中文版 | English
题名

体外炎症介质诱导星形胶质细胞反应性活化及功能差异比较分析

其他题名
COMPARATIVE ANALYSIS OF INFLAMMATORY MEDIATOR-INDUCED ASTROCYTE REACTIVE ACTIVATION AND FUNCTIONAL DIFFERENCES IN VITRO
姓名
姓名拼音
LI Xueyan
学号
12133122
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
李在望
导师单位
深圳市人民医院
论文答辩日期
2024-05-08
论文提交日期
2024-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

在中枢神经系统中,星形胶质细胞数量多、分布广,对神经元发挥正常功能起调节和支持作用。星形胶质细胞的胞体大且形态复杂多变,在正常生理状态下为静息态,在各类中枢神经系统疾病中存在着异常活化,活化导致其形态和功能发生变化,成为反应性星形胶质细胞。反应性星形胶质细胞的基因表达变化在不同疾病和组织区域之间具有显著差异。

许多炎症介质能诱导星形胶质细胞反应性活化,活化的星形胶质细胞炎症反应相关信号通路基因集的转录、表达水平发生变化。为了明确不同的神经炎症诱导介质诱导星形胶质细胞活化的特点及功能影响,本研究构建了3种炎症介质诱导的星形胶质细胞活化的体外实验模型,从转录水平层面上分析了不同诱导条件下的差异基因集,发现上调基因集的功能主要集中在抗病毒感染、细胞凋亡、NOD-like receptor等信号通路上。实验验证了各实验组Tnf 基因的上调、细胞凋亡发生、诱导型一氧化氮合酶表达变化。

本研究明确了LPS,TNF-α+IFN-γ,IL-1α+TNF-α+C1q,三种诱导炎症反应处理条件均能诱导星形胶质细胞发生以促炎因子表达上调为表型的反应性活化,诱导星形胶质细胞发生凋亡反应。

其他摘要

The central nervous system contains numerous and widely distributed astrocytes that regulate and support the normal functioning of neurons. Astrocytes have large cell bodies and diverse morphologies, and they remain in a resting state under normal physiological conditions. However, in various central nervous system diseases, astrocytes can undergo abnormal activation, leading to changes in their morphology and function, resulting in reactive astrocytes. The molecular expression changes of reactive astrocytes are highly variable between different diseases and regions of CNS.

Reactive activation of astrocytes can be induced by many inflammatory mediators, resulting in transcriptional and expression changes in the gene set associated with inflammatory responses. To clarify the characteristics and functional impacts of astrocyte activation induced by distinct inflammatory mediators, this study constructed three in vitro models of astrocyte activation. In this study, we established three in vitro experimental models of reactive astrocytes, with each model being induced by a specific combination of inflammatory mediators. Subsequently, we analyzed the differential expression of genes induced under these conditions. The up-regulated gene sets exhibited significant enrichment primarily in signaling pathways associated with antiviral infection, apoptosis, and NOD-like receptor activation. The present study confirmed the upregulation of Tnf genes, occurrence of apoptosis, and changes in the expression of inducible nitric oxide synthase in each experimental group.

This study demonstrated that LPS, TNF-α+IFN-γ, and IL-1α+TNF-α+C1q, all three treatments for inducing inflammatory responses, resulted in reactive activation of astrocytes. This was characterized by upregulation of pro-inflammatory factors, and an apoptotic response was induced in reactive astrocytes as well.

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] ALLEN N J, LYONS D A. Glia as architects of central nervous system formation and function[J]. Science, 2018, 362(6411): 181-185.
[2] LAZAROV T, JUAREZ-CARRENO S, COX N, et al. Physiology and diseases of tissue-resident macrophages[J]. Nature, 2023, 618(7966): 698-707.
[3] LIU Y, SHEN X, ZHANG Y, et al. Interactions of glial cells with neuronal synapses, from astrocytes to microglia and oligodendrocyte lineage cells[J]. Glia, 2023, 71(6): 1383-1401.
[4] SOFRONIEW M V, VINTERS H V. Astrocytes: biology and pathology[J]. Acta Neuropathol, 2010, 119(1): 7-35.
[5] ANDRIEZEN W L. The Neuroglia Elements in the Human Brain[J]. Br Med J, 1893, 2(1700): 227-230.
[6] DIAZ-CASTRO B, ROBEL S, MISHRA A. Astrocyte Endfeet in Brain Function and Pathology: Open Questions[J]. Annu Rev Neurosci, 2023, 46: 101-121.
[7] BEZZI P, DOMERCQ M, BRAMBILLA L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity[J]. Nat Neurosci, 2001, 4(7): 702-710.
[8] KHAKH B S, DENEEN B. The Emerging Nature of Astrocyte Diversity[J]. Annu Rev Neurosci, 2019, 42: 187-207.
[9] SU Y, WANG X, YANG Y, et al. Astrocyte endfoot formation controls the termination of oligodendrocyte precursor cell perivascular migration during development[J]. Neuron, 2023, 111(2): 190-201 e198.
[10] ESCARTIN C, GALEA E, LAKATOS A, et al. Reactive astrocyte nomenclature, definitions, and future directions[J]. Nature Neuroscience, 2021, 24(3): 312-325.
[11] ENDO F, KASAI A, SOTO J S, et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease[J]. Science, 2022, 378(6619): eadc9020.
[12] ZHOU B, ZUO Y X, JIANG R T. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases[J]. CNS Neurosci Ther, 2019, 25(6): 665-673.
[13] MOLOFSKY A V, KRENCIK R, ULLIAN E M, et al. Astrocytes and disease: a neurodevelopmental perspective[J]. Genes Dev, 2012, 26(9): 891-907.
[14] PEKNY M, NILSSON M. Astrocyte activation and reactive gliosis[J]. Glia, 2005, 50(4): 427-434.
[15] PEKNY M, WILHELMSSON U, PEKNA M. The dual role of astrocyte activation and reactive gliosis[J]. Neurosci Lett, 2014, 565: 30-38.
[16] MCKEON R J, SCHREIBER R C, RUDGE J S, et al. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes[J]. J Neurosci, 1991, 11(11): 3398-3411.
[17] BRAMBILLA R, HURTADO A, PERSAUD T, et al. Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury[J]. J Neurochem, 2009, 110(2): 765-778.
[18] FAULKNER J R, HERRMANN J E, WOO M J, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury[J]. J Neurosci, 2004, 24(9): 2143-2155.
[19] ZAMANIAN J L, XU L, FOO L C, et al. Genomic analysis of reactive astrogliosis[J]. J Neurosci, 2012, 32(18): 6391-6410.
[20] LIDDELOW S A, GUTTENPLAN K A, CLARKE L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638): 481-487.
[21] LIDDELOW S A, BARRES B A. Reactive Astrocytes: Production, Function, and Therapeutic Potential[J]. Immunity, 2017, 46(6): 957-967.
[22] LINNERBAUER M, ROTHHAMMER V. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult[J]. Front Immunol, 2020, 11: 573256.
[23] FAN Y Y, HUO J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils?[J]. Neurochem Int, 2021, 148: 105080.
[24] ROE K. An inflammation classification system using cytokine parameters[J]. Scand J Immunol, 2021, 93(2): e12970.
[25] TELEANU D M, NICULESCU A G, LUNGU, II, et al. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases[J]. Int J Mol Sci, 2022, 23(11)
[26] GHASEMI M, FATEMI A. Pathologic role of glial nitric oxide in adult and pediatric neuroinflammatory diseases[J]. Neurosci Biobehav Rev, 2014, 45: 168-182.
[27] PATANI R, HARDINGHAM G E, LIDDELOW S A. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration[J]. Nat Rev Neurol, 2023, 19(7): 395-409.
[28] CHE D N, CHO B O, KIM J S, et al. Luteolin and Apigenin Attenuate LPS-Induced Astrocyte Activation and Cytokine Production by Targeting MAPK, STAT3, and NF-kappaB Signaling Pathways[J]. Inflammation, 2020, 43(5): 1716-1728.
[29] CATORCE M N, GEVORKIAN G. LPS-induced Murine Neuroinflammation Model: Main Features and Suitability for Pre-clinical Assessment of Nutraceuticals[J]. Curr Neuropharmacol, 2016, 14(2): 155-164.
[30] PANEK R B, LEE Y J, ITOH-LINDSTROM Y, et al. Characterization of astrocyte nuclear proteins involved in IFN-gamma- and TNF-alpha-mediated class II MHC gene expression[J]. J Immunol, 1994, 153(10): 4555-4564.
[31] JOHN G R, LEE S C, SONG X, et al. IL-1-regulated responses in astrocytes: relevance to injury and recovery[J]. Glia, 2005, 49(2): 161-176.
[32] HAMBY M E, COPPOLA G, AO Y, et al. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors[J]. J Neurosci, 2012, 32(42): 14489-14510.
[33] FALCONE C. Evolution of astrocytes: From invertebrates to vertebrates[J]. Front Cell Dev Biol, 2022, 10: 931311.
[34] HAN R T, KIM R D, MOLOFSKY A V, et al. Astrocyte-immune cell interactions in physiology and pathology[J]. Immunity, 2021, 54(2): 211-224.
[35] BURDA J E, O'SHEA T M, AO Y, et al. Divergent transcriptional regulation of astrocyte reactivity across disorders[J]. Nature, 2022, 606(7914): 557-564.
[36] PALMER J C, BAIG S, KEHOE P G, et al. Endothelin-converting enzyme-2 is increased in Alzheimer's disease and up-regulated by Abeta[J]. Am J Pathol, 2009, 175(1): 262-270.
[37] HASEL P, AISENBERG W H, BENNETT F C, et al. Molecular and metabolic heterogeneity of astrocytes and microglia[J]. Cell Metab, 2023, 35(4): 555-570.
[38] SHENG L, SHIELDS E J, GOSPOCIC J, et al. Social reprogramming in ants induces longevity-associated glia remodeling[J]. Sci Adv, 2020, 6(34): eaba9869.
[39] KANG Z, ALTUNTAS C Z, GULEN M F, et al. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis[J]. Immunity, 2010, 32(3): 414-425.
[40] MAYO L, CUNHA A P, MADI A, et al. IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation[J]. Brain, 2016, 139(Pt 7): 1939-1957.
[41] ELLIS T N, BEAMAN B L. Interferon-gamma activation of polymorphonuclear neutrophil function[J]. Immunology, 2004, 112(1): 2-12.
[42] DINARELLO C A. Historical insights into cytokines[J]. Eur J Immunol, 2007, 37 Suppl 1(Suppl 1): S34-45.
[43] VAN LOO G, BERTRAND M J M. Death by TNF: a road to inflammation[J]. Nat Rev Immunol, 2023, 23(5): 289-303.
[44] AGGARWAL B B, EESSALU T E, HASS P E. Characterization of receptors for human tumour necrosis factor and their regulation by gamma-interferon[J]. Nature, 1985, 318(6047): 665-667.
[45] BURKE J D, YOUNG H A. IFN-gamma: A cytokine at the right time, is in the right place[J]. Semin Immunol, 2019, 43: 101280.
[46] SIMS J E, SMITH D E. The IL-1 family: regulators of immunity[J]. Nat Rev Immunol, 2010, 10(2): 89-102.
[47] KANG S, NARAZAKI M, METWALLY H, et al. Historical overview of the interleukin-6 family cytokine[J]. J Exp Med, 2020, 217(5)
[48] SCHELLER J, ETTICH J, WITTICH C, et al. Exploring the landscape of synthetic IL-6-type cytokines[J]. FEBS J, 2023
[49] CHAO C C, GUTIERREZ-VAZQUEZ C, ROTHHAMMER V, et al. Metabolic Control of Astrocyte Pathogenic Activity via cPLA2-MAVS[J]. Cell, 2019, 179(7): 1483-1498 e1422.
[50] BIANCHI R, GIAMBANCO I, DONATO R. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha[J]. Neurobiol Aging, 2010, 31(4): 665-677.
[51] LANGEH U, SINGH S. Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders[J]. Curr Neuropharmacol, 2021, 19(2): 265-277.
[52] IOVA O M, MARIN G E, LAZAR I, et al. Nitric Oxide/Nitric Oxide Synthase System in the Pathogenesis of Neurodegenerative Disorders-An Overview[J]. Antioxidants (Basel), 2023, 12(3)
[53] GALEA E, FEINSTEIN D L, REIS D J. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures[J]. Proc Natl Acad Sci U S A, 1992, 89(22): 10945-10949.
[54] BERTHELOOT D, LATZ E, FRANKLIN B S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18(5): 1106-1121.
[55] VAN ENGELAND M, NIELAND L J, RAMAEKERS F C, et al. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure[J]. Cytometry, 1998, 31(1): 1-9.
[56] MONACH P A. Complement[J]. Arthritis Rheumatol, 2024, 76(1): 1-8.
[57] BOHLSON S S, TENNER A J. Complement in the Brain: Contributions to Neuroprotection, Neuronal Plasticity, and Neuroinflammation[J]. Annu Rev Immunol, 2023, 41: 431-452.
[58] HARTMANN K, SEPULVEDA-FALLA D, ROSE I V L, et al. Complement 3(+)-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia[J]. Acta Neuropathol Commun, 2019, 7(1): 83.
[59] TASSONI A, FARKHONDEH V, ITOH Y, et al. The astrocyte transcriptome in EAE optic neuritis shows complement activation and reveals a sex difference in astrocytic C3 expression[J]. Sci Rep, 2019, 9(1): 10010.
[60] PEKNA M, SIQIN S, DE PABLO Y, et al. Astrocyte Responses to Complement Peptide C3a are Highly Context-Dependent[J]. Neurochem Res, 2023, 48(4): 1233-1241.
[61] ZHOU S, LIU C, WANG J, et al. CCL5 mediated astrocyte-T cell interaction disrupts blood-brain barrier in mice after hemorrhagic stroke[J]. Journal of Cerebral Blood Flow & Metabolism, 2023, 44(3): 367-383.
[62] JHA M K, LEE S, PARK D H, et al. Diverse functional roles of lipocalin-2 in the central nervous system[J]. Neuroscience & Biobehavioral Reviews, 2015, 49: 135-156.
[63] WAN T, ZHU W, ZHAO Y, et al. Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice[J]. Nat Commun, 2022, 13(1): 1134.
[64] JUNG B K, PARK Y, YOON B, et al. Reduced secretion of LCN2 (lipocalin 2) from reactive astrocytes through autophagic and proteasomal regulation alleviates inflammatory stress and neuronal damage[J]. Autophagy, 2023, 19(8): 2296-2317.
[65] PLATNICH J M, MURUVE D A. NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways[J]. Arch Biochem Biophys, 2019, 670: 4-14.

所在学位评定分委会
生物学
国内图书分类号
Q291
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778713
专题南方科技大学医学院
推荐引用方式
GB/T 7714
李雪艳. 体外炎症介质诱导星形胶质细胞反应性活化及功能差异比较分析[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133122-李雪艳-南方科技大学医(7484KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李雪艳]的文章
百度学术
百度学术中相似的文章
[李雪艳]的文章
必应学术
必应学术中相似的文章
[李雪艳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。