中文版 | English
题名

Semi-supervised learning for explainable few-shot battery lifetime prediction

作者
通讯作者Tao,Jun
发表日期
2024-06-19
DOI
发表期刊
EISSN
2542-4351
卷号8期号:6页码:1820-1836
摘要
Accurate prediction of battery lifetime is critical for ensuring timely maintenance and safety of batteries. Although data-driven methods have made significant progress, their model accuracy is often hampered by a scarcity of labeled data. To address this challenge, we developed a semi-supervised learning technique named partial Bayesian co-training (PBCT), enhancing the modeling of battery lifetime prediction. Leveraging the low-cost unlabeled data, our model extracts hidden information to improve the understanding of the underlying data patterns and achieve higher lifetime prediction accuracy. PBCT outperforms existing approaches by up to 21.9% on lifetime prediction accuracy, with negligible overhead for data acquisition. Moreover, our research suggests that incorporating unlabeled data into the training process can help to uncover critical factors that impact battery lifetime, which may be overlooked with a limited number of labeled data alone. The proposed semi-supervised approach sheds light on the future direction for efficient and explainable data-driven battery status estimation.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
Scopus记录号
2-s2.0-85188995964
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778701
专题工学院_机械与能源工程系
作者单位
1.State Key Laboratory of Integrated Chips and Systems,School of Microelectronics,Fudan University,Shanghai,200433,China
2.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Data Science Research Center,Duke Kunshan University,Kunshan,No. 8 Duke Avenue, Jiangsu Province,215316,China
4.Global Institute of Future Technology,Shanghai Jiao Tong University,Shanghai,No. 800 Dongchuan Road,200240,China
推荐引用方式
GB/T 7714
Guo,Nanlin,Chen,Sihui,Tao,Jun,et al. Semi-supervised learning for explainable few-shot battery lifetime prediction[J]. Joule,2024,8(6):1820-1836.
APA
Guo,Nanlin,Chen,Sihui,Tao,Jun,Liu,Yang,Wan,Jiayu,&Li,Xin.(2024).Semi-supervised learning for explainable few-shot battery lifetime prediction.Joule,8(6),1820-1836.
MLA
Guo,Nanlin,et al."Semi-supervised learning for explainable few-shot battery lifetime prediction".Joule 8.6(2024):1820-1836.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guo,Nanlin]的文章
[Chen,Sihui]的文章
[Tao,Jun]的文章
百度学术
百度学术中相似的文章
[Guo,Nanlin]的文章
[Chen,Sihui]的文章
[Tao,Jun]的文章
必应学术
必应学术中相似的文章
[Guo,Nanlin]的文章
[Chen,Sihui]的文章
[Tao,Jun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。