文章
[Jincheng Xu]的文章
[Zhengwei Li]的文章
必应学术
必应学术中相似的文章
[Feng Zhu]的文章
[Jincheng Xu]的文章
[Zhengwei Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。