[1] ALLEN N J, LYONS D A. Glia as architects of central nervous system formation and function[J]. Science, 2018, 362(6411): 181-185.
[2] LAZAROV T, JUAREZ-CARRENO S, COX N, et al. Physiology and diseases of tissue-resident macrophages[J]. Nature, 2023, 618(7966): 698-707.
[3] LIU Y, SHEN X, ZHANG Y, et al. Interactions of glial cells with neuronal synapses, from astrocytes to microglia and oligodendrocyte lineage cells[J]. Glia, 2023, 71(6): 1383-1401.
[4] SOFRONIEW M V, VINTERS H V. Astrocytes: biology and pathology[J]. Acta Neuropathol, 2010, 119(1): 7-35.
[5] ANDRIEZEN W L. The Neuroglia Elements in the Human Brain[J]. Br Med J, 1893, 2(1700): 227-230.
[6] DIAZ-CASTRO B, ROBEL S, MISHRA A. Astrocyte Endfeet in Brain Function and Pathology: Open Questions[J]. Annu Rev Neurosci, 2023, 46: 101-121.
[7] BEZZI P, DOMERCQ M, BRAMBILLA L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity[J]. Nat Neurosci, 2001, 4(7): 702-710.
[8] KHAKH B S, DENEEN B. The Emerging Nature of Astrocyte Diversity[J]. Annu Rev Neurosci, 2019, 42: 187-207.
[9] SU Y, WANG X, YANG Y, et al. Astrocyte endfoot formation controls the termination of oligodendrocyte precursor cell perivascular migration during development[J]. Neuron, 2023, 111(2): 190-201 e198.
[10] ESCARTIN C, GALEA E, LAKATOS A, et al. Reactive astrocyte nomenclature, definitions, and future directions[J]. Nature Neuroscience, 2021, 24(3): 312-325.
[11] ENDO F, KASAI A, SOTO J S, et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease[J]. Science, 2022, 378(6619): eadc9020.
[12] ZHOU B, ZUO Y X, JIANG R T. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases[J]. CNS Neurosci Ther, 2019, 25(6): 665-673.
[13] MOLOFSKY A V, KRENCIK R, ULLIAN E M, et al. Astrocytes and disease: a neurodevelopmental perspective[J]. Genes Dev, 2012, 26(9): 891-907.
[14] PEKNY M, NILSSON M. Astrocyte activation and reactive gliosis[J]. Glia, 2005, 50(4): 427-434.
[15] PEKNY M, WILHELMSSON U, PEKNA M. The dual role of astrocyte activation and reactive gliosis[J]. Neurosci Lett, 2014, 565: 30-38.
[16] MCKEON R J, SCHREIBER R C, RUDGE J S, et al. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes[J]. J Neurosci, 1991, 11(11): 3398-3411.
[17] BRAMBILLA R, HURTADO A, PERSAUD T, et al. Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury[J]. J Neurochem, 2009, 110(2): 765-778.
[18] FAULKNER J R, HERRMANN J E, WOO M J, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury[J]. J Neurosci, 2004, 24(9): 2143-2155.
[19] ZAMANIAN J L, XU L, FOO L C, et al. Genomic analysis of reactive astrogliosis[J]. J Neurosci, 2012, 32(18): 6391-6410.
[20] LIDDELOW S A, GUTTENPLAN K A, CLARKE L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638): 481-487.
[21] LIDDELOW S A, BARRES B A. Reactive Astrocytes: Production, Function, and Therapeutic Potential[J]. Immunity, 2017, 46(6): 957-967.
[22] LINNERBAUER M, ROTHHAMMER V. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult[J]. Front Immunol, 2020, 11: 573256.
[23] FAN Y Y, HUO J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils?[J]. Neurochem Int, 2021, 148: 105080.
[24] ROE K. An inflammation classification system using cytokine parameters[J]. Scand J Immunol, 2021, 93(2): e12970.
[25] TELEANU D M, NICULESCU A G, LUNGU, II, et al. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases[J]. Int J Mol Sci, 2022, 23(11)
[26] GHASEMI M, FATEMI A. Pathologic role of glial nitric oxide in adult and pediatric neuroinflammatory diseases[J]. Neurosci Biobehav Rev, 2014, 45: 168-182.
[27] PATANI R, HARDINGHAM G E, LIDDELOW S A. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration[J]. Nat Rev Neurol, 2023, 19(7): 395-409.
[28] CHE D N, CHO B O, KIM J S, et al. Luteolin and Apigenin Attenuate LPS-Induced Astrocyte Activation and Cytokine Production by Targeting MAPK, STAT3, and NF-kappaB Signaling Pathways[J]. Inflammation, 2020, 43(5): 1716-1728.
[29] CATORCE M N, GEVORKIAN G. LPS-induced Murine Neuroinflammation Model: Main Features and Suitability for Pre-clinical Assessment of Nutraceuticals[J]. Curr Neuropharmacol, 2016, 14(2): 155-164.
[30] PANEK R B, LEE Y J, ITOH-LINDSTROM Y, et al. Characterization of astrocyte nuclear proteins involved in IFN-gamma- and TNF-alpha-mediated class II MHC gene expression[J]. J Immunol, 1994, 153(10): 4555-4564.
[31] JOHN G R, LEE S C, SONG X, et al. IL-1-regulated responses in astrocytes: relevance to injury and recovery[J]. Glia, 2005, 49(2): 161-176.
[32] HAMBY M E, COPPOLA G, AO Y, et al. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors[J]. J Neurosci, 2012, 32(42): 14489-14510.
[33] FALCONE C. Evolution of astrocytes: From invertebrates to vertebrates[J]. Front Cell Dev Biol, 2022, 10: 931311.
[34] HAN R T, KIM R D, MOLOFSKY A V, et al. Astrocyte-immune cell interactions in physiology and pathology[J]. Immunity, 2021, 54(2): 211-224.
[35] BURDA J E, O'SHEA T M, AO Y, et al. Divergent transcriptional regulation of astrocyte reactivity across disorders[J]. Nature, 2022, 606(7914): 557-564.
[36] PALMER J C, BAIG S, KEHOE P G, et al. Endothelin-converting enzyme-2 is increased in Alzheimer's disease and up-regulated by Abeta[J]. Am J Pathol, 2009, 175(1): 262-270.
[37] HASEL P, AISENBERG W H, BENNETT F C, et al. Molecular and metabolic heterogeneity of astrocytes and microglia[J]. Cell Metab, 2023, 35(4): 555-570.
[38] SHENG L, SHIELDS E J, GOSPOCIC J, et al. Social reprogramming in ants induces longevity-associated glia remodeling[J]. Sci Adv, 2020, 6(34): eaba9869.
[39] KANG Z, ALTUNTAS C Z, GULEN M F, et al. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis[J]. Immunity, 2010, 32(3): 414-425.
[40] MAYO L, CUNHA A P, MADI A, et al. IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation[J]. Brain, 2016, 139(Pt 7): 1939-1957.
[41] ELLIS T N, BEAMAN B L. Interferon-gamma activation of polymorphonuclear neutrophil function[J]. Immunology, 2004, 112(1): 2-12.
[42] DINARELLO C A. Historical insights into cytokines[J]. Eur J Immunol, 2007, 37 Suppl 1(Suppl 1): S34-45.
[43] VAN LOO G, BERTRAND M J M. Death by TNF: a road to inflammation[J]. Nat Rev Immunol, 2023, 23(5): 289-303.
[44] AGGARWAL B B, EESSALU T E, HASS P E. Characterization of receptors for human tumour necrosis factor and their regulation by gamma-interferon[J]. Nature, 1985, 318(6047): 665-667.
[45] BURKE J D, YOUNG H A. IFN-gamma: A cytokine at the right time, is in the right place[J]. Semin Immunol, 2019, 43: 101280.
[46] SIMS J E, SMITH D E. The IL-1 family: regulators of immunity[J]. Nat Rev Immunol, 2010, 10(2): 89-102.
[47] KANG S, NARAZAKI M, METWALLY H, et al. Historical overview of the interleukin-6 family cytokine[J]. J Exp Med, 2020, 217(5)
[48] SCHELLER J, ETTICH J, WITTICH C, et al. Exploring the landscape of synthetic IL-6-type cytokines[J]. FEBS J, 2023
[49] CHAO C C, GUTIERREZ-VAZQUEZ C, ROTHHAMMER V, et al. Metabolic Control of Astrocyte Pathogenic Activity via cPLA2-MAVS[J]. Cell, 2019, 179(7): 1483-1498 e1422.
[50] BIANCHI R, GIAMBANCO I, DONATO R. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha[J]. Neurobiol Aging, 2010, 31(4): 665-677.
[51] LANGEH U, SINGH S. Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders[J]. Curr Neuropharmacol, 2021, 19(2): 265-277.
[52] IOVA O M, MARIN G E, LAZAR I, et al. Nitric Oxide/Nitric Oxide Synthase System in the Pathogenesis of Neurodegenerative Disorders-An Overview[J]. Antioxidants (Basel), 2023, 12(3)
[53] GALEA E, FEINSTEIN D L, REIS D J. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures[J]. Proc Natl Acad Sci U S A, 1992, 89(22): 10945-10949.
[54] BERTHELOOT D, LATZ E, FRANKLIN B S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18(5): 1106-1121.
[55] VAN ENGELAND M, NIELAND L J, RAMAEKERS F C, et al. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure[J]. Cytometry, 1998, 31(1): 1-9.
[56] MONACH P A. Complement[J]. Arthritis Rheumatol, 2024, 76(1): 1-8.
[57] BOHLSON S S, TENNER A J. Complement in the Brain: Contributions to Neuroprotection, Neuronal Plasticity, and Neuroinflammation[J]. Annu Rev Immunol, 2023, 41: 431-452.
[58] HARTMANN K, SEPULVEDA-FALLA D, ROSE I V L, et al. Complement 3(+)-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia[J]. Acta Neuropathol Commun, 2019, 7(1): 83.
[59] TASSONI A, FARKHONDEH V, ITOH Y, et al. The astrocyte transcriptome in EAE optic neuritis shows complement activation and reveals a sex difference in astrocytic C3 expression[J]. Sci Rep, 2019, 9(1): 10010.
[60] PEKNA M, SIQIN S, DE PABLO Y, et al. Astrocyte Responses to Complement Peptide C3a are Highly Context-Dependent[J]. Neurochem Res, 2023, 48(4): 1233-1241.
[61] ZHOU S, LIU C, WANG J, et al. CCL5 mediated astrocyte-T cell interaction disrupts blood-brain barrier in mice after hemorrhagic stroke[J]. Journal of Cerebral Blood Flow & Metabolism, 2023, 44(3): 367-383.
[62] JHA M K, LEE S, PARK D H, et al. Diverse functional roles of lipocalin-2 in the central nervous system[J]. Neuroscience & Biobehavioral Reviews, 2015, 49: 135-156.
[63] WAN T, ZHU W, ZHAO Y, et al. Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice[J]. Nat Commun, 2022, 13(1): 1134.
[64] JUNG B K, PARK Y, YOON B, et al. Reduced secretion of LCN2 (lipocalin 2) from reactive astrocytes through autophagic and proteasomal regulation alleviates inflammatory stress and neuronal damage[J]. Autophagy, 2023, 19(8): 2296-2317.
[65] PLATNICH J M, MURUVE D A. NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways[J]. Arch Biochem Biophys, 2019, 670: 4-14.
修改评论