中文版 | English
题名

反钙钛矿结构锂离子电池材料的第一性原理研究

其他题名
FIRST-PRINCIPLES STUDIES ON ANTI- PEROVSKITE STRUCTURE MATERIALS FOR LI-ION BATTERY
姓名
姓名拼音
NI Dixing
学号
12031137
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
赵予生
导师单位
前沿与交叉科学研究院
论文答辩日期
2024-05-08
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  锂离子电池作为实现能源安全的关键环节,在可再生能源储存和电动汽车等领域中扮演着重要角色,开发更高能量密度的锂离子电池已成为科学研究的焦点。提升能量密度的主要技术路线,一是开发固态电池,二是开发高比能正极材料。作为新型的电池材料体系,具有反钙钛矿结构的电池材料包含固态电解质与正极材料,在提升电池能量密度方面,展现出较强的应用前景。探索反钙钛矿结构电池材料的电化学性质,深入理解其作用机理,构建材料结构与性能之间的关联,将极大地推动反钙钛矿结构电池材料开发进程。本文我们主要采用第一性原理计算方法,研究具有反钙钛矿结构的固态电解质与正极材料的反应机理,探索性能优化的策略,具体研究内容如下:

  设计层状反钙钛矿固态电解质,可有效的提升反钙钛矿固态电解质的锂离子电导率。然而层状反钙钛矿结构固态电解质Li7O2Br3由于实验上未获得纯相,诸多性质不清晰。我们采用第一性原理计算方法系统评估了Li7O2Br3的基础物理性质。计算结果表明,Li7O2Br3展现出动力学稳定性,并具有5.83 eV的宽带隙,说明其具有良好的电子绝缘性。相比于立方反钙钛矿Li3OBr,层状反钙钛矿Li7O2Br3展现出更优异的力学延展性。在锂离子输运机制研究方面,我们发现在Li7O2Br3的层边缘,锂的声子软化作用导致迁移势垒降低。此外,研究发现LiBr缺陷可有效促进锂离子的迁移。根据压力-温度-吉布斯(PTG)自由能相图的预测,施加高温高压条件更利于合成Li7O2Br3

  反钙钛矿正极材料Li2FeSO具有容量高,成本低的优势,然而较低的电压平台(~2 V)限制了其应用,其锂传输性能也有待优化。针对此问题,我们系统计算了反钙钛矿正极材料的电压、电子导电性及其脱锂过程中的体积变化,梳理出了反钙钛矿正极材料电压调控的物理图像。计算结果表明,替换S元素为Se或Te会导致Li2FeSO和Li2MnSO的电压降低。对于Li2TMSO(TM = Cu,Ni,Co,Fe,V,Cr,Ti),TM由Ti → Ni过程中,电压随之下降。此过程与TM-3d电子轨道能级的下移密切相关:在TM-3d的能级与S-3p轨道能级的能级差大时,电压由TM-3d轨道决定;当能级差小时,S-3p则会参与反应。此外,非活性元素Mg的掺杂能使更深能级的电子参与反应,进而提升电压。在提升锂离子输运性质方面,我们给出了掺杂优化电子导电性和锂离子传输性能的改性策略。计算结果表明,在TM(TM = Fe,Mn)位掺杂Na或K,以及在S位掺杂F或Cl,可以有效的降低锂迁移势垒,促进锂扩散。

  另一方面,理解Li2FeSO脱嵌锂机制是提升其电化学性能的关键所在。我们构建了含有多种LixFe6-xO八面体局域构型的超胞,模拟其脱锂过程,解释晶格变化的机理。结果表明,富Fe八面体中的锂会优先脱出,贫Fe八面体中的锂较后脱出。脱锂过程中Fe2+转变为Fe3+,Fe-dxy轨道由dxy(↑↓)占据转变为dxy(↑),dxy轨道对S的排斥减小,导致Fe位置发生偏移。Fe将靠近两个S原子而远离另外两个S原子,引发S阴离子框架的局部收缩和局部扩大。在脱锂的中后期,S阴离子框架的局部扩大效应占优,导致该阶段LixFeSO体积扩大。为进一步优化反钙钛矿正极材料容量,我们发现LiFeSO继续脱锂时主要由S贡献反应电子。因此,我们采用Fe位掺杂Ti的方法,在LiFeSO继续脱锂过程中提供额外的电子,抑制S参与反应,提升脱锂深度,并增加能量密度。计算表明,Li2Ti0.25Fe0.75SO在脱出1.25 Li情况下理论能量密度比Li2FeSO高9%。

  综上所述,本论文通过第一性原理计算,从微观的原子和电子尺度出发,对新型反钙钛矿电池材料进行了系统的基础物理性质和反应机理研究。以上研究可为新型反钙钛矿电池材料的应用和改性提供理论基础和指导,加速高能量密度锂电池体系的开发。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-07
参考文献列表

[1] PANWAR N L, KAUSHIK S C, KOTHARI S. Role of renewable energy sources in environmental protection: a review [J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1513-1524.
[2] 何立峰. 完整准确全面贯彻新发展理念 扎实做好碳达峰碳中和工作 [N]. 2021-10-25.
[3] 杨于驰, 张媛. 储能电池技术发展研究浅析 [J]. 东方电气评论, 2022, 36(03): 1-4.
[4] 李先锋, 张洪章, 郑琼, et al. 能源革命中的电化学储能技术 [J]. 中国科学院院刊, 2019, 34(04): 443-449.
[5] YOSHINO A. The birth of the lithium-ion battery [J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800.
[6] SCROSATI B, GARCHE J. Lithium batteries: status, prospects and future [J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
[7] FAN L, WEI S, LI S, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries [J]. Advanced Energy Materials, 2018, 8(11): 1702657.
[8] LU Y, RONG X, HU Y-S, et al. Research and development of advanced battery materials in China [J]. Energy Storage Materials, 2019, 23: 144-153.
[9] YAZAMI R, TOUZAIN P. A reversible graphite-lithium negative electrode for electrochemical generators [J]. Journal of Power Sources, 1983, 9(3): 365-371.
[10] NISHI Y. Lithium ion secondary batteries; past 10 years and the future [J]. Journal of Power Sources, 2001, 100(1): 101-106.
[11] GOODENOUGH J B, PARK K-S. The Li-Ion rechargeable battery: a perspective [J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[12] HUANG W, ZHAO Q, ZHANG M, et al. Surface design with cation and anion dual gradient stabilizes high-voltage LiCoO2 [J]. Advanced Energy Materials, 2022, 12(20): 2200813.
[13] QIN N, GAN Q, ZHUANG Z, et al. Hierarchical doping engineering with active/inert dual elements stabilizes LiCoO2 to 4.6 V [J]. Advanced Energy Materials, 2022, 12(31): 2201549.
[14] SŁAWIŃSKI W A, PLAYFORD H Y, HULL S, et al. Neutron pair distribution function study of FePO4 and LiFePO4 [J]. Chemistry of Materials, 2019, 31(14): 5024-5034.
[15] YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFePO4 for lithium battery cathodes [J]. Journal of The Electrochemical Society, 2001, 148(3): A224.
[16] THACKERAY M M, JOHNSON P J, DE PICCIOTTO L A, et al. Electrochemical extraction of lithium from LiMn2O4 [J]. Materials Research Bulletin, 1984, 19(2): 179-187.
[17] YANG P, GAO D, YANG Y, et al. Enhancing d-p orbital coupling by Hf doping to construct a stable LiMn2O4 cathode for lithium-ion batteries [J]. Nano Energy, 2024: 109570.
[18] CHEN D, AHN J, CHEN G. An overview of cation-disordered lithium-excess rocksalt cathodes [J]. ACS Energy Letters, 2021, 6(4): 1358-1376.
[19] LAI K T, ANTONYSHYN I, PROTS Y, et al. Anti-perovskite Li-battery cathode materials [J]. Journal of the American Chemical Society, 2017, 139(28): 9645-9649.
[20] YANG Y, GAO C, LUO T, et al. Unlocking the potential of Li-rich Mn-based oxides for high-rate rechargeable lithium-ion batteries [J]. Advanced Materials, 2023, 35(52): 2307138.
[21] KUMAR PRAJAPATI A, BHATNAGAR A. A review on anode materials for lithium/sodium-ion batteries [J]. Journal of Energy Chemistry, 2023, 83: 509-540.
[22] SHEN X, TIAN Z, FAN R, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery [J]. Journal of Energy Chemistry, 2018, 27(4): 1067-1090.
[23] YUAN T, TAN Z, MA C, et al. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications [J]. Advanced Energy Materials, 2017, 7(12): 1601625.
[24] YOO H D, MARKEVICH E, SALITRA G, et al. On the challenge of developing advanced technologies for electrochemical energy storage and conversion [J]. Materials Today, 2014, 17(3): 110-121.
[25] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes [J]. Nature Reviews Materials, 2017, 2(4): 16103.
[26] LIU Z, FU W, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous beta-Li3PS4 [J]. J Am Chem Soc, 2013, 135(3): 975-978.
[27] RANGASAMY E, LIU Z, GOBET M, et al. An iodide-based Li7P2S8I superionic conductor [J]. J Am Chem Soc, 2015, 137(4): 1384-1387.
[28] SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries [J]. Energy & Environmental Science, 2014, 7(2): 627-631.
[29] YAO X, LIU D, WANG C, et al. High-energy all-solid-state lithium batteries with ultralong cycle Life [J]. Nano Letters, 2016, 16(11): 7148-7154.
[30] WANG C, LIANG J, ZHAO Y, et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design [J]. Energy & Environmental Science, 2021, 14(5): 2577-2619.
[31] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor [J]. Nature Materials, 2011, 10(9): 682-686.
[32] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors [J]. Nature Energy, 2016, 1(4): 16030.
[33] SUN Y, SUZUKI K, HARA K, et al. Oxygen substitution effects in Li10GeP2S12 solid electrolyte [J]. Journal of Power Sources, 2016, 324: 798-803.
[34] BRON P, JOHANSSON S, ZICK K, et al. Li10SnP2S12: an affordable lithium superionic conductor [J]. Journal of the American Chemical Society, 2013, 135(42): 15694-15697.
[35] JIN Y, HE Q, LIU G, et al. Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries [J]. Advanced Materials, 2023, 35(19): 2211047.
[36] HAYASHI A, NISHIO Y, KITAURA H, et al. Novel technique to form electrode–electrolyte nanointerface in all-solid-state rechargeable lithium batteries [J]. Electrochemistry Communications, 2008, 10(12): 1860-1863.
[37] ZIOLKOWSKA D A, ARNOLD W, DRUFFEL T, et al. Rapid and economic synthesis of a Li7PS6 solid electrolyte from a liquid approach [J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6015-6021.
[38] DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility [J]. Angewandte Chemie International Edition, 2008, 47(4): 755-758.
[39] ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution [J]. Angewandte Chemie International Edition, 2019, 58(26): 8681-8686.
[40] KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries [J]. Journal of the American Chemical Society, 2018, 140(47): 16330-16339.
[41] LI S, LIN J, SCHALLER M, et al. High-entropy lithium argyrodite solid electrolytes enabling etable all-solid-state batteries [J]. Angewandte Chemie International Edition, 2023, 62(50): e202314155.
[42] ZHOU L, ASSOUD A, ZHANG Q, et al. New family of argyrodite thioantimonate lithium superionic conductors [J]. Journal of the American Chemical Society, 2019, 141(48): 19002-19013.
[43] LU P, XIA Y, SUN G, et al. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes [J]. Nature Communications, 2023, 14(1): 4077.
[44] ALAMI M, BROCHU R, SOUBEYROUX J L, et al. Structure and thermal expansion of LiGe2(PO4)3 [J]. Journal of Solid State Chemistry, 1991, 90(2): 185-193.
[45] MIGUEL A P, ANA M-J, JOSé M R, et al. Lithium mobility in the NASICON-type compound by nuclear magnetic resonance and impedance spectroscopies [J]. Journal of Physics: Condensed Matter, 1996, 8(29): 5355.
[46] ARBI K, MANDAL S, ROJO J M, et al. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7. a parallel NMR and electric impedance study [J]. Chemistry of Materials, 2002, 14(3): 1091-1097.
[47] MORIN E, LE MERCIER T, QUARTON M, et al. Neutron powder diffraction data for low-and high-temperature NASICON phases of LiM2(PO4)3 (M = Hf, Sn) [J]. Powder Diffraction, 1999, 14(1): 53-60.
[48] CHOWDARI B V R, RADHAKRISHNAN K, THOMAS K A, et al. Ionic conductivity studies on Li1−xM2−xM'xP3O12 (H = Hf, Zr; M' = Ti, Nb) [J]. Materials Research Bulletin, 1989, 24(2): 221-229.
[49] AONO H, SUGIMOTO E, SADAOKA Y, et al. Ionic conductivity of solid electrolytes based on lithium titanium phosphate [J]. Journal of The Electrochemical Society, 1990, 137(4): 1023-1027.
[50] AONO H, SUGIMOTO E, SADAOKA Y, et al. The electrical properties of ceramic electrolytes for LiMxTi2−x(PO4)3+yLi2O, M = Ge , Sn , Hf , and Zr systems [J]. Journal of The Electrochemical Society, 1993, 140(7): 1827.
[51] WANG C, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries [J]. Chemical Reviews, 2020, 120(10): 4257-4300.
[52] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 [J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781.
[53] AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure [J]. Journal of Solid State Chemistry, 2009, 182(8): 2046-2052.
[54] JALEM R, YAMAMOTO Y, SHIIBA H, et al. Concerted migration mechanism in the Li Ion dynamics of garnet-type Li7La3Zr2O12 [J]. Chemistry of Materials, 2013, 25(3): 425-430.
[55] XUE W, YANG Y, YANG Q, et al. The effect of sintering process on lithium ionic conductivity of Li6.4Al0.2La3Zr2O12 garnet produced by solid-state synthesis [J]. RSC Advances, 2018, 8(24): 13083-13088.
[56] RETTENWANDER D, LANGER J, SCHMIDT W, et al. Site occupation of ga and Al in stabilized cubic Li7–3(x+y)GaxAlyLa3Zr2O12 garnets as deduced from 27Al and 71Ga MAS NMR at ultrahigh magnetic fields [J]. Chemistry of Materials, 2015, 27(8): 3135-3142.
[57] DüVEL A, KUHN A, ROBBEN L, et al. Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry [J]. The Journal of Physical Chemistry C, 2012, 116(29): 15192-15202.
[58] WOLFENSTINE J, RATCHFORD J, RANGASAMY E, et al. Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12 [J]. Materials Chemistry and Physics, 2012, 134(2-3): 571-575.
[59] JALEM R, RUSHTON M J D, MANALASTAS W, et al. Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes [J]. Chemistry of Materials, 2015, 27(8): 2821-2831.
[60] BERNUY-LOPEZ C, MANALASTAS W, LOPEZ DEL AMO J M, et al. Atmosphere controlled processing of ga-substituted garnets for high Li-ion conductivity ceramics [J]. Chemistry of Materials, 2014, 26(12): 3610-3617.
[61] LI Y, HAN J-T, WANG C-A, et al. Optimizing Li+ conductivity in a garnet framework [J]. Journal of Materials Chemistry, 2012, 22(30): 15357-15361.
[62] DEVIANNAPOORANI C, DHIVYA L, RAMAKUMAR S, et al. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets [J]. Journal of Power Sources, 2013, 240: 18-25.
[63] SARKAR S, SANTOS C, GLENNEBERG J, et al. Probing alkaline-earth-doped garnet-type Li7La2.75A0.25Zr1.75M0.25O12 (A = Ca, Sr, Ba; M = Nb, Ta) electrolytes for all-solid-state Li metal batteries [J]. Chemistry of Materials, 2024, 36(6): 2685-2697.
[64] XU M, PARK M S, LEE J M, et al. Mechanisms of Li+ transport in garnet-type cubic Li3+xLa3M2O12(M = Te, Nb, Zr) [J]. Physical Review B, 2012, 85(5): 052301.
[65] HAN J, ZHU J, LI Y, et al. Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12 [J]. Chemical communications, 2012, 48(79): 9840-9842.
[66] WANG D, ZHONG G, PANG W K, et al. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites [J]. Chemistry of Materials, 2015, 27(19): 6650-6659.
[67] SCHLAIKJER C R, LIANG C C. Ionic conduction in calcium doped polycrystalline lithium iodide [J]. Journal of The Electrochemical Society, 1971, 118(9): 1447.
[68] KANNO R, TAKEDA Y, TAKADA K, et al. Phase diagram and ionic conductivity of the lithium chloride-iron(II) chloride system [J]. Solid State Ionics, 1983, 9-10: 153-156.
[69] KANNO R, TAKEDA Y, TAKADA K, et al. Ionic conductivity and phase transition of the spinel system Li2−2xM1+xCl4(M = Mg , Mn , Cd) [J]. Journal of The Electrochemical Society, 1984, 131(3): 469-474.
[70] WU X, JI G, WANG J, et al. Toward sustainable all solid-state Li–metal batteries: perspectives on battery technology and recycling processes [J]. Advanced Materials, 2023, 35(51): 2301540.
[71] TOMITA Y, MATSUSHITA H, KOBAYASHI K, et al. Substitution effect of ionic conductivity in lithium ion conductor, Li3inBr6−xCLx [J]. Solid State Ionics, 2008, 179(21): 867-870.
[72] TOMITA Y, FUJI-I A, OHKI H, et al. New lithium ion conductor Li3InBr6 studied by 7Li NMR [J]. Chemistry Letters, 1998, 27(3): 223-224.
[73] WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability [J]. Angewandte Chemie International Edition, 2019, 58(24): 8039-8043.
[74] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries [J]. Advanced Materials, 2018, 30(44): e1803075.
[75] ITO H, SHITARA K, WANG Y, et al. Kinetically stabilized cation arrangement in Li3YCl6 superionic conductor during solid-state reaction [J]. Advanced Science, 2021, 8(15): 2101413.
[76] YIN Y-C, YANG J-T, LUO J-D, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal [J]. Nature, 2023, 616(7955): 77-83.
[77] GAO Y, ZHANG S, ZHAO F, et al. Fluorinated superionic oxychloride solid electrolytes for high-voltage all-solid-state lithium batteries [J]. ACS Energy Letters, 2024: 1735-1742.
[78] BENSALAH N, DAWOOD H. Review on synthesis, characterizations, and electrochemical properties of cathode materials for lithium ion batteries[J]. Journal of Material Science & Engineering, 2016, 5(4): 100258.
[79] AMATUCCI G G, TARASCON J M, KLEIN L C. CoO2, the end member of the LixCoO2 solid solution [J]. Journal of The Electrochemical Society, 1996, 143(3): 1114-1123.
[80] CHEN Z, DAHN J R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V [J]. Electrochimica Acta, 2004, 49(7): 1079-1090.
[81] LU X, SUN Y, JIAN Z, et al. New insight into the atomic structure of electrochemically delithiated O3-Li(1-x)CoO2 (0 ≤ x ≤ 0.5) nanoparticles [J]. Nano Letters, 2012, 12(12): 6192-6197.
[82] LIU Q, SU X, LEI D, et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping [J]. Nature Energy, 2018, 3(11): 936-943.
[83] YANG X, WANG C, YAN P, et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering [J]. Advanced Energy Materials, 2022, 12(23): 2200197.
[84] WANG X, DING Y L, DENG Y P, et al. Ni-rich/co-poor layered cathode for automotive Li-ion batteries: promises and challenges [J]. Advanced Energy Materials, 2020, 10(12): 1903864.
[85] MANTHIRAM A, KNIGHT J C, MYUNG S T, et al. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives [J]. Advanced Energy Materials, 2016, 6(1): 1501010.
[86] DE BIASI L, SCHWARZ B, BREZESINSKI T, et al. Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-Rich NCM and Li-Rich HE-NCM cathode materials in Li-ion batteries [J]. Advanced Materials, 2019, 31(26): 1900985.
[87] HOU L, LIU Q, CHEN X, et al. In-depth understanding of the deterioration mechanism and modification engineering of high energy density Ni-rich layered lithium transition-metal oxide cathode for lithium-ion batteries [J]. Chemical Engineering Journal, 2023, 465: 142946.
[88] KONDRAKOV A O, SCHMIDT A, XU J, et al. Anisotropic lattice strain and mechanical degradation of high-and low-nickel NCM cathode materials for Li-ion batteries [J]. The Journal of Physical Chemistry C, 2017, 121(6): 3286-3294.
[89] RYU H-H, PARK K-J, YOON C S, et al. Capacity fading of Ni-Rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? [J]. Chemistry of Materials, 2018, 30(3): 1155-1163.
[90] SUN H-H, MANTHIRAM A. Impact of microcrack generation and surface degradation on a Nickel-Rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries [J]. Chemistry of Materials, 2017, 29(19): 8486-8493.
[91] NOH H-J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries [J]. Journal of Power Sources, 2013, 233: 121-130.
[92] KO D S, PARK J H, YU B Y, et al. Degradation of high-nickel-layered oxide cathodes from surface to bulk: a comprehensive structural, chemical, and electrical analysis [J]. Advanced Energy Materials, 2020, 10(36): 2001035.
[93] ZHAO E, FANG L, CHEN M, et al. New insight into Li/Ni disorder in layered cathode materials for lithium ion batteries: a joint study of neutron diffraction, electrochemical kinetic analysis and first-principles calculations [J]. Journal of Materials Chemistry A, 2017, 5(4): 1679-1686.
[94] TANG Z, WANG S, LIAO J, et al. Facilitating lithium-ion diffusion in layered cathode materials by Introducing Li+/Ni2+ antisite defects for high-rate Li-ion batteries [J]. Research, 2019, 2019: 2198906.
[95] ZHANG Y, LIU J, XU W, et al. Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries [J]. Journal of Power Sources, 2022, 535(1): 231445.
[96] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359-367.
[97] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of The Electrochemical Society, 1997, 144(4): 1188-1194.
[98] ANDERSSON A S, THOMAS J O. The source of first-cycle capacity loss in LiFePO4 [J]. Journal of Power Sources, 2001, 97-98: 498-502.
[99] ZHENG M, SALIM H, LIU T, et al. Intelligence-assisted predesign for the sustainable recycling of lithium-ion batteries and beyond [J]. Energy & Environmental Science, 2021, 14(11): 5801-5815.
[100] FRANGER S, LE CRAS F, BOURBON C, et al. LiFePO4 synthesis routes for enhanced electrochemical performance [J]. Electrochemical and Solid-State Letters, 2002, 5(10): A231-A233.
[101] YU D Y W, FIETZEK C, WEYDANZ W, et al. Study of LiFePO4 by cyclic voltammetry [J]. Journal of The Electrochemical Society, 2007, 154(4): A253-A257.
[102] LIU Y, WANG J, LIU J, et al. Origin of phase inhomogeneity in lithium iron phosphate during carbon coating [J]. Nano Energy, 2018, 45: 52-60.
[103] MENG Y, WANG Y, ZHANG Z, et al. A phytic acid derived LiMn0.5Fe0.5PO4/Carbon composite of high energy density for lithium rechargeable batteries [J]. Scientific Reports, 2019, 9(1): 6665.
[104] JI Y, ZHANG Y, WANG C-Y. Li-ion cell operation at low temperatures [J]. Journal of The Electrochemical Society, 2013, 160(4): A636.
[105] LI X, SHAO Z, LIU K, et al. Enhancement of Nb-doping on the properties of LiFePO4/C prepared via a high-temperature ball milling–based method [J]. Journal of Solid State Electrochemistry, 2019, 23(2): 465-473.
[106] PLEUKSACHAT S, KRABAO P, PONGHA S, et al. Dynamic phase transition behavior of a LiMn0.5Fe0.5PO4 olivine cathode material for lithium-ion batteries revealed through in-situ X-ray techniques [J]. Journal of Energy Chemistry, 2022, 71: 452-459.
[107] GUO H, LIU R, LI W, et al. Site selection of niobium-doped LiMn0.6Fe0.4PO4 and effect on electrochemical properties [J]. Journal of The Electrochemical Society, 2023, 170(3): 030542.
[108] LIU W, LIU X, HAO R, et al. Contribution of calcium ion doping to the rate property for LiFe0.5Mn0.5PO4/C [J]. Journal of Electroanalytical Chemistry, 2023, 929(15): 117117.
[109] RAVNSBæK D B, XIANG K, XING W, et al. Engineering the transformation strain in LiMnyFe1–yPO4 olivines for ultrahigh rate battery cathodes [J]. Nano Letters, 2016, 16(4): 2375-2380.
[110] YAMADA A, CHUNG S-C. Crystal chemistry of the olivine-type Li(MnyFe1−y)PO4 and (MnyFe1−y)PO4 as possible 4 V cathode materials for lithium batteries [J]. Journal of The Electrochemical Society, 2001, 148(8): A960-A967.
[111] ZHANG H, XU Y, LIU D, et al. Structure and performance of dual-doped LiMn2O4 cathode materials prepared via microwave synthesis method [J]. Electrochimica Acta, 2014, 125: 225-231.
[112] ZHANG H, LI Z, YU S, et al. Carbon-encapsulated LiMn2O4 spheres prepared using a polymer microgel reactor for high-power lithium-ion batteries [J]. Journal of Power Sources, 2016, 301: 376-385.
[113] MA J, LIU T, MA J, et al. Progress, challenge, and prospect of LiMnO2: an adventure toward high-energy and low-cost Li-ion batteries [J]. Advanced Science, 2024, 11(2): 2304938.
[114] MORALES J, SáNCHEZ L, TIRADO J L. New doped Li-M-Mn-O (M = Al, Fe, Ni) spinels as cathodes for rechargeable 3 V lithium batteries [J]. Journal of Solid State Electrochemistry, 1998, 2(6): 420-426.
[115] WOHLFAHRT-MEHRENS M, VOGLER C, GARCHE J. Aging mechanisms of lithium cathode materials [J]. Journal of Power Sources, 2004, 127(1): 58-64.
[116] NYAMAA O, JEONG H-M, KANG G-H, et al. Enhanced LiMn2O4 cathode performance in lithium-ion batteries through synergistic cation and anion substitution [J]. Materials Advances, 2024, 5(7): 2872-2887.
[117] YANG S, YAN P, BAO W, et al. Surface magnesium substitution at spinel lithium manganate 8a tetrahedral sites for suppressed manganese dissolution and enhanced cycle stability [J]. ACS Energy Letters, 2023, 8(10): 4278-4286.
[118] YU X, SCIPIONI R, XU Y-B, et al. Beneficial effects of La0.5Sr0.5CoO3 coatings on thin-film LiMn2O4 cathodes for lithium ion batteries [J]. Advanced Sustainable Systems, 2023, 7(9): 2300137.
[119] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22(3): 587-603.
[120] MELOT B C, TARASCON J M. Design and preparation of materials for advanced electrochemical storage [J]. Accounts of Chemical Research, 2013, 46(5): 1226-1238.
[121] MASQUELIER C, CROGUENNEC L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries [J]. Chemical Reviews, 2013, 113(8): 6552-6591.
[122] MURALIGANTH T, MANTHIRAM A. Understanding the shifts in the redox potentials of olivine LiM1−yMyPO4 (M = Fe, Mn, Co, and Mg) solid solution cathodes [J]. The Journal of Physical Chemistry C, 2010, 114(36): 15530-15540.
[123] ZHAO Y, DAEMEN L L. Superionic conductivity in lithium-rich anti-perovskites [J]. Journal of the American Chemical Society, 2012, 134(36): 15042-15047.
[124] DENG Z, NI D, CHEN D, et al. Anti-perovskite materials for energy storage batteries [J]. InfoMat, 2021, 4(2): e11252.
[125] DENG Z, RADHAKRISHNAN B, ONG S P. Rational composition optimization of the lithium-rich Li3OCl1–xBrx anti-perovskite superionic conductors [J]. Chemistry of Materials, 2015, 27(10): 3749-3755.
[126] ZHANG Y, ZHAO Y, CHEN C. Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites [J]. Physical Review B, 2013, 87(13): 134303.
[127] LU X, WU G, HOWARD J W, et al. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity [J]. Chemical Communications, 2014, 50(78): 11520-11522.
[128] LU X, HOWARD J W, CHEN A, et al. Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries [J]. Advanced Science, 2016, 3(3): 1500359.
[129] ZHU J, LI S, ZHANG Y, et al. Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte [J]. Applied Physics Letters, 2016, 109(10): 101904.
[130] RESHETNIKOV N, UNZHAKOV G. Diagrammy plavkosti sistem LiOH-LiCl, LiOH-NaOH [J]. Zhurnal Neorganicheskoi Khimii, 1958, 3(6): 1433-1438.
[131] HARTWIG P, RABENAU A, WEPPNER W. Lithium hydroxide halides: phase equilibria and ionic conductivities [J]. Journal of the Less Common Metals, 1981, 78(2): 227-233.
[132] BARLAGE H, JACOBS H. Ungewöhnliche koordinationspolyeder um sauerstoff in Li4Cl(OH)3 [J]. Zeitschrift für anorganische und allgemeine Chemie, 1994, 620(3): 471-474.
[133] HOOD Z D, WANG H, SAMUTHIRA PANDIAN A, et al. Li2OHCl crystalline electrolyte for stable metallic lithium anodes [J]. Journal of the American Chemical Society, 2016, 138(6): 1768-1771.
[134] LI Y, ZHOU W, XIN S, et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries [J]. Angewandte Chemie International Edition, 2016, 55(34): 9965-9968.
[135] SUGUMAR M K, YAMAMOTO T, MOTOYAMA M, et al. Room temperature synthesis of anti-perovskite structured Li2OHBr [J]. Solid State Ionics, 2020, 349: 115298.
[136] YAMAMOTO T, SHIBA H, MITSUKUCHI N, et al. Synthesis of the metastable cubic phase of Li2OHCl by a mechanochemical method [J]. Inorganic Chemistry, 2020, 59(17): 11901-11904.
[137] NI D-X, LIU Y-D, DENG Z, et al. Wet mechanical milling induced phase transition to cubic anti-perovskite Li2OHCl [J]. Chinese Physics Letters, 2022, 39(2): 028201.
[138] DENG Z, OU M, WAN J, et al. Local structural changes and inductive effects on ion conduction in antiperovskite solid electrolytes [J]. Chemistry of Materials, 2020, 32(20): 8827-8835.
[139] SONG A-Y, XIAO Y, TURCHENIUK K, et al. Protons enhance conductivities in lithium halide hydroxide/lithium oxyhalide solid electrolytes by forming rotating hydroxy groups [J]. Advanced Energy Materials, 2018, 8(3): 1700971.
[140] SONG A Y, TURCHENIUK K, LEISEN J, et al. Understanding Li-ion dynamics in lithium hydroxychloride (Li2OHCl) solid state electrolyte via addressing the role of protons [J]. Advanced Energy Materials, 2020, 10(8): 1903480.
[141] SUN Y, WANG Y, LIANG X, et al. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4 [J]. Journal of the American Chemical Society, 2019, 141(14): 5640-5644.
[142] GAO L, ZHANG H, WANG Y, et al. Mechanism of enhanced ionic conductivity by rotational nitrite group in antiperovskite Na3ONO2 [J]. Journal of Materials Chemistry A, 2020, 8(40): 21265-21272.
[143] GAO S, BROUX T, FUJII S, et al. Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors [J]. Nature Communications, 2021, 12(1): 201.
[144] MUTSCHKE A, BERNARD G M, BERTMER M, et al. Na3SO4H-the first representative of the material class of sulfate hydrides [J]. Angewandte Chemie-International Edition, 2021, 60(11): 5683-5687.
[145] LU Z, CHEN C, BAIYEE Z M, et al. Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors [J]. Physical Chemistry Chemical Physics, 2015, 17(48): 32547-32555.
[146] WU M, XU B, LEI X, et al. Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li3OCl: insights from first principles calculations [J]. Journal of Materials Chemistry A, 2018, 6(3): 1150-1160.
[147] EMLY A, KIOUPAKIS E, VAN DER VEN A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors [J]. Chemistry of Materials, 2013, 25(23): 4663-4670.
[148] WAN T H, LU Z, CIUCCI F. A first principle study of the phase stability, ion transport and substitution strategy for highly ionic conductive sodium antipervoskite as solid electrolyte for sodium ion batteries [J]. Journal of Power Sources, 2018, 390: 61-70.
[149] ZHU J, WANG Y, LI S, et al. Sodium ion transport mechanisms in antiperovskite electrolytes Na3OBr and Na4OI2: an in situ neutron diffraction study [J]. Inorganic Chemistry, 2016, 55(12): 5993-5998.
[150] WANG Y, ZHANG H, ZHU J, et al. Antiperovskites with exceptional functionalities [J]. Advanced Materials, 2020, 32(7): e1905007.
[151] HOWARD J, HOOD Z D, HOLZWARTH N A W. Fundamental aspects of the structural and electrolyte properties of Li2OHCl from simulations and experiment [J]. Physical Review Materials, 2017, 1(7): 075406.
[152] WANG F, EVANS H A, KIM K, et al. Dynamics of hydroxyl anions promotes lithium ion conduction in antiperovskite Li2OHCl [J]. Chemistry of Materials, 2020, 32(19): 8481-8491.
[153] YU Y, WANG Z, SHAO G. Theoretical formulation of Na3AO4X (A = S/Se, X = F/Cl) as high-performance solid electrolytes for all-solid-state sodium batteries [J]. Journal of Materials Chemistry A, 2019, 7(38): 21985-21996.
[154] FANG H, JENA P. Sodium superionic conductors based on clusters [J]. ACS Appl Mater Interfaces, 2019, 11(1): 963-972.
[155] JINLONG Z, LI S, ZHAO Y, et al. Transition-metals doped lithium-rich anti-perovskites for cathode applications. US, 20180006306A1 [P]. 2016-02-12.
[156] LAI K T, ANTONYSHYN I, PROTS Y, et al. Extended chemical flexibility of cubic anti-perovskite lithium battery cathode materials [J]. Inorganic Chemistry, 2018, 57(21): 13296-13299.
[157] GORBUNOV M V, CARROCCI S, MALETTI S, et al. Synthesis of (Li2Fe1-yMny)SO antiperovskites with comprehensive Investigations of (Li2Fe0.5Mn0.5)SO as cathode in Li-ion batteries [J]. Inorganic Chemistry, 2020, 59(21): 15626-15635.
[158] GORBUNOV M V, CAROCCI S, GONZALEZ MARTINEZ I G, et al. Studies of Li2Fe0.9M0.1SO antiperovskite materials for lithium–ion batteries: the role of partial Fe2+ to M2+ substitution [J]. Frontiers in Energy Research, 2021, 9: 657962.
[159] DENG Z, CHEN D, OU M, et al. Cation disordered anti‐perovskite cathode materials with enhanced lithium diffusion and suppressed phase transition [J]. Advanced Energy Materials, 2023, 13(28): 2300695.
[160] LU Z, CIUCCI F. Anti-perovskite cathodes for lithium batteries [J]. Journal of Materials Chemistry A, 2018, 6(12): 5185-5192.
[161] MOHAMED M A A, GORBUNOV M V, VALLDOR M, et al. Tuning the electrochemical properties by anionic substitution of Li-rich antiperovskite (Li2Fe)S1−xSexO cathodes for Li-ion batteries [J]. Journal of Materials Chemistry A, 2021, 9(40): 23095-23105.
[162] 谢希德, 陆栋. 固体能带理论 [Z]. 上海: 复旦大学出版社. 1998
[163] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review, 1965, 140(4A): A1133-A1138.
[164] 朱建阳. 用 Hartree 等三种方法计算固体电子能带结构的讨论 [J]. 大学物理, 1990, 9(3): 8-8.
[165] 黄正国, 徐梅芳. 对单电子近似方法的介绍 [J]. 大学化学, 2008, 23(1): 33-36.
[166] 王雪龙. 锂二次电池相关材料的第一性原理计算研究 [D]; 中国科学院大学 (中国科学院物理研究所), 2019.
[167] BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Physical review A, 1988, 38(6): 3098.
[168] ZIESCHE P, KURTH S, PERDEW J P. Density functionals from LDA to GGA [J]. Computational materials science, 1998, 11(2): 122-127.
[169] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Physical review B, Condensed matter, 1992, 46(11): 6671-6687.
[170] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[171] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186.
[172] HENKELMAN G, JóNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points [J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985.
[173] HENKELMAN G, UBERUAGA B P, JóNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904.
[174] JINNOUCHI R, KARSAI F, VERDI C, et al. Descriptors representing two-and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials [J]. The Journal of Chemical Physics, 2020, 152(23): 234102.
[175] JINNOUCHI R, KARSAI F, KRESSE G. On-the-fly machine learning force field generation: application to melting points [J]. Physical Review B, 2019, 100(1): 014105.
[176] JINNOUCHI R, LAHNSTEINER J, KARSAI F, et al. Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with bayesian Inference [J]. Physical Review Letters, 2019, 122(22): 225701.
[177] OUYANG C, SHI S, WANG Z, et al. First-principles study of Li ion diffusion in LiFePO4 [J]. Physical Review B, 2004, 69(10): 104303.
[178] PORTERFIELD W W. Inorganic chemistry [M]. Academic Press, 2013.
[179] ONG S P, RICHARDS W D, JAIN A, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis [J]. Computational Materials Science, 2013, 68: 314-319.
[180] JAIN A, ONG S P, HAUTIER G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation [J]. APL Materials, 2013, 1(1): 011002.
[181] EWALD P P. Die berechnung optischer und elektrostatischer gitterpotentiale [J]. Annals of Physics, 1921, 369(3): 253-287.
[182] FANG H, JENA P. Li-rich antiperovskite superionic conductors based on cluster ions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11046-11051.
[183] XU H, XUAN M, XIAO W, et al. Lithiumi on conductivity in double antiperovskite Li6.5OS1.5I1.5: alloying and boundary effects [J]. ACS Applied Energy Materials, 2019, 2(9): 6288-6294.
[184] ZHAO S, CHEN C, LI H, et al. Theoretical insights into the diffusion mechanism of alkali ions in ruddlesden–popper antiperovskites [J]. New Journal of Chemistry, 2021, 45(9): 4219-4226.
[185] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169-11186.
[186] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758-1775.
[187] BLöCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953-17979.
[188] MONKHORST H J, PACK J D. Special points for brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188-5192.
[189] KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals [J]. The Journal of Chemical Physics, 2006, 125(22): 224106.
[190] DENG Z, WANG Z, CHU I-H, et al. Elastic properties of alkali superionic conductor electrolytes from first principles calculations [J]. Journal of The Electrochemical Society, 2015, 163(2): A67-A74.
[191] WANG Z Q, WU M S, LIU G, et al. Elastic properties of new solid state electrolyte material Li10GeP2S12: a study from first-principles calculations [J]. International Journal of Electrochemical Science, 2014, 9(2): 562-568.
[192] QIU J, WU M, LUO W, et al. Insights into bulk properties and transport mechanisms in new ternary halide solid electrolytes: first-principles calculations [J]. The Journal of Physical Chemistry C, 2021, 125(42): 23510-23520.
[193] WAKAZAKI S, LIU Q, JALEM R, et al. High-pressure synthesis and lithium-ion conduction of Li4OBr2 derivatives with a layered inverse-perovskite structure [J]. Chemistry of Materials, 2021, 33(23): 9194-9201.
[194] MIKHAILOVA D, GIEBELER L, MALETTI S, et al. Operando studies of antiperovskite lithium battery cathode material (Li2Fe)SO [J]. ACS Applied Energy Materials, 2018, 1(11): 6593-6599.
[195] SHAO G. Red shift in manganese and iron-doped TiO2: a DFT+U analysis [J]. The Journal of Physical Chemistry C, 2009, 113(16): 6800-6808.
[196] CHO J, KIM T-J, KIM J, et al. Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-Ion cell [J]. Journal of The Electrochemical Society, 2004, 151(11): A1899.
[197] LU Z, MACNEIL D D, DAHN J R. Layered Li[NixCo1−2xMnx]O2 cathode materials for lithium-ion batteries [J]. Electrochemical and Solid-State Letters, 2001, 4(12): A200-A201.
[198] KIRKLIN S, SAAL J E, MEREDIG B, et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies [J]. npj Computational Materials, 2015, 1(1): 15010.
[199] GERISCHER H, DECKER F, SCROSATI B. The electronic and the Ionic contribution to the free energy of alkali metals in Intercalation compounds [J]. Journal of The Electrochemical Society, 1994, 141(9): 2297-2330.
[200] SCHULD S, HAUSBRAND R, FINGERLE M, et al. Experimental studies on work functions of Li+ ions and electrons in the battery electrode material LiCoO2: a thermodynamic cycle combining ionic and electronic structure[J]. Advanced Energy Materials, 2018, 8(18): 1703411.
[201] WANG Z, WANG D, ZOU Z, et al. Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density [J]. National Science Review, 2020, 7(11): 1768-1775.
[202] VAN DE WALLE A, TIWARY P, DE JONG M, et al. Efficient stochastic generation of special quasirandom structures [J]. Calphad, 2013, 42: 13-18.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778723
专题理学院_物理系
推荐引用方式
GB/T 7714
倪地兴. 反钙钛矿结构锂离子电池材料的第一性原理研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031137-倪地兴-物理系.pdf(14514KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[倪地兴]的文章
百度学术
百度学术中相似的文章
[倪地兴]的文章
必应学术
必应学术中相似的文章
[倪地兴]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。