中文版 | English
题名

基于无源传输的温度调控与传感系统研究与设计

其他题名
RESEARCH AND DESIGN OF TEMPERATURE REGULATION AND SENSING SYSTEM BASED ON BATTERY-FREE TRANSMISSION
姓名
姓名拼音
CHEN Le
学号
12232522
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
林苑菁
导师单位
深港微电子学院
论文答辩日期
2024-05-16
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着全球变暖加剧,人体在高温天气中已出现由于脱水等导致的严重 健康隐患。解决这一问题的可行方案之一,是通过个人热管理进行人体温 度调节。此外,由于环境复杂多变,仅通过温度调节无法保证人体处于健 康状态,因此还需要及时检测人体的生理参数。目前对于个人热管理的研 究专注于提高温度调节效率,在可穿戴式的集成应用以及更全面的健康信 息传感方面尚有不足。本文依次设计了主动、被动温度调控系统与无源温 度传感系统,并将被动温度调控系统与无源温度传感系统相结合,在柔软 轻便、透气性良好铜纤维布上实现了面向柔性可穿戴的无源温控传感系统。 主动温度调控系统基于热电制冷片,设计了一款可穿戴式主动温控马甲。 该马甲在日常环境与穿着医用防护服等特殊工作场景中表现出良好的温度 调节效果。被动温度调控系统则通过电泳沉积法,在高热导率的铜纤维布 上制备了基于氮化硼的柔性降温织物。通过系统的溶液成分与制备参数优 化下,所制备的织物整体厚度为110 μm,过平面热导率为0.102 W m-1 K-1, 优于丝绸、棉布等常见织物材料。在此基础上,设计了基于无源数据传输 的温度传感系统,并实现与柔性降温织物的系统集成,在不使用电池等外 部能源条件下,可同时实现温度调控与实时测量。本文所研究的面向可穿 戴式的温度调控策略,以及无源温度调控与传感系统对于个人热管理技术 的发展有重要意义。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] Hoegh-Guldberg O, Jacob D, Taylor M, et al. The human imperative of stabilizing global climate change at 1.5 degrees C[J]. Science, 2019, 365(6459): eaaw6974.
[2] Farooq A S, Zhang P. Fundamentals, materials and strategies for personal thermal management by next-generation textiles[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106249.
[3] Sajjad U, Hamid K, Tauseef Ur R, et al. Personal thermal management - A review on strategies, progress, and prospects[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105739.
[4] Périard J D, Eijsvogels T M H, Daanen H a M. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies[J]. Physiological Reviews, 2021, 101(4): 1873-1979.
[5] Zhang X, Wang F, Guo H, et al. Advanced Cooling Textiles: Mechanisms, Applications, and Perspectives[J]. Advanced Science, 2024, 11(10): 2305228.
[6] Funnell M P, Moss J, Brown D R, et al. Perceived dehydration impairs endurance cycling performance in the heat in active males[J]. Physiology & Behavior, 2024, 276: 114462.
[7] Liu R, Wang Y, Fan W, et al. Adaptive dynamic smart textiles for personal thermal-moisture management[J]. European Polymer Journal, 2024, 206: 112777.
[8] Lan X, Wang Y, Peng J, et al. Designing heat transfer pathways for advanced thermoregulatory textiles[J]. Materials Today Physics, 2021, 17: 100342.
[9] Peters A, Schneider A. Cardiovascular risks of climate change[J]. Nature Reviews Cardiology, 2021, 18(1): 1-2.
[10] De Vita A, Belmusto A, Di Perna F, et al. The Impact of Climate Change and Extreme Weather Conditions on Cardiovascular Health and Acute Cardiovascular Diseases[J]. Journal of Clinical Medicine, 2024, 13(3): 759.
[11] Hu R, Liu Y, Shin S, et al. Emerging Materials and Strategies for Personal Thermal Management[J]. Advanced Energy Materials, 2020, 10(17): 1903921.
[12] Zuo X, Zhang X, Qu L, Miao J. Smart Fibers and Textiles for Personal Thermal Management in Emerging Wearable Applications[J]. Advanced Materials Technologies, 2022, 8(6): 2201137.
[13] Mayer M, Baeumner A J. A Megatrend Challenging Analytical Chemistry: Biosensor and Chemosensor Concepts Ready for the Internet of Things[J]. Chemical Reviews, 2019, 119(13): 7996-8027.
[14] Mohan A M V, Rajendran V, Mishra R K, Jayaraman M. Recent advances and perspectives in sweat based wearable electrochemical sensors[J]. Trends in Analytical Chemistry, 2020, 131: 116024.
[15] Takaloo S, Moghimi Zand M. Wearable electrochemical flexible biosensors: With the focus on affinity biosensors[J]. Sensing and Bio-Sensing Research, 2021, 32: 100403.
[16] Mayer M, Baeumner A J. A Megatrend Challenging Analytical Chemistry: Biosensor and Chemosensor Concepts Ready for the Internet of Things[J]. Chemical Reviews, 2019, 119(13): 7996-8027.
[17] Grattieri M, Minteer S D. Self-Powered Biosensors[J]. ACS Sensors, 2018, 3(1): 44-53.
[18] Ali I, Islam M R, Yin J, et al. Advances in Smart Photovoltaic Textiles[J]. ACS Nano, 2024, 18(5): 3871-3915.
[19] Li Z, Zheng Q, Wang Z L, Li Z. Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics[J]. Research (Wash D C), 2020, 2020: 8710686.
[20] Jin G, Sun Y. TOO HOT FOR SUSTAINABLE DEVELOPMENT: CLIMATE CHANGE AND ENERGY EFFICIENCY[J]. Climate Change Economics, 2023, 14(03): 2350014.
[21] Hong S, Gu Y, Seo J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances, 2019, 5(5): eaaw0536.
[22] Yang A, Cai L, Zhang R, et al. Thermal Management in Nanofiber-Based Face Mask[J]. Nano Letters, 2017, 17(6): 3506-3510.
[23] Peng Y, Cui Y. Advanced Textiles for Personal Thermal Management and Energy[J]. Joule, 2020, 4(4): 724-742.
[24] Song W, Wang F, Wei F. Hybrid cooling clothing to improve thermal comfort of office workers in a hot indoor environment[J]. Building and Environment, 2016, 100: 92-101.
[25] Hadid A, Yanovich R, Erlich T, et al. Effect of a personal ambient ventilation system on physiological strain during heat stress wearing a ballistic vest[J]. European Journal of Applied Physiology, 2008, 104(2): 311-9.
[26] Bartkowiak G, Dabrowska A, Marszalek A. Assessment of an active liquid cooling garment intended for use in a hot environment[J]. Applied Ergonomics, 2017, 58: 182-189.
[27] Li L, Liu W D, Liu Q, Chen Z G. Multifunctional Wearable Thermoelectrics for Personal Thermal Management[J]. Advanced Functional Materials, 2022, 32(22): 2200548.
[28] Iqbal M I, Shi S, Kumar G M S, Hu J. Evaporative/radiative electrospun membrane for personal cooling[J]. Nano Research, 2022, 16(2): 2563-2571.
[29] Gunawardena K R, Wells M J, Kershaw T. Utilising green and bluespace to mitigate urban heat island intensity[J]. Science Of The Total Environment, 2017, 584-585: 1040-1055.
[30] Zeng S, Pian S, Su M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
[31] Li X, Ma B, Dai J, et al. Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management[J]. Science Advances. 2021;7(51): eabj7906.
[32] Gao T, Yang Z, Chen C, et al. Three-Dimensional Printed Thermal Regulation Textiles[J]. ACS Nano, 2017, 11(11): 11513-11520.
[33] Geng X, Gao Y, Wang N, et al. Intelligent adjustment of light-to-thermal energy conversion efficiency of thermo-regulated fabric containing reversible thermochromic MicroPCMs[J]. Chemical Engineering Journal, 2021, 408: 127276.
[34] Khor S M, Choi J, Won P, Ko S H. Challenges and Strategies in Developing an Enzymatic Wearable Sweat Glucose Biosensor as a Practical Point-Of-Care Monitoring Tool for Type II Diabetes[J]. Nanomaterials (Basel), 2022, 12(2): 221.
[35] An B W, Shin J H, Kim S Y, et al. Smart Sensor Systems for Wearable Electronic Devices[J]. Polymers (Basel), 2017, 9(8): 303.
[36] Niu J, Lin S, Chen D, et al. A Fully Elastic Wearable Electrochemical Sweat Detection System of Tree-Bionic Microfluidic Structure for Real-Time Monitoring[J]. Small, 2024, 20(11): 2306769.
[37] Zhao J, Lin Y, Wu J, et al. A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucoses Monitoring[J]. ACS Sensors, 2019, 4(7): 1925-1933.
[38] Guo H, Wan J, Wu H, et al. Self-Powered Multifunctional Electronic Skin for a Smart Anti-Counterfeiting Signature System[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22357-22364.
[39] Lee B, Cho H, Park K T, et al. High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics[J]. Nature Communications, 2020, 11(1): 5948.
[40] Zhang S, Zahed M A, Sharifuzzaman M, et al. A wearable battery-free wireless and skin-interfaced microfluidics integrated electrochemical sensing patch for on-site biomarkers monitoring in human perspiration[J]. Biosensors and Bioelectronics, 2021, 175: 112844.
[41] Farooq A S, Zhang P. Fundamentals, materials and strategies for personal thermal management by next-generation textiles[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106249.
[42] Sajjad U, Hamid K, Tauseef Ur R, et al. Personal thermal management - A review on strategies, progress, and prospects[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105739.
[43] Guan M, Wang G, Li J, et al. Human body-interfacing material strategies for personal thermal and moisture management of wearable systems[J]. Progress in Materials Science, 2023, 139: 101172.
[44] Guo T, Shang B, Duan B, Luo X. Design and testing of a liquid cooled garment for hot environments[J]. Journal of Thermal Biology, 2015, 49-50: 47-54.
[45] Mokhtari Yazdi M, Sheikhzadeh M. Personal cooling garments: a review[J]. The Journal of The Textile Institute, 2014, 105(12): 1231-1250.
[46] Pakdel E, Naebe M, Sun L, Wang X. Advanced Functional Fibrous Materials for Enhanced Thermoregulating Performance[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13039-13057.
[47] Lan X, Wang Y, Peng J, et al. Designing heat transfer pathways for advanced thermoregulatory textiles[J]. Materials Today Physics, 2021, 17: 100342.
[48] Akhalaya M Y, Maksimov G V, Rubin A B, et al. Molecular action mechanisms of solar infrared radiation and heat on human skin[J]. Ageing Research Reviews, 2014, 16: 1-11.
[49] Mahltig B, Zhang J, Wu L, et al. Effect pigments for textile coating: a review of the broad range of advantageous functionalization[J]. Journal of Coatings Technology and Research, 2016, 14(1): 35-55.
[50] Gao W, Chen Y. Emerging Materials and Strategies for Passive Daytime Radiative Cooling[J]. Small, 2023, 19(18): 2206145.
[51] Mohamed S A, Al-Sulaiman F A, Ibrahim N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072-1089.
[52] Maity S. Optimization of processing parameters of in-situ polymerization of pyrrole on woollen textile to improve its thermal conductivity[J]. Progress in Organic Coatings, 2017, 107: 48-53.
[53] Virk R S, Ur Rehman M A, Boccaccini A R. PEEK Based Biocompatible Coatings Incorporating h-BN and Bioactive Glass by Electrophoretic Deposition[J]. ECS Transactions, 2018, 82(1): 89.
[54] Kassal P, Steinberg M D, Steinberg I M. Wireless chemical sensors and biosensors: A review[J]. Sensors and Actuators B: Chemical, 2018, 266: 228-245.
[55] Shi Y, Zhang Z, Huang Q, et al. Wearable sweat biosensors on textiles for health monitoring[J]. Journal of Semiconductors, 2023, 44(2): 021601.
[56] Jain S, Nehra M, Kumar R, et al. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases[J]. Biosens Bioelectron, 2021, 179: 113074.
[57] Basjaruddin N C, Rifqi Fakhrudin F, Sudarsa Y, Noor F. NFC and IoT-based electronic health card for elementary students using sensor fusion method[J]. International Journal of Pervasive Computing and Communications, 2023, 19(1): 43-53.
[58] Lazaro A, Villarino R, Girbau D. A Survey of NFC Sensors Based on Energy Harvesting for IoT Applications[J]. Sensors (Basel), 2018, 18(11): 3746.
[59] Xu Z, Khalifa A, Mittal A, et al. Analysis and Design Methodology of RF Energy Harvesting Rectifier Circuit for Ultra-Low Power Applications[J]. IEEE Open Journal of Circuits and Systems, 2022, 3: 82-96.
[60] Li P, Long Z, Yang Z. RF Energy Harvesting for Batteryless and Maintenance-Free Condition Monitoring of Railway Tracks[J]. IEEE Internet of Things Journal, 2021, 8(5): 3512-3523.
[61] Wang P, Ma X, Lin Z, et al. Well-defined in-textile photolithography towards permeable textile electronics[J]. Nature Communications, 2024, 15(1): 887.
[62] Ma X, Wang P, Huang L, et al. A monolithically integrated in-textile wristband for wireless epidermal biosensing[J]. Science Advances, 2023, 9(45): eadj2763.

所在学位评定分委会
材料与化工
国内图书分类号
TN44
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778596
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
陈乐. 基于无源传输的温度调控与传感系统研究与设计[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232522-陈乐-南方科技大学-香(4065KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈乐]的文章
百度学术
百度学术中相似的文章
[陈乐]的文章
必应学术
必应学术中相似的文章
[陈乐]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。