中文版 | English
题名

Machine Learning Models for Evaluating Biological Reactivity Within Molecular Fingerprints of Dissolved Organic Matter Over Time

作者
通讯作者He,Ding
发表日期
2024-06-16
DOI
发表期刊
ISSN
0094-8276
EISSN
1944-8007
卷号51期号:11
摘要
Reservoirs exert a profound influence on the cycling of dissolved organic matter (DOM) in inland waters by altering flow regimes. Biological incubations can help to disentangle the role that microbial processing plays in the DOM cycling within reservoirs. However, the complex DOM composition poses a great challenge to the analysis of such data. Here we tested if the interpretable machine learning (ML) methodologies can contribute to capturing the relationships between molecular reactivity and composition. We developed time-specific ML models based on 7-day and 30-day incubations to simulate the biogeochemical processes in the Three Gorges Reservoir over shorter and longer water retention periods, respectively. Results showed that the extended water retention time likely allows the successive microbial degradation of molecules, with stochasticity exerting a non-negligible effect on the molecular composition at the initial stage of the incubation. This study highlights the potential of ML in enhancing our interpretation of DOM dynamics over time.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85195263710
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778712
专题工学院_海洋科学与工程系
作者单位
1.Department of Ocean Science,Center for Ocean Research in Hong Kong and Macau,The Hong Kong University of Science and Technology,Hong Kong
2.Department of Ocean Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.School of Mathematics and Statistics,Xidian University,Xi'an,China
4.Department of Electronic and Computer Engineering,The Hong Kong University of Science and Technology,Hong Kong
5.School of Marine Sciences,Sun Yat-sen University,Zhuhai,China
6.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai,China
7.Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering,Zhuhai,China
8.Department of Global Ecology,Carnegie Institution for Science,Stanford,United States
9.State Key Laboratory of Marine Pollution,City University of Hong Kong,Hong Kong
推荐引用方式
GB/T 7714
Zhao,Chen,Wang,Kai,Jiao,Qianji,et al. Machine Learning Models for Evaluating Biological Reactivity Within Molecular Fingerprints of Dissolved Organic Matter Over Time[J]. Geophysical Research Letters,2024,51(11).
APA
Zhao,Chen.,Wang,Kai.,Jiao,Qianji.,Xu,Xinyue.,Yi,Yuanbi.,...&He,Ding.(2024).Machine Learning Models for Evaluating Biological Reactivity Within Molecular Fingerprints of Dissolved Organic Matter Over Time.Geophysical Research Letters,51(11).
MLA
Zhao,Chen,et al."Machine Learning Models for Evaluating Biological Reactivity Within Molecular Fingerprints of Dissolved Organic Matter Over Time".Geophysical Research Letters 51.11(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao,Chen]的文章
[Wang,Kai]的文章
[Jiao,Qianji]的文章
百度学术
百度学术中相似的文章
[Zhao,Chen]的文章
[Wang,Kai]的文章
[Jiao,Qianji]的文章
必应学术
必应学术中相似的文章
[Zhao,Chen]的文章
[Wang,Kai]的文章
[Jiao,Qianji]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。