[1] Yang J F, Faccenda M. Intraplate volcanism originating from upwelling hydrous mantle transition zone [J]. Nature, 2020, 579(7797): 88-91.
[2] 潘谟晗, 杨挺, 林间, et al. 斑点火山的形成机制和岩石圈-软流圈边界(Lab)的性质 [J]. Earth Science-Journal of China University of Geosciences, 2021, 46(3).
[3] Fukao Y, Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity [J]. Journal of Geophysical Research-Solid Earth, 2013, 118(11): 5920-38.
[4] Jaxybulatov K, Koulakov I, Dobretsov N L. Segmentation of the Izu-Bonin and Mariana slabs based on the analysis of the Benioff seismicity distribution and regional tomography results [J]. Solid Earth, 2013, 4(1): 59-73.
[5] Zhang H, Wang F, Myhill R, et al. Slab morphology and deformation beneath Izu-Bonin [J]. Nature Communications, 2019, 10(1): 1310.
[6] Hung S H, Shen Y, Chiao L Y. Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach [J]. Journal of Geophysical Research-Solid Earth, 2004, 109(B8).
[7] Montelli R, Nolet G, Dahlen F A, et al. Finite-frequency tomography reveals a variety of plumes in the mantle [J]. Science, 2004, 303(5656): 338-43.
[8] Obayashi M, Yoshimitsu J, Nolet G, et al. Finite frequency whole mantle P wave tomography: Improvement of subducted slab images [J]. Geophysical Research Letters, 2013, 40(21): 5652-7.
[9] Oakley A J, Taylor B, Fryer P, et al. Emplacement, growth, and gravitational deformation of serpentinite seamounts on the Mariana forearc [J]. Geophysical Journal International, 2007, 170(2): 615-34.
[10] Miller M S, Kennett B L N, Toy V G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin [J]. Journal of Geophysical Research-Solid Earth, 2006, 111(B2).
[11] Kato T, Beavan J, Matsushima T, et al. Geodetic evidence of back-arc spreading in the Mariana Trough [J]. Geophysical Research Letters, 2003, 30(12).
[12] Hayes G P, Moore G L, Portner D E, et al. Slab2, a comprehensive subduction zone geometry model [J]. Science, 2018, 362(6410): 58-61.
[13] Kong X, Li S, Wang Y, et al. Causes of earthquake spatial distribution beneath the Izu-Bonin-Mariana Arc [J]. Journal of Asian Earth Sciences, 2018, 151: 90-100.
[14] Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc [J]. Earth and Planetary Science Letters, 2011, 306(3-4): 229-40.
[15] Reagan M K, Heaton D E, Schmitz M D, et al. Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation [J]. Earth and Planetary Science Letters, 2019, 506: 520-9.
[16] Ishizuka O, Hickey-Vargas R, Arculus R J, et al. Age of Izu-Bonin-Mariana arc basement [J]. Earth and Planetary Science Letters, 2018, 481: 80-90.
[17] Li H, Lin J, Zhou Z, et al. Variations in magmatism and the state of tectonic compensation of the Mariana subduction system [J]. Terra Nova, 2022, 34(1): 20-7.
[18] Stern R J, Fouch M J, Klemperer S L. An Overview of the Izu-Bonin-Mariana Subduction Factory [M]. Inside the Subduction Factory. 2004: 175-222.
[19] Takahashi N, Kodaira S, Tatsumi Y, et al. Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc-back-arc system [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B1).
[20] Calvert A J, Klemperer S L, Takahashi N, et al. Three-dimensional crustal structure of the Mariana island arc from seismic tomography [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B1).
[21] Takahashi N, Kodaira S, Klemperer S L, et al. Crustal structure and evolution of the Mariana intra-oceanic island arc [J]. Geology, 2007, 35(3): 203-6.
[22] Tibi R, Wiens D A, Yuan X. Seismic evidence for widespread serpentinized forearc mantle along the Mariana convergence margin [J]. Geophysical Research Letters, 2008, 35(13).
[23] Pozgay S H, Wiens D A, Conder J A, et al. Seismic attenuation tomography of the Mariana subduction system: Implications for thermal structure, volatile distribution, and slow spreading dynamics [J]. Geochemistry Geophysics Geosystems, 2009, 10.
[24] Shiobara H, Sugioka H, Mochizuki K, et al. Double seismic zone in the North Mariana region revealed by long-term ocean bottom array observation [J]. Geophysical Journal International, 2010, 183(3): 1455-69.
[25] Pyle M L, Wiens D A, Weeraratne D S, et al. Shear velocity structure of the Mariana mantle wedge from Rayleigh wave phase velocities [J]. Journal of Geophysical Research-Solid Earth, 2010, 115.
[26] Barklage M, Wiens D A, Conder J A, et al. P and S velocity tomography of the Mariana subduction system from a combined land-sea seismic deployment [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(3): 681-704.
[27] Qiao Q, Liu X, Zhao D, et al. Upper Mantle Structure Beneath Mariana: Insights From Rayleigh-Wave Anisotropic Tomography [J]. Geochemistry Geophysics Geosystems, 2021, 22(11).
[28] Emry E L, Wiens D A, Garcia-Castellanos D. Faulting within the Pacific plate at the Mariana Trench: Implications for plate interface coupling and subduction of hydrous minerals [J]. Journal of Geophysical Research-Solid Earth, 2014, 119(4): 3076-95.
[29] Cai C, Wiens D A, Shen W, et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data [J]. Nature, 2018, 563(7731): 389-92.
[30] Mark H F, Lizarralde D, Wiens D A. Constraints on Bend-Faulting and Mantle Hydration at the Marianas Trench From Seismic Anisotropy [J]. Geophysical Research Letters, 2023, 50(10).
[31] Backus G E, Gilbert J F. Numerical Applications of a Formalism for Geophysical Inverse Problems [J]. Geophysical Journal of the Royal Astronomical Society, 1967, 13(1-3): 247-&.
[32] Backus G, Gilbert F. The Resolving Power of Gross Earth Data [J]. Geophysical Journal International, 1968, 16(2): 169-205.
[33] Backus G, Gilbert F, Bullard E C. Uniqueness in the inversion of inaccurate gross Earth data [J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1970, 266(1173): 123-92.
[34] Jackson D D. Interpretation of Inaccurate, Insufficient and Inconsistent Data [J]. Geophysical Journal of the Royal Astronomical Society, 1972, 28(2): 97-&.
[35] Wiggins R A. The general linear inverse problem: Implication of surface waves and free oscillations for Earth structure [J]. Reviews of Geophysics and Space Physics, 1972, 10(1): 251-+.
[36] Aki K, Lee W H K. Determination of the three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes 1. A homogeneous intial model [J]. Journal of Geophysical Research, 1976, 81(23): 4381-99.
[37] Aki K, Christoffersson A, Husebye E S. Determination of the three-dimensional seismic structure of the lithosphere [J]. Journal of Geophysical Research, 1977, 82(2): 277-96.
[38] Dziewonski A M, Hager B H, Oconnell R J. Large-scale heterogeneities in the lower mantle [J]. Journal of Geophysical Research, 1977, 82(2): 239-55.
[39] Bois P, La Porte M, Lavergne M, et al. Essai de détermination automatique des vitesses sismiques par mesures entre puits [J]. Geophysical Prospecting, 1971, 19(1): 42-83.
[40] Pratt R G, Worthington M H. The application of diffraction tomography to cross-hole seismic data [J]. Geophysics, 1988, 53(10): 1284-94.
[41] Pratt R G, Goulty N R. Combining wave‐equation imaging with traveltime tomography to form high‐resolution images from crosshole data [J]. Geophysics, 1991, 56(2): 208-24.
[42] Song Z-M, Williamson P R, Pratt R G. Frequency-domain acoustic-wave modeling and inversion of crosshole data; Part II, Inversion method, synthetic experiments and real-data results [J]. Geophysics, 1995, 60(3): 796-809.
[43] Pratt R G, Shipp R M. Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data [J]. Geophysics, 1999, 64(3): 902-14.
[44] Bishop T N, Bube K P, Cutler R T, et al. Tomographic determination of velocity and depth in laterally varying media [J]. Geophysics, 1985, 50(6): 903-23.
[45] Wang Y H, Pratt R G. Sensitivities of seismic traveltimes and amplitudes in reflection tomography [J]. Geophysical Journal International, 1997, 131(3): 618-42.
[46] Wang Y H, White R E, Pratt R G. Seismic amplitude inversion for interface geometry: practical approach for application [J]. Geophysical Journal International, 2000, 142(1): 162-72.
[47] Wang B, Braile L W. Simultaneous inversion of reflection and refraction seismic data and application to field data from the northern Rio Grande rift [J]. Geophysical Journal International, 1996, 125(2): 443-58.
[48] McCaughey M, Singh S C. Simultaneous velocity and interface tomography of normal-incidence and wide-aperture seismic traveltime data [J]. Geophysical Journal International, 1997, 131(1): 87-99.
[49] Hicks G J, Pratt R G. Reflection waveform Inversion using local descent methods: Estimating attenuation and velocity over a gas-sand deposit [J]. Geophysics, 2001, 66(2): 598-612.
[50] de Hoop M V, van der Hilst R D, Shen P. Wave-equation reflection tomography: annihilators and sensitivity kernels [J]. Geophysical Journal International, 2006, 167(3): 1332-52.
[51] Walck M C. Three-dimensional Vp/Vs variations for the Coso Region, California [J]. Journal of Geophysical Research-Solid Earth and Planets, 1988, 93(B3): 2047-52.
[52] Hirahara K. Detection of three-dimensional velocity anisotropy [J]. Physics of the Earth and Planetary Interiors, 1988, 51(1-3): 71-85.
[53] Eberhart-Phillips D, Henderson C M. Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand [J]. Geophysical Journal International, 2004, 156(2): 237-54.
[54] Zhang H, Thurber C H. Double-Difference Tomography: The Method and Its Application to the Hayward Fault, California [J]. Bulletin of the Seismological Society of America, 2003, 93(5): 1875-89.
[55] Abt D L, Fischer K M. Resolving three-dimensional anisotropic structure with shear wave splitting tomography [J]. Geophysical Journal International, 2008, 173(3): 859-86.
[56] Shito A, Karato S-I, Matsukage K N, et al. Towards Mapping the Three-Dimensional Distribution of Water in the Upper Mantle from Velocity and Attenuation Tomography [M]. Earth's Deep Water Cycle. 2006: 225-36.
[57] VanDecar J C, Snieder R. Obtaining smooth solutions to large, linear, inverse problems [J]. Geophysics, 1994, 59(5): 818-29.
[58] Steck L K, Thurber C H, Fehler M C, et al. Crust and upper mantle P wave velocity structure beneath Valles caldera, New Mexico: Results from the Jemez teleseismic tomography experiment [J]. Journal of Geophysical Research-Solid Earth, 1998, 103(B10): 24301-20.
[59] Rawlinson N, Reading A M, Kennett B L N. Lithospheric structure of Tasmania from a novel form of teleseismic tomography [J]. Journal of Geophysical Research-Solid Earth, 2006, 111(B2).
[60] Plomerova J, Babuska V, Kozovskaya E, et al. Seismic anisotropy - A key to resolve fabrics of mantle lithosphere of Fennoscandia [J]. Tectonophysics, 2008, 462(1-4): 125-36.
[61] Weeraratne D S, Forsyth D W, Fischer K M, et al. Evidence for an upper mantle plume beneath the Tanzanian craton from Rayleigh wave tomography [J]. Journal of Geophysical Research-Solid Earth, 2003, 108(B9).
[62] Darbyshire F A, Lebedev S. Rayleigh wave phase-velocity heterogeneity and multilayered azimuthal anisotropy of the Superior Craton, Ontario [J]. Geophysical Journal International, 2009, 176(1): 215-34.
[63] Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise [J]. Science, 2005, 307(5715): 1615-8.
[64] Zhao D P. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics [J]. Physics of the Earth and Planetary Interiors, 2004, 146(1-2): 3-34.
[65] Burdick S, Van der Hilst R D, Vernon F L, et al. Model Update January 2013: Upper Mantle Heterogeneity beneath North America from Travel-Time Tomography with Global and USArray Transportable Array Data [J]. Seismological Research Letters, 2014, 85(1): 77-81.
[66] Karason H, Van der Hilst R. Improving global tomography models of P-wavespeed I: incorporation of differential times for refracted and diffracted core phases (PKP, Pdiff) [J]. J geophys Res, 2001, 106: 6569-87.
[67] Zhao A H, Zhang Z J, Teng J W. Minimum travel time tree algorithm for seismic ray tracing: improvement in efficiency [J]. Journal of Geophysics and Engineering, 2004, 1(4): 245-51.
[68] Kennett B L N, Sambridge M S, Williamson P R. Subspace methods for large inverse problems with multiple parameter classes [J]. Geophysical Journal International, 1988, 94(2): 237-47.
[69] Snieder R. Large-scale waveform inversions of surface waves for lateral heterogeneity: 1. Theory and numerical examples [J]. Journal of Geophysical Research-Solid Earth and Planets, 1988, 93(B10): 12055-65.
[70] Snieder R. Large-Scale waveform inversions of surface waves for lateral heterogeneity: 2. Application to surface waves in Europe and the Mediterranean [J]. Journal of Geophysical Research-Solid Earth and Planets, 1988, 93(B10): 12067-80.
[71] Marquering H, Dahlen F, Nolet G. Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox [J]. Geophysical Journal International, 1999, 137(3): 805-15.
[72] Dahlen F A, Hung S H, Nolet G. Frechet kernels for finite-frequency traveltimes - I. Theory [J]. Geophysical Journal International, 2000, 141(1): 157-74.
[73] Hung S H, Dahlen F A, Nolet G. Frechet kernels for finite-frequency traveltimes - II. Examples [J]. Geophysical Journal International, 2000, 141(1): 175-203.
[74] 杨峰, 黄金莉, 杨挺. 应用远震有限频率层析成像反演首都圈上地幔速度结构 [J]. 地球物理学报, 2010, 53(08): 1806-16.
[75] Liang X, Sandvol E, Chen Y J, et al. A complex Tibetan upper mantle: A fragmented Indian slab and no south-verging subduction of Eurasian lithosphere [J]. Earth and Planetary Science Letters, 2012, 333: 101-11.
[76] Liang X, Shen Y, Chen Y J, et al. Crustal and mantle velocity models of southern Tibet from finite frequency tomography [J]. Journal of Geophysical Research-Solid Earth, 2011, 116.
[77] Zhao L, Allen R M, Zheng T, et al. High-resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas [J]. Geochemistry Geophysics Geosystems, 2012, 13.
[78] Tang Y, Obayashi M, Niu F, et al. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling [J]. Nature Geoscience, 2014, 7(6): 470-5.
[79] Xu X, Zhao L, Wang K, et al. Indication from finite-frequency tomography beneath the North China Craton: The heterogeneity of craton destruction [J]. Science China-Earth Sciences, 2018, 61(9): 1238-60.
[80] 曲平, 陈永顺, 于勇, et al. 华南地区上地幔P波三维速度结构和动力学意义:来自有限频层析成像的证据 [J]. 地球物理学报, 2020, 63(8): 2954-69.
[81] Guo Z, Li S, Yu Y, et al. Eastward Asthenospheric Flow From NE Tibet Inferred by Joint Inversion of Teleseismic Body and Surface Waves: Insight Into Widespread Continental Deformation in Eastern China [J]. Journal of Geophysical Research-Solid Earth, 2022, 127(8).
[82] Jacob K H. Three-dimensional seismic ray tracing in a laterally heterogeneous spherical Earth [J]. Journal of Geophysical Research, 1970, 75(32): 6675-&.
[83] Chander R. Tracing seismic rays with specified end-points [J]. Journal of Geophysics-Zeitschrift Fur Geophysik, 1975, 41(2): 173-7.
[84] Um J, Thurber C. A fast algorithm for two-point seismic ray tracing [J]. Bulletin of the Seismological Society of America, 1987, 77(3): 972-86.
[85] Vidale J E. Finite-difference calculation of travel times [J]. Geophysics, 1990, 55(5): 521-6.
[86] Thurber C H. Earthquake locations and three-dimensional crustal structure in the Coyote Lake Area, central California [J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B10): 8226-36.
[87] Zhao D. Seismic structure and origin of hotspots and mantle plumes [J]. Earth and Planetary Science Letters, 2001, 192(3): 251-65.
[88] Zhao D. Multiscale seismic tomography and mantle dynamics [J]. Gondwana Research, 2009, 15(3-4): 297-323.
[89] Hung S-H, Chen W-P, Chiao L-Y, et al. First multi-scale, finite-frequency tomography illuminates 3-D anatomy of the Tibetan Plateau [J]. Geophysical Research Letters, 2010, 37(6).
[90] Paige C C, Saunders M A. LSQR: an algorithm for sparse linear equations and sparse least squares [J]. Acm Transactions on Mathematical Software, 1982, 8(1): 43-71.
[91] Dahlen F A, Tromp J, Lay T. Theoretical Global Seismology, F, 1998 [C].
[92] 刘丹, 杨挺, 黎伯孟, et al. 分体式宽频带海底地震仪的研制、测试和数据质量分析 [J]. 地球物理学报, 2022, 65(07): 2560-72.
[93] Cai C, Wiens D A, Shen W, et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data [J]. Nature, 2018, 563(7731): 389-+.
[94] Kang H, Kim Y, Hung S-H, et al. Seismic Velocity Structure of Upper Mantle Beneath the Oldest Pacific Seafloor: Insights From Finite-Frequency Tomography [J]. Geochemistry, Geophysics, Geosystems, 2023, 24(9): e2022GC010833.
[95] 付继华, 王旭, 李智涛, et al. 强噪声环境下基于信噪比的地震P波到时自动提取方法 [J]. 地球物理学报, 2019, 62(04): 1405-12.
[96] Vandecar J C, Crosson R S. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares [J]. Bulletin of the Seismological Society of America, 1990, 80(1): 150-69.
[97] Lou X, van der Lee S, Lloyd S. AIMBAT: A python/matplotlib tool for measuring teleseismic arrival times [J]. Seismological Research Letters, 2013, 84(1): 85-93.
[98] Kennett B L N, Engdahl E R. Traveltimes for global earthquake location and phase identification [J]. Geophysical Journal International, 1991, 105(2): 429-65.
[99] Laske G, Masters G, Ma Z, et al. Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust [Z]. 2013: EGU2013-658
[100] Isse T, Kawakatsu H, Yoshizawa K, et al. Surface wave tomography for the Pacific Ocean incorporating seafloor seismic observations and plate thermal evolution [J]. Earth and Planetary Science Letters, 2019, 510: 116-30.
[101] Zhao D, Xu Y, Wiens D A, et al. Depth Extent of the Lau Back-Arc Spreading Center and Its Relation to Subduction Processes [J]. Science, 1997, 278(5336): 254-7.
[102] Cammarano F, Goes S, Vacher P, et al. Inferring upper-mantle temperatures from seismic velocities [J]. Physics of the Earth and Planetary Interiors, 2003, 138(3): 197-222.
[103] Chantel J, Manthilake G, Andrault D, et al. Experimental evidence supports mantle partial melting in the asthenosphere [J]. Science Advances, 2016, 2(5): e1600246.
[104] Koppers A A P, Becker T W, Jackson M G, et al. Mantle plumes and their role in Earth processes [J]. Nature Reviews Earth & Environment, 2021, 2(6): 382-401.
[105] Ballmer M D, van Hunen J, Ito G, et al. Intraplate volcanism with complex age-distance patterns: A case for small-scale sublithospheric convection [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(6).
[106] Tauzin B, Debayle E, Wittlinger G. Seismic evidence for a global low-velocity layer within the Earth’s upper mantle [J]. Nature Geoscience, 2010, 3(10): 718-21.
[107] Wei S S, Shearer P M. A sporadic low-velocity layer atop the 410 km discontinuity beneath the Pacific Ocean [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 5144-59.
[108] Čížková H, Bina C R. Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry [J]. Earth and Planetary Science Letters, 2015, 430: 408-15.
修改评论