[1] YANG G, WANG P, LIU Y, et al. Effect of Ag coating on the oxidation resistance, sintering properties, and migration resistance of Cu particles[J/OL]. Journal of Alloys and Compounds, 2022, 923: 166271.
[2] HANG C, TIAN Y, ZHANG R, et al. Phase transformation and grain orientation of Cu–Sn intermetallic compounds during low temperature bonding process[J/OL]. Journal of Materials Science: Materials in Electronics, 2013, 24(10): 3905-3913.
[3] LI Z, LI M, XIAO Y, et al. Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves.[J]. Ultrasonics sonochemistry, 2014, 21 3: 924-929.
[4] CHIDAMBARAM V, HATTEL J, HALD J. Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system[J/OL]. Materials & Design, 2010, 31(10): 4638-4645.
[5] ROUSSEL P, AZEMAR J. Technology, industry and market trends in WBG power module packaging[C/OL]//CIPS 2014; 8th International Conference on Integrated Power Electronics Systems. 2014: 1-3
[2024-03-19].
[6] YIN L, MESCHTER S J, SINGLER T J. Wetting in the Au–Sn System[J/OL]. Acta Materialia, 2004, 52(10): 2873-2888.
[7] LEE J B, HWANG H Y, RHEE M W. Reliability Investigation of Cu/In TLP Bonding[J/OL]. Journal of Electronic Materials, 2015, 44(1): 435-441.
[8] 陈民铀, 高兵, 杨帆, 等. 基于电-热-机械应力多物理场的IGBT焊料层健康状态研究[J]. 电工技术学报, 2015, 30(20): 9.
[9] LIN H. 2.3 Market and Technology Trends in WBG Materials for Power Electronics Applications[C/OL]. 2015
[2024-03-19].
[10] 石小龙. Cu/In体系低温瞬态液相键合工艺及其机理的研究[D]. 苏州大学.
[11] LEE W W, NGUYEN L T, SELVADURAY G S. Solder joint fatigue models: review and applicability to chip scale packages[J/OL]. Microelectronics Reliability, 2000, 40: 231-244.
[12] KANG N, NA H S, KIM S J, et al. Alloy design of Zn–Al–Cu solder for ultra high temperatures[J/OL]. Journal of Alloys and Compounds, 2009, 467(1): 246-250.
[13] YOON J W, BAE S, LEE B S, et al. Bonding of power device to ceramic substrate using Sn-coated Cu micro paste for high-temperature applications[J/OL]. Applied Surface Science, 2020, 515: 146060.
[14] LI J F, AGYAKWA P A, JOHNSON C M. Kinetics of Ag3Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process[J/OL]. Acta Materialia, 2010, 58(9): 3429-3443.
[15] LAI Y T, LIU C Y. Study of wetting reaction between eutectic AuSn and Au foil[J/OL]. Journal of Electronic Materials, 2006, 35(1): 28-34.
[16] 李在元, 刘海英, 宫泮伟, 等. 纳米铜粉研究进展[J]. 有色矿冶, 2004(3): 40-43.
[17] 耿新玲, 苏正涛. 液相法制备纳米铜粉的研究[J/OL]. 应用化工, 2005(10): 28-30.
[18] BROUGHTON J, SMET V, TUMMALA R R, et al. Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes[J/OL]. Journal of Electronic Packaging, 2018, 140(040801)
[2024-03-19].
[19] 楚广, 唐永建, 刘伟, 等. 纳米铜粉的制备及其应用[J]. 金属功能材料, 2005(3): 18-21.
[20] 刘成雁, 李在元, 翟玉春, 等. 纳米铜粉研制的新进展[J]. 中国有色冶金, 2005(6): 21-24+56.
[21] H. -J. HUANG, X. WU, M. -B. ZHOU, et al. A highly reliable die bonding approach for high power devices by low temperature pressureless sintering using a novel Cu nanoparticle paste[C/OL]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC). 2020: 1697-1702.
[22] MA H, SUHLING J C. A review of mechanical properties of lead-free solders for electronic packaging[J/OL]. Journal of Materials Science, 2009, 44(5): 1141-1158.
[23] HSIAO C H, KUNG W T, SONG J M, et al. Development of Cu-Ag pastes for high temperature sustainable bonding[J/OL]. Materials Science and Engineering: A, 2017, 684: 500-509.
[24] LI J, YU X, SHI T, et al. Depressing of CuCu bonding temperature by composting Cu nanoparticle paste with Ag nanoparticles[J/OL]. Journal of Alloys and Compounds, 2017, 709: 700-707.
[25] POKORNÝ V, ŠTEJFA V, HAVLÍN J, et al. Heat Capacities of l-Histidine, l-Phenylalanine, l-Proline, l-Tryptophan and l-Tyrosine[J/OL]. Molecules (Basel, Switzerland), 2021, 26(14): 4298.
[26] TAN K S, CHEONG K Y. Mechanical properties of sintered Ag–Cu die-attach nanopaste for application on SiC device[J/OL]. Materials & Design, 2014, 64: 166-176.
[27] YAN J, ZOU G, ZHANG Y, et al. Metal–Metal Bonding Process Using Cu+Ag Mixed Nanoparticles[J/OL]. Materials Transactions, 2013, 54(6): 879-883.
[28] V. R. MANIKAM, K. Y. CHEONG. Die Attach Materials for High Temperature Applications: A Review[J/OL]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(4): 457-478.
[29] KIM M, LEE J H. Die sinter bonding in air using Cu@Ag particulate preform and rapid formation of near-full density bondline[J/OL]. Journal of Materials Research and Technology, 2021, 14: 1724-1738.
[30] CAZAYOUS M, LANGLOIS C, OIKAWA T, et al. Cu-Ag core-shell nanoparticles: A direct correlation between micro-Raman and electron microscopy[J/OL]. Physical Review B, 2006, 73(11): 113402.
[31] DAI X, XU W, ZHANG T, et al. Room temperature sintering of Cu-Ag core-shell nanoparticles conductive inks for printed electronics[J/OL]. Chemical Engineering Journal, 2019, 364: 310-319.
[32] 李雅丽, 刘娟, 党蕊. 银包覆铜微粉的制备与性能研究[J/OL]. 应用化工, 2011, 40(12): 2135-2137.
[33] 刘志杰, 赵斌, 张宗涛, 等. 超细核壳铜-银双金属粉的制备[J]. 无机化学学报, 1996(1): 30-34.
[34] 蒋红梅. 铜-银双金属粉的制备机理研究[J]. 沈阳农业大学学报, 2001(2): 141-143.
[35] 徐振宇, 秦会斌. 铜-银双金属粉末的制备及其包覆性[J/OL]. 杭州电子工业学院学报, 2002(6): 69-72.
[36] 常英, 刘彦军. 片状镀银铜粉的制备及性能表征[J]. 化工新型材料, 2005(4): 56-58.
[37] XU X, LUO X, ZHUANG H, et al. Electroless silver coating on fine copper powder and its effects on oxidation resistance[J/OL]. Materials Letters, 2003, 57(24): 3987-3991.
[38] 廖辉伟, 李翔, 彭汝芳, 等. 包覆型纳米铜-银双金属粉研究[J]. 无机化学学报, 2003(12): 1327-1330.
[39] 李哲男, 董星龙, 王威娜. 铜系导电涂料中纳米铜粉抗氧化问题的研究[J]. 四川大学学报(自然科学版), 2005(S1): 226-230.
[40] LI J, YU X, SHI T, et al. Depressing of CuCu bonding temperature by composting Cu nanoparticle paste with Ag nanoparticles[J/OL]. Journal of Alloys and Compounds, 2017, 709: 700-707.
[41] TAN K S, CHEONG K Y. Mechanical properties of sintered Ag–Cu die-attach nanopaste for application on SiC device[J/OL]. Materials & Design, 2014, 64: 166-176.
[42] YAN J, ZOU G, WU A ping, et al. Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging[J/OL]. Scripta Materialia, 2012, 66(8): 582-585.
[43] TIAN Y, JIANG Z, WANG C, et al. Sintering mechanism of the Cu–Ag core–shell nanoparticle paste at low temperature in ambient air[J/OL]. RSC Advances, 2016, 6(94): 91783-91790.
[44] LIU X, LIU W, WANG C, et al. Preparation and Sintering Properties of Ag27Cu2Sn Nanopaste as Die Attach Material[J/OL]. Journal of Electronic Materials, 2016, 45(10): 5436-5442.
[45] KOTTHAUS S, GUNTHER B H, HANG R, et al. Study of isotropically conductive bondings filled with aggregates of nano-sited Ag-particles[J/OL]. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 1997, 20(1): 15-20.
[46] YANG W, CHEN J, ZHANG Y, et al. Silicon-Compatible Photodetectors: Trends to Monolithically Integrate Photosensors with Chip Technology[J/OL]. Advanced Functional Materials, 2019, 29(18): 1808182.
[47] LI S, LIU X, FAN J, et al. Research on Thermal-Mechanical Properties of GaN Power Module Based on QFN Package by Using Nano Copper/Silver Sinter Paste[C/OL]//2022 23rd International Conference on Electronic Packaging Technology (ICEPT). 2022: 1-7
[2024-03-19].
[48] 吴艳. 电子封装用核壳结构Cu@Sn@Ag焊片焊接过程的应力仿真分析[D/OL]. 北方工业大学, 2023
[2024-03-19].
[49] 杨龙龙. 多场耦合下倒装芯片封装焊点电迁移可靠性研究[D/OL]. 南通大学, 2017
[2024-03-19].
[50] YANG G, ZOU Q, WANG P, et al. Towards understanding the facile synthesis of well-covered Cu-Ag core-shell nanoparticles from a complexing model[J/OL]. Journal of Alloys and Compounds, 2021, 874: 159900.
[51] KING J T, ROSS M R, KUBARYCH K J. Water-Assisted Vibrational Relaxation of a Metal Carbonyl Complex Studied with Ultrafast 2D-IR[J/OL]. The Journal of Physical Chemistry B, 2012, 116(12): 3754-3759.
[52] JI H, ZHOU J, LIANG M, et al. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging[J/OL]. Ultrasonics Sonochemistry, 2018, 41: 375-381.
[53] HUANG H J, WU X, ZHOU M B, et al. A highly reliable die bonding approach for high power devices by low temperature pressureless sintering using a novel Cu nanoparticle paste[C/OL]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC). 2020: 1697-1702
[2024-03-19].
[54] 刘徐迟. 低成本银包覆铜导电浆料的可控制备及其在太阳能电池中的应用[D/OL]. 上海交通大学, 2020
[2024-03-19].
[55] JIANG R, ZHONG C, PENG X, et al. Investigation on Reliability of Power Devices by Finite Element Analysis[C/OL]//2022 23rd International Conference on Electronic Packaging Technology (ICEPT). 2022: 1-6
[2024-03-19].
[56] ZHANG X, ZHANG Y, DING Y, et al. Influence of Thermal Field Distribution on the Sintering Performance of Ag Micron-flakes[C/OL]//2022 23rd International Conference on Electronic Packaging Technology (ICEPT). 2022: 1-6
[2024-03-19].
[57] BASARAN C, YAN C Y. A Thermodynamic Framework for Damage Mechanics of Solder Joints[J/OL]. Journal of Electronic Packaging, 1998, 120(4): 379-384.
[58] E.B. Choi, J.H. Lee, Dewetting behavior of Ag in Ag-coated Cu particle with thick Ag shell, Appl. Surf. Sci. 480 (2019) 839–845.
修改评论