中文版 | English
题名

深圳市极端降雨时空演变及其对福田河雨季水质的影响研究

其他题名
STUDY ON THE SPATIO-TEMPORAL EVOLUTION OF EXTREME RAINFALL IN SHENZHEN AND ITS IMPACTS ON WATER QUALITY OF FUTIAN RIVER IN THE RAINY SEASON
姓名
姓名拼音
WANG Junyang
学号
12132220
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
史海匀
导师单位
环境科学与工程学院
论文答辩日期
2024-05-10
论文提交日期
2024-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

极端降水事件的发生会引起区域径流、水质等地面水文要素发生改变,而温度、风速等气象水文要素的改变会导致极端水文事件频发。受地理环境以及人文环境的影响,水文气象要素具有一定的区域性分布特征,由此引发的极端降水事件在不同的区域具有不同的分布特征。在城市发展的过程中,水文气象要素的时空分布格局随之改变。极端降水事件对区域水文气象要素如径流和水质会产生显著影响,尤其在城市化迅速的地区,这一影响尤为突出。因此,探究城市发展过程中极端降水分布特征的变化以及极端降水对水质等的影响对区域暴雨风险评估、城市规划建设以及生态环境可持续发展具有重要意义。

本研究选定深圳市作为研究区域,基于中国区域地面气象要素驱动数据集(1979-2018 年)中的降水数据,结合极端降水指标,通过 Mann-Kendall 趋势分析法、Sen’s 坡度法和小波分析法等方法从极端降水量、暴雨频次等方面分析了深圳市近四十年极端降水的空间分布变化,并对深圳市的极端降水高风险区进行识别,进而掌握暴雨中心的变化情况以及极端降水在不同时间尺度上的变化特征。为进一步探究极端降水对区域径流水质的影响,基于极端降水高风险区的识别结果选定福田河流域作为径流水质研究对象,通过SWAT(Soil and Water Assessment Tool)模型对福田河流域水文水质进行建模,探究在不同极端降水事件中污染物浓度对极端降水的响应规律。本研究的主要结论如下:

(1)在 1979-2018 年间,深圳市极端降水频率及强度整体上南部强于北部,西部的上升趋势较东部更为显著;从极端降水量和暴雨频次两方面分析,深圳市极端降水高风险区位置随城市化进程从分散趋于集中,在福田和罗湖两区最为稳定。

(2)极端降水高风险区的月均暴雨日数和月最大日降水量在每个年代均呈上升趋势,尤其在 20 世纪 90 年代最为显著;极端降水高风险区的年降水量呈下降趋势,前后存在 6~8 年和 1~2 年的振荡周期;年暴雨日数稳定在 3~19 d 之间且呈下降趋势,而年最大日降水量呈上升趋势;季节降水量较为稳定,春、夏、秋季降水量均存在明显的振荡周期。

(3)以福田河流域为研究区域建立SWAT 模型,受可获得数据限制,利用博罗站实测径流数据对模型参数进行率定和验证,通过计算,决定系数 R2 和纳什系数 NS 均满足模型模拟精度的要求,模型可以很好地在东江流域开展径流模拟;代入参数最佳值,验证福田河模拟污染物浓度是否与实测污染物浓度相近。结果表明,福田河四个监测点的水质模拟值与实测值的 R2 和 NS 计算值均符合模型模拟精度要求,所建模型适用于福田河流域的污染物迁移变化模拟。

(4)通过分析同一年中不同场次极端降水事件中福田河径流对降水的响应时间以及降水对福田河氮磷的影响,发现不同极端降水事件中,降水引起径流量增加的时间不同,氨氮浓度在三次极端降水事件中对降水的响应各不相同,分别为不断上升、先上升后下降以及下降三种变化;而总磷浓度在三次极端降水事件中对降水的响应主要分为两种,在第一和第三次事件中不断上升,在事件二中先增加后减小。

其他摘要

Extreme precipitation events lead to changes in regional hydrological elements such as runoff and water quality, while changes in meteorological hydrological elements such as temperature and wind speed can lead to frequent extreme hydrological events. Influenced by geographical and cultural environments, hydro-meteorological elements exhibit regional distribution characteristics, which in turn lead to varying distribution characteristics of extreme precipitation events in different regions. In the process of urban development, the spatiotemporal distribution pattern of hydro-meteorological elements also changes. Moreover, extreme precipitation events significantly impact regional hydro-meteorological elements such as runoff and water quality, especially in areas of rapid urbanization, where the impact is particularly pronounced. Therefore, exploring the changes in the distribution characteristics of extreme precipitation during urban development and its impact on water quality is of great significance for regional storm risk assessment, urban planning and construction, and sustainable ecological development.

This study selected Shenzhen, one of the earliest special economic zones and a national economic center in China, as the research area. Using precipitation data from the Chinese Regional Ground Meteorological Element Drive Dataset (1979-2018) combined with extreme precipitation indices, the study analyzed the spatial distribution changes of extreme precipitation in Shenzhen over the past forty years from aspects such as extreme precipitation amounts and heavy rainfall frequency using methods such as the Mann-Kendall trend analysis, Sen's slope estimator, and wavelet analysis. This analysis identified high-risk areas for extreme precipitation in Shenzhen, thereby understanding changes in the storm center and the characteristics of extreme precipitation across different time scales. To further explore the impact of extreme precipitation on regional runoff water quality, the Futian River Basin was selected as the study object for runoff water quality based on the identification results of high-risk areas of extreme precipitation. Using the SWAT model, the hydrology and water quality of the Futian River Basin were modeled to investigate the response patterns of pollutant concentrations to extreme precipitation during different extreme precipitation events. The main conclusions of this study are as follows:

1) Between 1979 and 2018, the frequency and intensity of extreme precipitation in Shenzhen were generally stronger in the south than in the north, with a more significant upward trend in the west compared to the east. Analyzing from the amount of extreme precipitation and heavy rainfall frequency, the location of the high-risk areas for extreme precipitation in Shenzhen has tended to concentrate from dispersed during the urbanization process, with the most stable locations in Futian and Luohu districts.

2) The monthly average number of stormy days and the maximum daily precipitation amount in the high-risk areas of extreme precipitation showed an upward trend in each decade, especially in the 1990s; the annual precipitation amount in the high-risk areas showed a downward trend, with oscillation periods of 6-8 years and 1-2 years respectively; the annual number of stormy days remained stable between 3-19 days and showed a downward trend, while the maximum daily precipitation amount showed an upward trend; seasonal precipitation amounts were relatively stable, with significant oscillation periods in spring, summer, and autumn.

3) The SWAT model was established using the Futian River Basin as the research area, and the model parameters were calibrated and verified using the measured runoff data from the Boluo Station. After calculation, the coefficient of determination R2 and the Nash coefficient NS both met the accuracy requirements of the model simulation, indicating that the model could perform well in simulating runoff in the Dongjiang River Basin. By inputting the optimal values of the parameters and running the model, it was verified whether the simulated pollutant concentrations were close to the actual measured concentrations. The results showed that the calculated R2 and NS values of water quality simulations at the four monitoring points of the Futian River meet the model simulation accuracy requirements, and the model built is applicable to the simulation of pollutant migration changes in the Futian River Basin.

4) By analyzing the response time of Futian River runoff to precipitation and the impact of precipitation on nitrogen and phosphorus in the river during different extreme precipitation events within the same year, it was found that in different extreme precipitation events, the time it took for precipitation to increase runoff varied. The response of ammonia nitrogen concentration to precipitation varied across the three extreme precipitation events, showing three different patterns: continuously rising, rising then falling, and falling. The response of total phosphorus concentration to precipitation in the three extreme precipitation events mainly exhibited two patterns: continuously rising during the first and third events, and rising then falling during the second event.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] ZHAO Q, GAO L, MENG Q, et al. Nonlinear causal relationships between urbanization and extreme climate events in China[J]. Journal of Cleaner Production, 2024, 434: 139889.
[2] JIANG R, WANG Y, XIE J, et al. Assessment of extreme precipitation events and their teleconnections to El Niño Southern Oscillation, a case study in the Wei River Basin of China[J]. Atmospheric Research, 2019, 218: 372-384.
[3] IPCC: Climate Change: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva: IPCC, 2023.
[4] 林齐根, 王磊斌, 张家慧. 全球温升 1.5℃和 2.0℃情景下中国降雨诱发地质灾害危险性和人口暴露度评估研究[J]. 地球信息科学学报, 2023, 25(1): 177-189.
[5] 孙劭, 李多, 王遵娅, 等. 2018 年全球重大天气气候事件及其成因[J]. 气象, 2019, 45(4): 533-542.
[6] XIE X H, QIN S Y, GOU Z H, et al. Engaging professionals in urban stormwater management: the case of China's Sponge City[J]. Building Research and Information, 2020, 48(7): 719-730.
[7] VU C T, WU T T. Engineered multifunctional sand for enhanced removal of stormwater runoff contaminants in fixed-bed column systems[J]. Chemosphere, 2019, 224: 852-861.
[8] DONG B L, XIA J Q, LI Q J, et.al. Risk assessment for people and vehicles in an extreme urban flood: Case study of the "7.20" flood event in Zhengzhou, China[J]. International Journal of Disaster Risk Reduction, 2022, 80: 103205.
[9] 徐卫红, 刘昌军, 吕娟, 等. 郑州主城区2021 年“7·20”特大暴雨洪涝特征及应对策略[J]. 中国防汛抗旱, 2022, 32(5): 5-10.
[10] 贾龙凤. 保定府河典型污染因子变化规律及水质评价研究[D]. 河北农业大学, 2015.
[11] BARBOSA A, FERNANDES J, DAVID L. Key issues for sustainable urban stormwater management[J]. Water Research, 2012, 46(20): 6787-6798.
[12] GNECCO I, BERRETTA C, LANZA L, et al. Storm water pollution in the urban environment of Genoa, Italy[J]. Atmospheric Research, 2005, 77(1-4): 60-73.
[13] PERDIKAKI K, MASON C F. Impact of road run-off on receiving streams in eastern England[J]. Water Research, 1999, 33(7): 1627-1633.
[14] 林莉峰, 李田, 李贺. 上海市城区非渗透性地面径流的污染特性研究[J].环境科学, 2007, (7): 1430-1434.
[15] LUCKE T, DRAPPER D, HORNBUCKLE A. Urban stormwater characterisation and nitrogen composition from lot-scale catchments – New management implications[J]. Science of the Total Environment, 2018, 619: 65-71.
[16] 杨默远, 潘兴瑶, 刘洪禄, 等. 基于文献数据再分析的中国城市面源污染规律研究[J]. 生态环境学报, 2020, 29(8): 1634-1644.
[17] WANG Y J, ZHAI J Q, GAO G, et al. Risk assessment of rainstorm disasters in the Guangdong–Hong Kong–Macao greater Bay area of China during 1990–2018[J]. Geomatics, Natural Hazards and Risk, 2022, 13(1): 267-288.
[18] 卢陈, 胡晓张, 吴尧, 等. 深圳河流域2023 年“9·7”极端特大暴雨分析及洪涝治理思考[J]. 中国防汛抗旱, 2024, 34(1): 24-28.
[19] 马超. 徐州市某河流水质变化与水期相关性分析[J]. 环境科技, 2021, 34(2): 61-63+78.
[20] 宋芳, 秦华鹏, 陈斯典, 等. 深圳河湾流域水污染源解析研究[J]. 北京大学学报(自然科学版), 2019, 55(2): 317-328.
[21] NIE Y B, SUN J Q. Regional persistent extreme precipitation events over southwest China under different low-latitude intra-seasonal oscillations during the rainy season[J]. Journal of Climate, 2023, 36(9): 2873-2894.
[22] HENNY L, THORNCROFT C D, BOSART L F. Changes in seasonal large-scale extreme precipitation in the Mid-Atlantic and northeast United States,1979-2019[J]. Journal of Climate, 2022, 35(20): 3047-3070.
[23] HU W F, CHEN L L, SHEN J Y, et al. Changes in extreme precipitation on the Tibetan Plateau and its surroundings: trends, patterns, and relationship with Ocean Oscillation Factors[J]. Water, 2022, 14(16): 2509.
[24] 高延康, 赵铜铁钢, 田雨, 等. 台风活动对中国沿海地区极端降水的影响[J]. 水科学进展,2023, 34(1): 1-11.
[25] 史贵君, 郭力源, 林涛, 等. 深圳市降水变化特征及其未来变化情况预测[J]. 长江科学院院报, 2020, 37(5): 28-33.
[26] SHAO W W, SU X, LU J, et al. Urban resilience of Shenzhen City under climate change[J]. Atmosphere, 2021, 12(5): 537.
[27] 卢晓雄, 李晴岚, 陈申鹏, 等. 2008—2017 年深圳降水时空特征研究[J]. 气象科技进展, 2019, 9(3): 171-178.
[28] LIU Y Y, LI L, LIU Y S, et al. Estimation of precipitation induced by tropical cyclones based on machine-learning-enhanced analogue identification of numerical prediction[J]. Meteorological Applications, 2021, 28(2): e1978.
[29] 秦攀, 雷坤, 乔飞. 我国城市非点源污染特征及其模型应用探讨[J]. 环境工程技术学报, 2016, 6(4): 397-406.
[30] 夏青. 城市径流污染系统分析[J]. 环境科学学报, 1982, 2(4): 271-278.
[31] PROTEAU K, BINESH N, DUCHESNE S, et al. Urban runoff quality and quantity control: a functional comparison of various types of detention basins[J]. Urban Water Journal, 2022, 19(10): 1080-1092.
[32] CHEN P, LI W, HE K. Impacts of different types of El Niño events on water quality over the Corn Belt, United States[J]. Hydrology and Earth System Sciences, 2022, 26(19): 4875-4892.
[33] ZEIGER S J, OWEN M R, PAVLOWSKY R T. Simulating nonpoint source pollutant loading in a karst basin: A SWAT modeling application[J]. Science of the Total Environment, 2021, 785: 147295.
[34] ARNOLD J G, SRINIVASAN R, MUTTIAH R S, et al. Large area hydrologic modeling and assessment part I: model development 1[J]. Journal of the American Water Resources Association, 1998, 34(1): 73-89.
[35] GASSMAN P W, REYES M R, GREEN C H, et al. The soil and water assessment tool: historical development, applications, and future research directions[J]. Transactions of the ASABE. 2007, 50(4): 1211-1250.
[36] 赵雪岩, 张鑫, 孙媛. 2005—2030 年无定河流域土地利用变化对径流的影响[J]. 人民黄河, 2023, 45(3): 24-31.
[37] AIT M’BAREK S, BOUSLIHIM Y, ROCHDI A, et al. Effect of LULC data resolution on hydrological and erosion modeling using SWAT model[J]. Modeling Earth Systems and Environment, 2023, 9(1): 831-846.
[38] GREEN C H, ARNOLD J G, WILLIAMS J R, et al. Soil and Water Assessment Tool Hydrologic and Water Quality Evaluation of Poultry Litter Application to Small-Scale Subwatersheds in Texas[J]. Transactions of the ASABE , 2007, 50(4): 1199-1209.
[39] BASU A S, GILL L W, PILLA F, et.al. Assessment of Variations in Runoff Due to Landcover Changes Using the SWAT Model in an Urban River in Dublin, Ireland[J]. Sustainability, 2022, 14(1): 534.
[40] DU B L, WU L, RUAN B N, et.al. CMADS and CFSR Data-Driven SWAT Modeling for Impacts of Climate and Land-Use Change on Runoff[J]. Water, 2023, 15(18): 3240.
[41] SISAY E, HALEFOM A, KHARE D, et al. Hydrological modelling of ungauged urban watershed using SWAT model[J]. Modeling Earth Systems and Environment,2017, 3: 693–702.
[42] 张国锐, 刘成高, 贾玉山, 等. 基于SWAT 模型的沂河流域氮负荷时空分布及其关键来源研究[J]. 水电能源科学, 2023, 41(8): 66-69+65.
[43] 刘庚炜, 戴长雷, 肖瑞晗, 等. 基于SWAT 模型的呼兰河流域生态流量计算[J]. 湿地科学, 2024, 22(2): 181-190.
[44] 刘雪妍, 张会兰, 罗泽宇, 等. 基于SWAT 模型的涪江流域土地利用变化的水沙响应研究[J]. 水土保持研究, 2024, 31(3): 79-89+100.
[45] 张晓瑾, 王月敏, 李贺, 等. 基于SWAT 的泗河流域非点源污染物时空分布特征[J]. 山东大学学报(工学版), 2022, 52(3): 134-140.
[46] CHENG G, ZENG X K, DUAN L, et al. Spatial difference analysis for accessibility to high level hospitals based on travel time in Shenzhen, China[J]. Habitat International, 2016, 53: 485-494.
[47] 姚康, 周丽亚. 从快速城市化到深度城市化:深圳新型城镇化道路探索[J]. 住宅与房地产, 2017, (24): 15-16.
[48] 陈申鹏. 深圳多年降水变化规律和雨岛效应分析[J]. 气象科技进展, 2019, 9(3): 166-170.
[49] HUANG S Q, WANG H M, LIU G F, et al. System comprehensive risk assessment of urban rainstorm-induced flood-water pollution disasters[J]. Environment Science and Pollution Research, 2023, 30(21): 59826–59843.
[50] 陈潜, 郑群峰, 陈训来, 等. 1953—2019 年深圳市暴雨的气候特征[J]. 广东气象, 2020, 42(4): 6-9.
[51] 徐婷, 药蕾, 刘琨, 等. 深圳近 10 年暴雨分区预警信号分布特征及质量评估[J]. 广东气象, 2020, 42(3): 59-62.
[52] 程诗悦, 秦伟, 郭乾坤, 等. 近50 年我国极端降水时空变化特征综述[J].中国水土保持科学, 2019, 17(3): 155-161.
[53] 孔锋, 史培军, 方建, 等. 全球变化背景下极端降水时空格局变化及其影响因素研究进展和展望[J]. 灾害学, 2017, 32(2): 165-174.
[54] MANNN H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3): 245-259.
[55] SHI H Y, LI T J, WEI J H, et al. Spatial and temporal characteristics of precipitation over the Three-River Headwaters region during 1961-2014[J]. Journal of Hydrology:Regional Studies, 2016, 6: 52-65.
[56] SHI H Y, WANG G Q. Impacts of climate change and hydraulic structures on runoff and sediment discharge in the middle Yellow River[J]. Hydrological Processes, 2015, 29(14): 3236-3246.
[57] SEN P K. Estimates of the regression coefficient based on Kendall's Tau[J]. Publications of the American Statistical Association, 1968, 63(324): 1379-1389.
[58] ZHOU Z Q, SHI H Y, FU Q, et al. Assessing spatiotemporal characteristics of drought and its effects on climate-induced yield of maize in northeast China[J]. Journal of Hydrology, 2020, 588: 125097.
[59] LAU K M, WENG H Y. Climate signal detection using wavelet transform: how to make a time series sing[J]. Bulletin of the American meteorological society, 1995, 76(12): 2391-2402.
[60] 张超, 周佐欢, 蔡伟源, 等. 1953—2019 年深圳市极端降水事件变化特征分析[J]. 广东气象, 2020, 42(4): 27-31.
[61] WANG Y, LIU S N, CHEN J, et al. Investigating the spatiotemporal variations of extreme rainfall and its potential driving factors with improved partial wavelet coherence[J]. Frontiers in Environmental Science, 2022, 10: 951468.
[62] 谢涛. 基于小波变换的并行化 MCMC 算法改进[D]. 南昌: 江西财经大学, 2021.
[63] 王光焰. 塔里木河干流区极端气温变化特征研究[J]. 华北水利水电大学学报(自然科学版), 2019, 40(3): 16-26.
[64] BROWN L C, BARNWELL T O. The enhanced stream water quality models QUAL2E and QUAL2E-UNCAS: documentation and user manual[J]. EPA Office of Research and Development Environmental Research Laboratory, 1987, 600: 3-87.
[65] MEHAN S, NEUPANE R P, KUMAR S. Coupling of SUFI 2 and SWAT for Improving the Simulation of Streamflow in an Agricultural Watershed of South Dakota[J]. Journal of Waste Water Treatment and Analysis, 2017, 8(3): 10.
[66] ARNOLD J G, MORIASI D N, GASSMAN P W, et al. SWAT: Model use, calibration, and validation[J]. Transactions of the ASABE. 2012, 55(4): 1491-508.
[67] DOSDOGRU F, KALIN L, WANG R, et al. Potential impacts of land use/cover and climate changes on ecologically relevant flows[J]. Journal of Hydrology, 2020, 584(1): 124654.
[68] LI M, DI Z, DUAN Q. Effect of sensitivity analysis on parameter optimization: Case study based on streamflow simulations using the SWAT model in China[J]. Journal of Hydrology, 2021, 603: 126896.
[69] MENG F, LIU T, WANG H, et al. An Alternative Approach to Overcome the Limitation of HRUs in Analyzing Hydrological Processes Based on Land Use/Cover Change[J]. Water, 2018, 10(4): 434.
[70] HE J, YANG K, TANG W J, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7(1): 25.
[71] YANG K, HE J, TANG W J, et al. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2010, 150(1): 38-46.
[72] MENG X Y, WANG H, CHEN J. Profound Impacts of the China Meteorological Assimilation Dataset for SWAT model (CMADS)[J]. Water, 2019, 11(4): 832.
[73] MENG X Y, WANG H. Significance of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) of East Asia[J]. Water, 2017, 9 (10): 765.
[74] MENG X Y, ZHANG X S, YANG M X, et al. Application and Evaluation of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) in Poorly Gauged Regions in Western China[J]. Water, 2019, 11(10): 2171.
[75] 万一帆, 刘卫林, 刘丽娜, 等. 南昌市城市化进程对极端降水的影响[J]. 水力发电, 2020, 46(8): 27-31.
[76] YAN M, CHAN J C L, ZHAO K. Impacts of urbanization on the precipitation characteristics in Guangdong province, China[J]. Advances in Atmospheric Sciences, 2020, 37(7): 696-706.
[77] SINGH J, KARMAKAR S, PAIMAZUMDER D, et al. Urbanization alters rainfall extremes over the contiguous United States[J]. Environment Research Letters, 2020, 15(7): 074033.
[78] SONG X M, QI J C, ZOU X J, et al. Potential effects of urbanization on precipitation extremes in the Pearl River Delta region, China[J]. Water, 2022, 14(16): 2466.
[79] YU X C, ZHOU W, ZHANG Y. The decadal shift in TC-induced precipitation over China[J]. Atmospheric Research, 2022, 274: 106186.
[80] LI Z Q, NIU F, FAN J W, et al. Long-term impacts of aerosols on the vertical development of clouds and precipitation[J]. Nature Geoscience, 2019, 4(12): 888-894.
[81] MIAO S G, CHEN F, LI Q C, et al. Impacts of urban processes and urbanization on summer precipitation: a case study of heavy rainfall in Beijing on 1 August 2006[J]. Journal of Applied Meteorology and Climatology, 2011, 50(4): 806-825.
[82] ZHANG H, WU C H, CHEN W J, et al. Effect of urban expansion on summer rainfall in the Pearl River Delta, South China[J]. Journal of Hydrology, 2019, 568: 747-757.
[83] 力梅, 李磊, 兰红平. 基于高密度自动站的深圳短时强降水特征分析[J].科学技术与工程, 2014, 14(18): 143-148.
[84] 孙元杰. 城市化发展对汛期降雨特征的影响[J]. 中国高新技术企业, 2015, (25): 94-95.
[85] 李书严, 马京津. 城市化进程对北京地区降水的影响分析[J]. 气象科学, 2011, 31(4): 414-421.
[86] 郑思轶, 刘树华. 北京城市化发展对温度、相对湿度和降水的影响[J]. 气候与环境研究, 2008, 52(2): 123-133.
[87] MAHER N, KAY J E, CAPOTONDI A. Modulation of ENSO teleconnections over North America by the Pacific decadal oscillation[J]. Environmental Research Letters, 2022, 17(11): 114005.
[88] LIU Y Y, LIU Y S, REN H C, et al. Spatial and temporal pattern of rainstorms based on manifold learning algorithm[J]. Water, 2023, 15(0): 37.
[89] ZHANG G Y, LI J J, FAN L L, et al. A joint impact on water vapor transport over South China during the pre-rainy season by ENSO and PDO[J]. Water, 2022, 14(22): 3639.
[90] 丁楠, 俞芳琴, 刘俊, 等. 1961—2011 年深圳市降水变化趋势分析[J]. 水资源与水工程学报, 2017, 28(5): 61-64.
[91] 雒翠, 刘勇, 朱晓庆, 等. 深圳市近 57 年来降水时空演变特征分析[J]. 水利水运工程学报, 2018, (3): 24-31.
[92] 王雪松, 张鸽, 李颖, 等. 常州市典型水生态环境功能区河流水环境质量评价[J]. 人民珠江, 2022, 43(1): 64-73+103.
[93] 晏琴. 污水厂再生水补水对河道水质影响的数值模拟研究[D]. 清华大学, 2018.
[94] NAIKOO M A, AHANGER M A. Land use/land cover change detection and validation of SWAT model on VISHOW sub-basin using remote sensing and GIS techniques[J]. International Journal of Hydrology Science and Technology, 2022, 13(1): 43-56.
[95] JANJIC J, TADIC L. Fields of Application of SWAT Hydrological Model—A Review[J]. Earth, 2023, 4(2): 331-44.
[96] ABBASPOUR K C. SWAT-CUP 2012: SWAT calibration and uncertainty programs–a user manual[J]. Eawag: Dübendorf, Switzerland,2013, 103.
[97] 张昊晨. 基于SWAT 模型的中国东北地区某流域面源污染研究[D]. 哈尔滨工业大学, 2021.
[98] 李立青, 尹澄清, 孔玲莉, 等. 2 次降雨间隔时间对城市地表径流污染负荷的影响[J]. 环境科学, 2007(10): 2287-2293.
[99] 祝明月, 许泽婷, 余香英. 深圳河口总磷变化规律及其影响因素研究[J/OL]. 环境保护科学, 2024, 1-10.
[100] 郭泽慧, 刘洋, 黄懿梅, 等. 降雨和施肥对秦岭北麓俞家河水质的影响[J]. 农业环境科学学报, 2017, 36(1): 158-166.
[101] ZHANG J Y, YU X N, ZHANG Y X, et al. Deposition Characteristics of Water-soluble Inorganic Nitrogen and Organic Nitrogen in Atmospheric Precipitation in the Northern Suburbs of Nanjing[J]. Environmental Science, 2022, 43(7): 3416-3422.
[102] GREEN M B, WANG D. Watershed flow paths and stream water nitrogen‐to‐phosphorus ratios under simulated precipitation regimes[J]. Water Resources Research, 2008, 44(12).

所在学位评定分委会
化学
国内图书分类号
P426
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778526
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
王俊阳. 深圳市极端降雨时空演变及其对福田河雨季水质的影响研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132220-王俊阳-环境科学与工程(12548KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王俊阳]的文章
百度学术
百度学术中相似的文章
[王俊阳]的文章
必应学术
必应学术中相似的文章
[王俊阳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。