中文版 | English
题名

用于半固态锂电池的凝胶电解质设计与性能研究

其他题名
DESIGN AND PERFORMANCE STUDY OF GEL ELECTROLYTE FOR SEMI-SOLID LITHIUM BATTERIES
姓名
姓名拼音
XIA Kongming
学号
12233164
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
徐洪礼
导师单位
创新创业学院
论文答辩日期
2024-05-08
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

凝胶聚合物电解质(GPE)同时具有固态电解质和液态电解质的优势, 备受研究学者的关注,因其具有制备工艺简单,良好的界面相容性以及高 安全性等诸多优点。使用液态电解质的商用锂电池,存在泄露、燃烧爆炸 等风险,具有严重的安全隐患。同时,目前的固态电解质由于较低的室温 离子电导率,对于实现商业化应用仍有一定距离。因此,半固态锂离子电 池能综合上述优势,满足人们日益增长的能量需求,而针对凝胶聚合物电 解质的研究是其中的关键。本论文旨在制备具有优异电化学性质的 GPE, 并评估其在高温以及高压情况下的性能表现。本论文主要以聚甲基丙烯酸 甲酯(PMMA)和聚戊烯酮(PEVK)分别作为 GPE 的聚合物基体材料, 制备了两种具有优异电化学性质的聚合物凝胶电解质,并分别探究其在高 温磷酸铁锂正极体系和高压镍钴锰 811 正极体系电池下的性能及相关机理。 在高温磷酸铁锂电池体系中,我们选取了甲基丙烯酸甲酯为单体,六 氟磷酸锂(LiPF6)为锂盐,PEGDA 为交联剂,AIBN 为引发剂,溶解在 液态电解质中,以原位聚合的方式制备了凝胶聚合物电解质。在 30 ℃下, 该凝胶电解质的离子电导率达到 7.7×10−3 S cm-1。并且该电解质表现出优 异的对锂稳定性,60 ℃时在 0.2 mA cm-2 电流下稳定循环 300 h 以上。在 0.5 C 倍率下,该电解质在 LiFePO4 //Graphite 软包电池循环 200 圈后,容 量保持率高达 90%,表现出优异的循环稳定性。 在高压 NCM811 电池体系中,我们以酮类单体 1-戊烯-3 酮作为聚合物 单 体 , 1,4-丁 二 醇 二 丙 烯 酸 酯 作 为 交 联 剂 , 锂 盐 使 用 双 氟 磺 酰 亚 胺 锂 (LiFSI),AIBN 作为引发剂,通过原位聚合法制备了新型凝胶聚合物电解 质。该酮类单体有效降低了电解质的 HOMO 能级,将电化学窗口提升到 5.21 V。在 30 ℃和 0.5 mA cm-2 电流密度的条件下,该电解质在 Li//Li 电 池 中 的 稳 定 循 环 时 间 能 够 达 到 650 h 以上。0.5 C 倍 率 下 , NCM811//SiC450 软包电池也表现优秀的循环稳定性,循环 170 圈后,容 量保持率为 88%。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[ZHAO Y, DING Y, LI Y T, et al. A chemistry and material perspective on lithium redox flow batteries towards high -density electrical energy storage[J]. Chemical Society Reviews, 2015,44(22): 7968-7996.
[2] GOODENOUGH J B, PARK K S. The Li-Ion Rechargeable Battery: A Perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176.
[3] LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. J Power Sources, 2013, 226: 272-288.
[4] DI LECCE D, CARBONE L, GANCITANO V, et al. Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes[J]. J Power Sources, 2016, 334: 146-153.
[5] HESS S, WOHLFAHRT-MEHRENS M, WACHTLER M. Flammability of Li ion battery electrolytes: Flash point and self-extinguishing time measurements[J]. J Electrochem Soc, 2015, 162(2): A3084-A3097.
[6] GOODENOUGH J B, KIM Y. Challenges for Rechargeable Li Batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
[7] KALHOFF J, ESHETU G G, BRESSER D, et al. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives[J]. Chemsuschem, 2015, 8(13): 2154-2175.
[8] ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192.
[9] ZENG Z, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3(8): 674-681.
[10] YE L, LI X. A dynamic stability design strategy for lithium metal solid state batteries[J]. Nature, 2021, 593(7858): 218-222.
[11] HEIN S, DANNER T, LATZ A. An Electrochemical Model of Lithium Plating and Stripping in Lithium Ion Batteries[J]. ACS Applied Energy Materials, 2020, 3(9): 8519-8531.
[12] CHO Y-G, HWANG C, CHEONG D S, et al. Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems[J]. Advanced Materials, 2019, 31(20): 1804909.
[13] PANG Y, PAN J, YANG J, et al. Electrolyte/electrode interfaces in all -solid state lithium batteries: A review[J]. Electrochem Energy R, 2021, 4(2): 169193.
[14] ZHENG Y, YAO Y, OU J, et al. A review of composite solid -state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chem Soc Rev, 2020, 49(23): 8790-8839.
[15] ZHAO Y, BAI Y, LI W, et al. Design strategies for polymer electrolytes with ether and carbonate groups for solid -state lithium metal batteries[J]. Chem Mater, 2020, 32(16): 6811-6830.
[16] ARMAND M B. Intercalation electrodes [M]. S pringer US. 1980: 145 -161.
[17] MEGAHED S, SCROSATI B. Lithium-ion rechargeable batteries[J]. J Power Sources, 1994, 51(1): 79-104.
[18] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem Rev, 2004, 104(10): 4303-4418.
[19] 刘松, 侯宏英, 胡文, 等. 锂离子电池集流体的研究进展[J]. 硅酸盐通报, 2015, 34(09): 2562-2568.
[20] LONG L, WANG S, XIAO M, et al. Polymer electrolytes for lithium polymer batteries[J]. J Mater Chem A, 2016, 4(26): 10038-10069.
[21] LV F, WANG Z, SHI L, et al. Challenges and development of composite solid -state electrolytes for high-performance lithium ion batteries[J]. J Power Sources, 2019, 441: 227175.
[22] JANEK J, ZEIER W G A. solid future for battery development[J]. Nat Energy, 2016, 1(9): 16141.
[23] LIU Y, XU B, ZHANG W, et al. Composition modulation and structure design of inorganic‐in‐polymer composite solid electrolytes for advanced lithium batteries[J]. Small, 2020, 16(15): 1902813.
[24] GUO Y, LI H, ZHAI T. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Adv Mater, 2017, 29(29): 1700007.
[25] WANG D W, PENG K Y, FU Y P, et al. Kinetics of lithium dendrite growth in garnet-type solid electrolyte[J]. Journal of Power Sources, 2021, 487:229421.
[26] KIM M, KIM G, LEE H. Tri-Doping of Sol-Gel Synthesized Garnet-Type Oxide Solid-State Electrolyte[J]. Micromachines, 2021, 12(2): 134.
[27] HOANG HUY V P, SO S, HUR J. Inorganic filers in composite gel polymer electrolytes for high-performance lithium and non-lithium polymer batteries[J]. Nanomaterials, 2021, 11(3): 614.
[28] CHAE W, KIM B, RYOO W S, et al. A Brief Review of Gel Polymer Electrolytes Using In Situ Polymerization for Lithium-ion Polymer Batteries[J]. Polymers, 2023, 15(4).
[29] REN W, DING C, FU X, et al. Advanced gel polymer electrolytes for safe anddurable lithium metal batteries: Challenges, strategies, and perspectives[J]. Energy Storage Materials, 2021, 34: 515 -35.
[30] AN Y, HAN X, LIU Y, et al. Progress in solid polymer electrolytes for lithium‐ion batteries and beyond[J]. Small, 2022, 18: 2103617.
[31] XU L, LU Y, ZHAO C Z, et al. Toward the scale‐up of solid‐state lithium metal batteries: The gaps between lab‐level cells and practical large‐format batteries[J]. Adv Energy Mater, 2021, 11(4): 2002360.
[32] LI M, WANG C, CHEN Z, et al. New concepts in electrolytes[J]. Chem Rev, 2020, 120(14): 6783-6819.
[33] ARMAND M B, CHABAGNO J M, DUCLOT M J. Polyethers as solid electrolytes[C]. Fast Ion Transp. Solids: Electrodes Electrolytes, 1979: 131-136.
[34] TOMINAGA Y, SHIMOMURA T, NAKAMURA M. Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion -conductive polymer electrolytes[J]. Polymer, 2010, 51(19): 4295-4298.
[35] SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419 -2430.
[36] HE Z, CHEN L, ZHANG B, et al. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride -hexafluoropropylene) for lithium metal batteries[J]. J Power Sources, 2018, 392: 232-238.
[37] SHIM J, LEE J W, BAE K Y, et al. Dendrite suppression by synergistic combination of solid polymer electrolyte crosslinked with natural terpenes and lithium‐powder anode for lithium‐ metal batteries[J]. ChemSusChem, 2017, 10(10): 2274-2283.
[38] NGAI K S, RAMESH S, RAMESH K, et al. A review of polymer electrolytes: fundamental, approaches and applications[J]. Ionics, 2016, 22: 1259 -1279.
[39] AN Y, HAN X, LIU Y, et al. Progress in solid polymer electrolytes for lithium ion batteries and beyond[J]. Small, 2022, 18(3): 2103617.
[40] STEPHAN A M. Review on gel polymer electrolytes for lithium batteries[J]. European Polymer Journal, 2006, 42(1): 21 -42.
[41] ZHU Y, WANG F, LIU L, et al. Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery[J]. Energy & Environmental Science, 2013, 6(2): 618 -624.
[42] LU Q, HE Y-B, YU Q, et al. Dendrite -Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte[J]. Advanced Materials, 2017, 29(13): 1604460.
[43] HU J, TIAN J, LI C. Nanostructured Carbon Nitride Polymer-Reinforced Electrolyte To Enable Dendrite -Suppressed Lithium Metal Batteries[J]. ACSApplied Materials & Interfaces, 2017, 9(13): 11615 -11625.
[44] ZHU M, WU J, WANG Y, et al. Recent advances in gel polymer electrolyte for high-performance lithium batteries[J]. Journal of Energy Chemistry, 2019, 37: 126-42.
[45] MINDEMARK J, MATTHEW J L, BOWDEN T, et al. Beyond PEO Alternative host materials for Li+-conducting solid polymer electrolytes[J]. Progress in Polymer Science, 2018, 81: 114-143,
[46] KUO P L, WU C A, LU C Y, et al. Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery[J]. European Polymer Journal, 2015, 67: 365-372.
[47] LIU B, HUANG Y, CAO H, et al. A novel porous gel polymer electrolyte based on poly(acrylonitrile -polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries[J]. Journal of Membrane Science. 2018, 545: 140–149.
[48] RAMESH S, LU S C. Enhancement of ionic conductivity and structural properties by 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in poly(vinylidene fluoride –hexafluoropropylene)-based polymer electrolytes[J]. Journal of Applied Polymer S cience, 2012, 12 6(S2): E484-E492
[49] KIM L, KIM B S, NAM S, et al. Cross-linked poly (vinylidene fluoride -co hexafluoropropene)(PVDF-co-HFP) gel polymer electrolyte for flexible Li-ion battery integrated with organic light emitting diode (OLED)[J]. Materials. 2018.11(4): 543.
[50] HOSSEINIOUN A, PAILLARD E. In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective, long lasting and sustainable lithium-ion batteries[J]. Journal of Membrane Science, 2020, 594:117456
[51] WANG D Y, JIN B Y, HUANG J, et al. Laponite -Supported gel polymer electrolyte with multiple lithium-ion transport channels for stable lithium metal batterie[J]. ACS Applied Materials & Interfaces, 2023, 15(27): 342385 -32394.
[52] LI S Y, LI N W, SUN C W. A flexible three -dimensional composite nanofiber enhanced quasi-solid electrolyte for high-performance lithium metal batteries[J]. Inorganic Chemistry Frontiers, 2021, 8(2): 361 -367.
[53] DU PASQUIER A, WARREN P C, CULVER D, et al. Plastic PVDF-HFP electrolyte laminates prepared by a phase -inversion process[J]. Solid State Ionics, 2000, 135(1): 249-257.
[54] YU X Y, XIAO M, WANG S J, et al. Fabrication and characterization of PEO/PPC polymer electrolyte for lithium-ion battery[J]. Journal of AppliedPolymer Science, 2010, 115(5): 2718 -2722.
[55] SHI T, KANG S, ZHANG K ET AL. High-performance lithium-ion batteries with gel polymer electrolyte based on ultra -thin PVDF film[J]. Ionics, 2022, 28(7): 3269-3276.
[56] DUAN H, YIN Y-X, ZENG X-X, et al. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries[J]. Energy Storage Materials, 2018, 10: 85 -91.
[57] HA H-J, KWON Y H, KIM J Y, et al. A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium -ion battery[J]. Polymer Electrolytes, 2011, 57: 40 -45.
[58] LI Z, XIE H X, ZHANG X Y, et al. In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(7): 3892-3900.
[59] CUI Y, CHAI J, DU H, et al. Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8737 -8741.
[60] LIU M, WANG Y, LI M, et al. A new composite gel polymer electrolyte based on matrix of PEGDA with high ionic conductivity for lithium-ion batteries[J]. Electrochimica Acta, 2020, 354: 136622.
[61] HA H J, KWON Y H, KIM J Y, et al. A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium -ion battery[J]. Electrochimica Acta, 2011, 57: 40 -45.
[62] KIM I, JANG S, LEE K H, et al. In situ polymerized solid electrolytes for superior safety and stability of flexible solid -state Al-ion batteries[J]. Energy Storage Materials, 2021, 40: 229 -238.
[63] WANG Q, XU X, HONG B, et al. Molecular engineering of a gel polymer electrolyte via in-situ polymerization for high performance lithium metal batteries[J]. Chemical Engineering Journal, 2022, 428: 131331.
[64] ZHOU L, WU N, CAO Q, et al. A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Li-ion batteries[J]. Solid State Ionics, 2013, 249-250: 93-97.
[65] Xu Z, Guo D, Liu Z et al. Cellulose Acetate -Based High-Electrolyte -Uptake Gel Polymer Electrolyte for Semi-Solid-State Lithium-Oxygen Batteries with Long-Cycling Stability[J]. Chemistry – An Asian Journal, 2022, 17(21): e202200712.
[66] AADHEESHWARAN S, SANKARANARAYANAN K . Electrochemical behavior of BaTiO3 embedded spongy PVDF-HFP/cellulose blend as a novel gel polymer electrolyte for lithium-ion batteries[J]. Materials Letters, 2022,306: 130938.
[67] LI Y, ZHANG W, DOU Q Q, et al. Li 7La 3Zr 2O1 2 ceramic nanofiber incorporated composite polymer electrolytes for lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(7): 3391 -3398.
[68] YANG T, SHU C, ZHENG R, et al. Dendrite -Free Solid-State Li-O-2 Batteries Enabled by Organic -Inorganic Interaction Reinforced Gel Polymer Electrolyte[J]. Acs Sustainable Chemistry & Engineering, 2019, 7(20): 17362 -17371.
[69] PRABAKARAN P, MANIMUTHU R P. Enhancement of the electrochemical properties with the effect of alkali metal systems on PEO/PVdF -HFP complex polymer electrolytes[J]. Ionics, 2016, 22(6): 827 -839.
[70] TOMINAGA Y, NAKANO K, MORIOKA T. Random copolymers of ethylene carbonate and ethylene oxide for Li-Ion conductive solid electrolytes[J]. Electrochimica Acta, 2019, 312: 342 -348.
[71] LIANG S, SHI Y, MA T, et al. A Compact Gel Membrane Based on a Blend of PEO and PVDF for Dendrite -Free Lithium Metal Anodes[J]. ChemElectroChem, 2019, 6(21): 5413 -5419.
[72] LIU J Q, LIU M, HE C F, et al. Blending-based poly(vinylidene fluoride)/polymethyl methacrylate membrane for rechargeable lithium -ion batteries[J]. Ionics, 2019, 25(11): 5201 -5211.
[73] SHI J, YANG Y, SHAO H. Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries[J]. Journal of Membrane Science, 2018, 547: 1 -10.
[74] TSAO C H, LIN Y T, HSU S Y, et al. Crosslinked solidified gel electrolytes via in-situ polymerization featuring high ionic conductivity and stable lithium deposition for long-term durability lithium battery[J]. Electrochimica Acta, 2020, 361: 137076.
[75] ROCHOW E T, COELER M, POSPIECH D, et al. In Situ Preparation of Crosslinked Polymer Electrolytes for Lithium Ion Batteries: A Comparison of Monomer Systems[J]. Polymers, 2020, 12(8): 1707.
[76] LUO W H, DENG K R, WANG S J, et al. A Novel Gel Polymer Electrolyte by Thiol-Ene Click Reaction Derived from CO2 -Based Polycarbonate for Lithium-Ion Batteries[J]. Advances in Polymer Technology, 2020, 2020: 5047487.
[77] LI H, SHEN X, HUA H M, et al. A novel single -ion conductor gel polymer electrolyte prepared by co-irradiation grafting and electrospinning process[J]. Solid State Ionics, 2020, 347: 115246.
[78] KASSENOVA N, KALYBEKKYZY S, KAHRAMAN M V et al. Photo and thermal crosslinked poly(vinyl alcohol)-based nanofiber membrane for flexible gel polymer electrolyte[J]. Journal of Power Sources, 2022, 520: 230896.

所在学位评定分委会
材料与化工
国内图书分类号
TM911.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778721
专题创新创业学院
推荐引用方式
GB/T 7714
夏孔铭. 用于半固态锂电池的凝胶电解质设计与性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233164-夏孔铭-创新创业学院.(4691KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[夏孔铭]的文章
百度学术
百度学术中相似的文章
[夏孔铭]的文章
必应学术
必应学术中相似的文章
[夏孔铭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。