中文版 | English
题名

Data-driven estimation of battery state-of-health with formation features

作者
通讯作者He,Xin
发表日期
2024-07-01
DOI
发表期刊
ISSN
0960-1317
EISSN
1361-6439
卷号34期号:7
摘要
Accurately estimating the state-of-health (SOH) of a battery is crucial for ensuring battery safe and efficient operation. The lifetime of lithium-ion batteries (LIBs) starts from their manufacture, and the performance of LIBs in the service period is highly related to the formation conditions in the factory. Here, we develop a deep transfer ensemble learning framework with two constructive layers to estimate battery SOH. The primary approach involves a combination of base models, a convolutional neural network to combine electrical features with spatial relationships of thermal and mechanical features from formation to subsequent cycles, and long short-term memory to extract temporal dependencies during cycling. Gaussian process regression (GPR) then handles SOH prediction based on this integrated model. The validation results demonstrate highly accurate capacity estimation, with a lowest root-mean-square error (RMSE) of 1.662% and a mean RMSE of 2.512%. Characterization on retired cells reveals the correlation between embedded formation features and their impact on the structural, morphological, and valence states evolution of electrode material, enabling reliable prediction with the corresponding interplay mechanism. Our work highlights the value of deep learning with comprehensive analysis through the relevant features, and provides guidance for optimizing battery management.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20242516296531
EI主题词
Battery management systems ; Convolutional neural networks ; Deep learning ; Mean square error
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Secondary Batteries:702.1.2 ; Mathematical Statistics:922.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85196391991
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778652
专题工学院_深港微电子学院
作者单位
1.College of Electrical Engineering,Sichuan University,Chengdu,610065,China
2.Peng Cheng Laboratory,Shenzhen,518055,China
3.School of Chemical Engineering,Sichuan University,Chengdu,610065,China
4.School of Microelectronics,Southern University of Science and Technology,Shenzhen,518055,China
5.Faculty of Engineering,Architecture and Information Technology (EAIT),University of Queensland,St Lucia,4072,Australia
推荐引用方式
GB/T 7714
He,Weilin,Li,Dingquan,Sun,Zhongxian,et al. Data-driven estimation of battery state-of-health with formation features[J]. Journal of Micromechanics and Microengineering,2024,34(7).
APA
He,Weilin.,Li,Dingquan.,Sun,Zhongxian.,Wang,Chenyang.,Tang,Shihai.,...&He,Xin.(2024).Data-driven estimation of battery state-of-health with formation features.Journal of Micromechanics and Microengineering,34(7).
MLA
He,Weilin,et al."Data-driven estimation of battery state-of-health with formation features".Journal of Micromechanics and Microengineering 34.7(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He,Weilin]的文章
[Li,Dingquan]的文章
[Sun,Zhongxian]的文章
百度学术
百度学术中相似的文章
[He,Weilin]的文章
[Li,Dingquan]的文章
[Sun,Zhongxian]的文章
必应学术
必应学术中相似的文章
[He,Weilin]的文章
[Li,Dingquan]的文章
[Sun,Zhongxian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。