题名 | Roundoff error problems in interpolation methods for time-fractional problems |
作者 | |
通讯作者 | Quan,Chaoyu |
发表日期 | 2024-09-01
|
DOI | |
发表期刊 | |
ISSN | 0168-9274
|
卷号 | 203页码:202-224 |
摘要 | Roundoff errors often disrupt interpolation methods for time-fractional equations, potentially causing suboptimal convergence or even failure. These issues primarily result from catastrophic cancellations. To address this, we introduce a novel framework for computing coefficients in standard and fast interpolation methods on nonuniform meshes. We propose δ-cancellation and associated threshold conditions to prevent such cancellations. If the thresholds aren't met, a Taylor expansion technique can be applied. Numerical experiments demonstrate our method's accuracy, on par with the Gauss–Kronrod quadrature, but significantly more efficient, allowing for extensive simulations with hundreds of thousands of time steps. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85191767165
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/778606 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.School of Science and Engineering,The Chinese University of Hong Kong,Shenzhen,Guangdong,518172,China 2.Department of Mathematics,SUSTech International Center for Mathematics,Southern University of Science and Technology,Shenzhen,China 3.Department of Applied Mathematics,The Hong Kong Polytechnic University,Kowloon,Hong Kong |
推荐引用方式 GB/T 7714 |
Quan,Chaoyu,Wang,Shijie,Wu,Xu. Roundoff error problems in interpolation methods for time-fractional problems[J]. Applied Numerical Mathematics,2024,203:202-224.
|
APA |
Quan,Chaoyu,Wang,Shijie,&Wu,Xu.(2024).Roundoff error problems in interpolation methods for time-fractional problems.Applied Numerical Mathematics,203,202-224.
|
MLA |
Quan,Chaoyu,et al."Roundoff error problems in interpolation methods for time-fractional problems".Applied Numerical Mathematics 203(2024):202-224.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论