中文版 | English
题名

利用有限频体波层析成像研究马里亚纳输入板片下方地幔速度结构

其他题名
STUDYING THE MANTLE VELOCITY STRUCTURE BENEATH THE MARIANA INCOMING PLATE USING FINITE FREQUENCY BODY WAVE TOMOGRAPHY
姓名
姓名拼音
JIA Shifei
学号
12132168
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
杨挺
导师单位
海洋科学与工程系
论文答辩日期
2024-05-15
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

俯冲板片在地幔内的形态及其与地幔转换带(MTZ)的相互作用决定了俯冲带的多个动力学过程。马里亚纳俯冲带是太平洋板块俯冲到菲律宾海板块之下形成的洋内俯冲带,具有典型的沟弧体系、充分发育的弧后扩张中心和外缘隆起,且地震和火山活动频繁;此外,其输入板块上分布着大量海山,还可能存在一种新型的岩浆活动形式——斑点火山。因此,马里亚纳代表了典型的俯冲过程,获得这一俯冲带地幔三维精细结构对于理解更广泛的俯冲动力过程具有重要意义。

基于在马里亚纳俯冲带中部海区最新布设海底地震仪(OBS)台阵,并结合这一区域多期次布设的海底及海岛上多达99个地震台站,本论文利用有限频层析成像的方法来对于马里亚纳中部俯冲带下方的上地幔及MTZ的速度结构进行成像。

相对于传统的射线理论,有限频地震层析方法利用三维敏感核来描述实际地震波在不均匀介质中的传播,不但有效地考虑散射和波前愈合等效应,而且在反演中提供了一种“物理”正则化方法,使得该方法能提高成像的分辨率和精度。我们选取了震级大于5.5级、震中距在30-90°范围内的321个全球地震,利用波形互相关方法拾取了高质量P波相对到时数据;针对OBS数据高噪音的特点,我们通过分频的方法来提高数据的有效率,在三个频道上,总共得到了4755个相对走时;为了消除巨大的海底地形起伏影响,对走时数据进行了地壳校正。并最终利用有限频层析成像方法获得了马里亚纳俯冲带下方的P波速度结构,分辨率测试显示,这一模型对于500 km深度以上的上地幔及部分MTZ的成像结果较为可靠。

这一速度模型显示出三个主要的速度异常区域:地幔楔中的低速异常,俯冲板块的高速异常以及输入板块下方的低速异常。其中,地幔楔中低速异常应与是俯冲板片在深部地幔脱水导致的熔融相关;而高速异常体给出了俯冲板片在上地幔和MTZ内的几何形态及其沿海沟方向的变化特征:大约以北纬16°为界,北边板片以近乎垂直的俯冲角度下行,但南部则显示出明显的板片后折趋势,这一特征与地震活动性沿海沟走向的变化特征相对应;此外,输入板块下方呈现明显的低速异常且最深处持续到在410公里间断面附近。俯冲板片在MTZ内的后折及其的低速异常可能反映了该区域斑点火山的一种形成机制,即,因俯冲板片回摆挤压其后方MTZ,致使高含水量的MTZ物质进入上地幔、脱水并熔融。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] Yang J F, Faccenda M. Intraplate volcanism originating from upwelling hydrous mantle transition zone [J]. Nature, 2020, 579(7797): 88-91.
[2] 潘谟晗, 杨挺, 林间, et al. 斑点火山的形成机制和岩石圈-软流圈边界(Lab)的性质 [J]. Earth Science-Journal of China University of Geosciences, 2021, 46(3).
[3] Fukao Y, Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity [J]. Journal of Geophysical Research-Solid Earth, 2013, 118(11): 5920-38.
[4] Jaxybulatov K, Koulakov I, Dobretsov N L. Segmentation of the Izu-Bonin and Mariana slabs based on the analysis of the Benioff seismicity distribution and regional tomography results [J]. Solid Earth, 2013, 4(1): 59-73.
[5] Zhang H, Wang F, Myhill R, et al. Slab morphology and deformation beneath Izu-Bonin [J]. Nature Communications, 2019, 10(1): 1310.
[6] Hung S H, Shen Y, Chiao L Y. Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach [J]. Journal of Geophysical Research-Solid Earth, 2004, 109(B8).
[7] Montelli R, Nolet G, Dahlen F A, et al. Finite-frequency tomography reveals a variety of plumes in the mantle [J]. Science, 2004, 303(5656): 338-43.
[8] Obayashi M, Yoshimitsu J, Nolet G, et al. Finite frequency whole mantle P wave tomography: Improvement of subducted slab images [J]. Geophysical Research Letters, 2013, 40(21): 5652-7.
[9] Oakley A J, Taylor B, Fryer P, et al. Emplacement, growth, and gravitational deformation of serpentinite seamounts on the Mariana forearc [J]. Geophysical Journal International, 2007, 170(2): 615-34.
[10] Miller M S, Kennett B L N, Toy V G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin [J]. Journal of Geophysical Research-Solid Earth, 2006, 111(B2).
[11] Kato T, Beavan J, Matsushima T, et al. Geodetic evidence of back-arc spreading in the Mariana Trough [J]. Geophysical Research Letters, 2003, 30(12).
[12] Hayes G P, Moore G L, Portner D E, et al. Slab2, a comprehensive subduction zone geometry model [J]. Science, 2018, 362(6410): 58-61.
[13] Kong X, Li S, Wang Y, et al. Causes of earthquake spatial distribution beneath the Izu-Bonin-Mariana Arc [J]. Journal of Asian Earth Sciences, 2018, 151: 90-100.
[14] Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc [J]. Earth and Planetary Science Letters, 2011, 306(3-4): 229-40.
[15] Reagan M K, Heaton D E, Schmitz M D, et al. Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation [J]. Earth and Planetary Science Letters, 2019, 506: 520-9.
[16] Ishizuka O, Hickey-Vargas R, Arculus R J, et al. Age of Izu-Bonin-Mariana arc basement [J]. Earth and Planetary Science Letters, 2018, 481: 80-90.
[17] Li H, Lin J, Zhou Z, et al. Variations in magmatism and the state of tectonic compensation of the Mariana subduction system [J]. Terra Nova, 2022, 34(1): 20-7.
[18] Stern R J, Fouch M J, Klemperer S L. An Overview of the Izu-Bonin-Mariana Subduction Factory [M]. Inside the Subduction Factory. 2004: 175-222.
[19] Takahashi N, Kodaira S, Tatsumi Y, et al. Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc-back-arc system [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B1).
[20] Calvert A J, Klemperer S L, Takahashi N, et al. Three-dimensional crustal structure of the Mariana island arc from seismic tomography [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B1).
[21] Takahashi N, Kodaira S, Klemperer S L, et al. Crustal structure and evolution of the Mariana intra-oceanic island arc [J]. Geology, 2007, 35(3): 203-6.
[22] Tibi R, Wiens D A, Yuan X. Seismic evidence for widespread serpentinized forearc mantle along the Mariana convergence margin [J]. Geophysical Research Letters, 2008, 35(13).
[23] Pozgay S H, Wiens D A, Conder J A, et al. Seismic attenuation tomography of the Mariana subduction system: Implications for thermal structure, volatile distribution, and slow spreading dynamics [J]. Geochemistry Geophysics Geosystems, 2009, 10.
[24] Shiobara H, Sugioka H, Mochizuki K, et al. Double seismic zone in the North Mariana region revealed by long-term ocean bottom array observation [J]. Geophysical Journal International, 2010, 183(3): 1455-69.
[25] Pyle M L, Wiens D A, Weeraratne D S, et al. Shear velocity structure of the Mariana mantle wedge from Rayleigh wave phase velocities [J]. Journal of Geophysical Research-Solid Earth, 2010, 115.
[26] Barklage M, Wiens D A, Conder J A, et al. P and S velocity tomography of the Mariana subduction system from a combined land-sea seismic deployment [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(3): 681-704.
[27] Qiao Q, Liu X, Zhao D, et al. Upper Mantle Structure Beneath Mariana: Insights From Rayleigh-Wave Anisotropic Tomography [J]. Geochemistry Geophysics Geosystems, 2021, 22(11).
[28] Emry E L, Wiens D A, Garcia-Castellanos D. Faulting within the Pacific plate at the Mariana Trench: Implications for plate interface coupling and subduction of hydrous minerals [J]. Journal of Geophysical Research-Solid Earth, 2014, 119(4): 3076-95.
[29] Cai C, Wiens D A, Shen W, et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data [J]. Nature, 2018, 563(7731): 389-92.
[30] Mark H F, Lizarralde D, Wiens D A. Constraints on Bend-Faulting and Mantle Hydration at the Marianas Trench From Seismic Anisotropy [J]. Geophysical Research Letters, 2023, 50(10).
[31] Backus G E, Gilbert J F. Numerical Applications of a Formalism for Geophysical Inverse Problems [J]. Geophysical Journal of the Royal Astronomical Society, 1967, 13(1-3): 247-&.
[32] Backus G, Gilbert F. The Resolving Power of Gross Earth Data [J]. Geophysical Journal International, 1968, 16(2): 169-205.
[33] Backus G, Gilbert F, Bullard E C. Uniqueness in the inversion of inaccurate gross Earth data [J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1970, 266(1173): 123-92.
[34] Jackson D D. Interpretation of Inaccurate, Insufficient and Inconsistent Data [J]. Geophysical Journal of the Royal Astronomical Society, 1972, 28(2): 97-&.
[35] Wiggins R A. The general linear inverse problem: Implication of surface waves and free oscillations for Earth structure [J]. Reviews of Geophysics and Space Physics, 1972, 10(1): 251-+.
[36] Aki K, Lee W H K. Determination of the three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes 1. A homogeneous intial model [J]. Journal of Geophysical Research, 1976, 81(23): 4381-99.
[37] Aki K, Christoffersson A, Husebye E S. Determination of the three-dimensional seismic structure of the lithosphere [J]. Journal of Geophysical Research, 1977, 82(2): 277-96.
[38] Dziewonski A M, Hager B H, Oconnell R J. Large-scale heterogeneities in the lower mantle [J]. Journal of Geophysical Research, 1977, 82(2): 239-55.
[39] Bois P, La Porte M, Lavergne M, et al. Essai de détermination automatique des vitesses sismiques par mesures entre puits [J]. Geophysical Prospecting, 1971, 19(1): 42-83.
[40] Pratt R G, Worthington M H. The application of diffraction tomography to cross-hole seismic data [J]. Geophysics, 1988, 53(10): 1284-94.
[41] Pratt R G, Goulty N R. Combining wave‐equation imaging with traveltime tomography to form high‐resolution images from crosshole data [J]. Geophysics, 1991, 56(2): 208-24.
[42] Song Z-M, Williamson P R, Pratt R G. Frequency-domain acoustic-wave modeling and inversion of crosshole data; Part II, Inversion method, synthetic experiments and real-data results [J]. Geophysics, 1995, 60(3): 796-809.
[43] Pratt R G, Shipp R M. Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data [J]. Geophysics, 1999, 64(3): 902-14.
[44] Bishop T N, Bube K P, Cutler R T, et al. Tomographic determination of velocity and depth in laterally varying media [J]. Geophysics, 1985, 50(6): 903-23.
[45] Wang Y H, Pratt R G. Sensitivities of seismic traveltimes and amplitudes in reflection tomography [J]. Geophysical Journal International, 1997, 131(3): 618-42.
[46] Wang Y H, White R E, Pratt R G. Seismic amplitude inversion for interface geometry: practical approach for application [J]. Geophysical Journal International, 2000, 142(1): 162-72.
[47] Wang B, Braile L W. Simultaneous inversion of reflection and refraction seismic data and application to field data from the northern Rio Grande rift [J]. Geophysical Journal International, 1996, 125(2): 443-58.
[48] McCaughey M, Singh S C. Simultaneous velocity and interface tomography of normal-incidence and wide-aperture seismic traveltime data [J]. Geophysical Journal International, 1997, 131(1): 87-99.
[49] Hicks G J, Pratt R G. Reflection waveform Inversion using local descent methods: Estimating attenuation and velocity over a gas-sand deposit [J]. Geophysics, 2001, 66(2): 598-612.
[50] de Hoop M V, van der Hilst R D, Shen P. Wave-equation reflection tomography: annihilators and sensitivity kernels [J]. Geophysical Journal International, 2006, 167(3): 1332-52.
[51] Walck M C. Three-dimensional Vp/Vs variations for the Coso Region, California [J]. Journal of Geophysical Research-Solid Earth and Planets, 1988, 93(B3): 2047-52.
[52] Hirahara K. Detection of three-dimensional velocity anisotropy [J]. Physics of the Earth and Planetary Interiors, 1988, 51(1-3): 71-85.
[53] Eberhart-Phillips D, Henderson C M. Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand [J]. Geophysical Journal International, 2004, 156(2): 237-54.
[54] Zhang H, Thurber C H. Double-Difference Tomography: The Method and Its Application to the Hayward Fault, California [J]. Bulletin of the Seismological Society of America, 2003, 93(5): 1875-89.
[55] Abt D L, Fischer K M. Resolving three-dimensional anisotropic structure with shear wave splitting tomography [J]. Geophysical Journal International, 2008, 173(3): 859-86.
[56] Shito A, Karato S-I, Matsukage K N, et al. Towards Mapping the Three-Dimensional Distribution of Water in the Upper Mantle from Velocity and Attenuation Tomography [M]. Earth's Deep Water Cycle. 2006: 225-36.
[57] VanDecar J C, Snieder R. Obtaining smooth solutions to large, linear, inverse problems [J]. Geophysics, 1994, 59(5): 818-29.
[58] Steck L K, Thurber C H, Fehler M C, et al. Crust and upper mantle P wave velocity structure beneath Valles caldera, New Mexico: Results from the Jemez teleseismic tomography experiment [J]. Journal of Geophysical Research-Solid Earth, 1998, 103(B10): 24301-20.
[59] Rawlinson N, Reading A M, Kennett B L N. Lithospheric structure of Tasmania from a novel form of teleseismic tomography [J]. Journal of Geophysical Research-Solid Earth, 2006, 111(B2).
[60] Plomerova J, Babuska V, Kozovskaya E, et al. Seismic anisotropy - A key to resolve fabrics of mantle lithosphere of Fennoscandia [J]. Tectonophysics, 2008, 462(1-4): 125-36.
[61] Weeraratne D S, Forsyth D W, Fischer K M, et al. Evidence for an upper mantle plume beneath the Tanzanian craton from Rayleigh wave tomography [J]. Journal of Geophysical Research-Solid Earth, 2003, 108(B9).
[62] Darbyshire F A, Lebedev S. Rayleigh wave phase-velocity heterogeneity and multilayered azimuthal anisotropy of the Superior Craton, Ontario [J]. Geophysical Journal International, 2009, 176(1): 215-34.
[63] Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise [J]. Science, 2005, 307(5715): 1615-8.
[64] Zhao D P. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics [J]. Physics of the Earth and Planetary Interiors, 2004, 146(1-2): 3-34.
[65] Burdick S, Van der Hilst R D, Vernon F L, et al. Model Update January 2013: Upper Mantle Heterogeneity beneath North America from Travel-Time Tomography with Global and USArray Transportable Array Data [J]. Seismological Research Letters, 2014, 85(1): 77-81.
[66] Karason H, Van der Hilst R. Improving global tomography models of P-wavespeed I: incorporation of differential times for refracted and diffracted core phases (PKP, Pdiff) [J]. J geophys Res, 2001, 106: 6569-87.
[67] Zhao A H, Zhang Z J, Teng J W. Minimum travel time tree algorithm for seismic ray tracing: improvement in efficiency [J]. Journal of Geophysics and Engineering, 2004, 1(4): 245-51.
[68] Kennett B L N, Sambridge M S, Williamson P R. Subspace methods for large inverse problems with multiple parameter classes [J]. Geophysical Journal International, 1988, 94(2): 237-47.
[69] Snieder R. Large-scale waveform inversions of surface waves for lateral heterogeneity: 1. Theory and numerical examples [J]. Journal of Geophysical Research-Solid Earth and Planets, 1988, 93(B10): 12055-65.
[70] Snieder R. Large-Scale waveform inversions of surface waves for lateral heterogeneity: 2. Application to surface waves in Europe and the Mediterranean [J]. Journal of Geophysical Research-Solid Earth and Planets, 1988, 93(B10): 12067-80.
[71] Marquering H, Dahlen F, Nolet G. Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox [J]. Geophysical Journal International, 1999, 137(3): 805-15.
[72] Dahlen F A, Hung S H, Nolet G. Frechet kernels for finite-frequency traveltimes - I. Theory [J]. Geophysical Journal International, 2000, 141(1): 157-74.
[73] Hung S H, Dahlen F A, Nolet G. Frechet kernels for finite-frequency traveltimes - II. Examples [J]. Geophysical Journal International, 2000, 141(1): 175-203.
[74] 杨峰, 黄金莉, 杨挺. 应用远震有限频率层析成像反演首都圈上地幔速度结构 [J]. 地球物理学报, 2010, 53(08): 1806-16.
[75] Liang X, Sandvol E, Chen Y J, et al. A complex Tibetan upper mantle: A fragmented Indian slab and no south-verging subduction of Eurasian lithosphere [J]. Earth and Planetary Science Letters, 2012, 333: 101-11.
[76] Liang X, Shen Y, Chen Y J, et al. Crustal and mantle velocity models of southern Tibet from finite frequency tomography [J]. Journal of Geophysical Research-Solid Earth, 2011, 116.
[77] Zhao L, Allen R M, Zheng T, et al. High-resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas [J]. Geochemistry Geophysics Geosystems, 2012, 13.
[78] Tang Y, Obayashi M, Niu F, et al. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling [J]. Nature Geoscience, 2014, 7(6): 470-5.
[79] Xu X, Zhao L, Wang K, et al. Indication from finite-frequency tomography beneath the North China Craton: The heterogeneity of craton destruction [J]. Science China-Earth Sciences, 2018, 61(9): 1238-60.
[80] 曲平, 陈永顺, 于勇, et al. 华南地区上地幔P波三维速度结构和动力学意义:来自有限频层析成像的证据 [J]. 地球物理学报, 2020, 63(8): 2954-69.
[81] Guo Z, Li S, Yu Y, et al. Eastward Asthenospheric Flow From NE Tibet Inferred by Joint Inversion of Teleseismic Body and Surface Waves: Insight Into Widespread Continental Deformation in Eastern China [J]. Journal of Geophysical Research-Solid Earth, 2022, 127(8).
[82] Jacob K H. Three-dimensional seismic ray tracing in a laterally heterogeneous spherical Earth [J]. Journal of Geophysical Research, 1970, 75(32): 6675-&.
[83] Chander R. Tracing seismic rays with specified end-points [J]. Journal of Geophysics-Zeitschrift Fur Geophysik, 1975, 41(2): 173-7.
[84] Um J, Thurber C. A fast algorithm for two-point seismic ray tracing [J]. Bulletin of the Seismological Society of America, 1987, 77(3): 972-86.
[85] Vidale J E. Finite-difference calculation of travel times [J]. Geophysics, 1990, 55(5): 521-6.
[86] Thurber C H. Earthquake locations and three-dimensional crustal structure in the Coyote Lake Area, central California [J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B10): 8226-36.
[87] Zhao D. Seismic structure and origin of hotspots and mantle plumes [J]. Earth and Planetary Science Letters, 2001, 192(3): 251-65.
[88] Zhao D. Multiscale seismic tomography and mantle dynamics [J]. Gondwana Research, 2009, 15(3-4): 297-323.
[89] Hung S-H, Chen W-P, Chiao L-Y, et al. First multi-scale, finite-frequency tomography illuminates 3-D anatomy of the Tibetan Plateau [J]. Geophysical Research Letters, 2010, 37(6).
[90] Paige C C, Saunders M A. LSQR: an algorithm for sparse linear equations and sparse least squares [J]. Acm Transactions on Mathematical Software, 1982, 8(1): 43-71.
[91] Dahlen F A, Tromp J, Lay T. Theoretical Global Seismology, F, 1998 [C].
[92] 刘丹, 杨挺, 黎伯孟, et al. 分体式宽频带海底地震仪的研制、测试和数据质量分析 [J]. 地球物理学报, 2022, 65(07): 2560-72.
[93] Cai C, Wiens D A, Shen W, et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data [J]. Nature, 2018, 563(7731): 389-+.
[94] Kang H, Kim Y, Hung S-H, et al. Seismic Velocity Structure of Upper Mantle Beneath the Oldest Pacific Seafloor: Insights From Finite-Frequency Tomography [J]. Geochemistry, Geophysics, Geosystems, 2023, 24(9): e2022GC010833.
[95] 付继华, 王旭, 李智涛, et al. 强噪声环境下基于信噪比的地震P波到时自动提取方法 [J]. 地球物理学报, 2019, 62(04): 1405-12.
[96] Vandecar J C, Crosson R S. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares [J]. Bulletin of the Seismological Society of America, 1990, 80(1): 150-69.
[97] Lou X, van der Lee S, Lloyd S. AIMBAT: A python/matplotlib tool for measuring teleseismic arrival times [J]. Seismological Research Letters, 2013, 84(1): 85-93.
[98] Kennett B L N, Engdahl E R. Traveltimes for global earthquake location and phase identification [J]. Geophysical Journal International, 1991, 105(2): 429-65.
[99] Laske G, Masters G, Ma Z, et al. Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust [Z]. 2013: EGU2013-658
[100] Isse T, Kawakatsu H, Yoshizawa K, et al. Surface wave tomography for the Pacific Ocean incorporating seafloor seismic observations and plate thermal evolution [J]. Earth and Planetary Science Letters, 2019, 510: 116-30.
[101] Zhao D, Xu Y, Wiens D A, et al. Depth Extent of the Lau Back-Arc Spreading Center and Its Relation to Subduction Processes [J]. Science, 1997, 278(5336): 254-7.
[102] Cammarano F, Goes S, Vacher P, et al. Inferring upper-mantle temperatures from seismic velocities [J]. Physics of the Earth and Planetary Interiors, 2003, 138(3): 197-222.
[103] Chantel J, Manthilake G, Andrault D, et al. Experimental evidence supports mantle partial melting in the asthenosphere [J]. Science Advances, 2016, 2(5): e1600246.
[104] Koppers A A P, Becker T W, Jackson M G, et al. Mantle plumes and their role in Earth processes [J]. Nature Reviews Earth & Environment, 2021, 2(6): 382-401.
[105] Ballmer M D, van Hunen J, Ito G, et al. Intraplate volcanism with complex age-distance patterns: A case for small-scale sublithospheric convection [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(6).
[106] Tauzin B, Debayle E, Wittlinger G. Seismic evidence for a global low-velocity layer within the Earth’s upper mantle [J]. Nature Geoscience, 2010, 3(10): 718-21.
[107] Wei S S, Shearer P M. A sporadic low-velocity layer atop the 410 km discontinuity beneath the Pacific Ocean [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 5144-59.
[108] Čížková H, Bina C R. Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry [J]. Earth and Planetary Science Letters, 2015, 430: 408-15.

所在学位评定分委会
物理学
国内图书分类号
P738.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778722
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
嘉士斐. 利用有限频体波层析成像研究马里亚纳输入板片下方地幔速度结构[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132168-嘉士斐-海洋科学与工程(22037KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[嘉士斐]的文章
百度学术
百度学术中相似的文章
[嘉士斐]的文章
必应学术
必应学术中相似的文章
[嘉士斐]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。