题名 | Improved optimization for the neural-network quantum states and tests on the chromium dimer |
作者 | |
通讯作者 | Li,Xiang |
发表日期 | 2024-06-21
|
DOI | |
发表期刊 | |
ISSN | 0021-9606
|
EISSN | 1089-7690
|
卷号 | 160期号:23 |
摘要 | The advent of Neural-network Quantum States (NQS) has significantly advanced wave function ansatz research, sparking a resurgence in orbital space variational Monte Carlo (VMC) exploration. This work introduces three algorithmic enhancements to reduce computational demands of VMC optimization using NQS: an adaptive learning rate algorithm, constrained optimization, and block optimization. We evaluate the refined algorithm on complex multireference bond stretches of HO and N within the cc-pVDZ basis set and calculate the ground-state energy of the strongly correlated chromium dimer (Cr) in the Ahlrichs SV basis set. Our results achieve superior accuracy compared to coupled cluster theory at a relatively modest CPU cost. This work demonstrates how to enhance optimization efficiency and robustness using these strategies, opening a new path to optimize large-scale restricted Boltzmann machine-based NQS more effectively and marking a substantial advancement in NQS’s practical quantum chemistry applications. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
ESI学科分类 | CHEMISTRY
|
Scopus记录号 | 2-s2.0-85196436696
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/778681 |
专题 | 理学院_化学系 |
作者单位 | 1.Department of Chemistry and Engineering Research,Center of Advanced Rare-Earth Materials,Ministry of Education,Tsinghua University,Beijing,100084,China 2.Department of Chemistry,Guangdong Provincial Key Laboratory of Catalytic Chemistry,Southern University of Science and Technology,Shenzhen,518055,China 3.Fundamental Science Center of Rare Earths,Ganjiang Innovation Academy,Chinese Academy of Sciences,Ganzhou,341000,China |
推荐引用方式 GB/T 7714 |
Li,Xiang,Huang,Jia Cheng,Zhang,Guang Ze,et al. Improved optimization for the neural-network quantum states and tests on the chromium dimer[J]. Journal of Chemical Physics,2024,160(23).
|
APA |
Li,Xiang.,Huang,Jia Cheng.,Zhang,Guang Ze.,Li,Hao En.,Shen,Zhu Ping.,...&Hu,Han Shi.(2024).Improved optimization for the neural-network quantum states and tests on the chromium dimer.Journal of Chemical Physics,160(23).
|
MLA |
Li,Xiang,et al."Improved optimization for the neural-network quantum states and tests on the chromium dimer".Journal of Chemical Physics 160.23(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论