中文版 | English
题名

CLEC5A DEFICIENCY INHIBITS INFLAMMATORY TUMOR MICROENVIRONMENT IN COLORECTAL CANCER

其他题名
CLEC5A 缺失抑制结直肠癌炎性肿瘤微环境
姓名
姓名拼音
HUANG Hongwen
学号
12133035
学位类型
硕士
学位专业
071007 遗传学
学科门类/专业学位类别
07 理学
导师
靳文菲
导师单位
系统生物学系
论文答辩日期
2024-05-13
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

结直肠癌是目前全球致死率最高的癌症类型之一。靶向耗竭T细胞的免疫检查点阻断疗法如 PD-1/PD-L1阻断法在血液病等液体癌患者身上取得了良好的疗效, 但对实体肿瘤的治疗有明显的局限性。其中的主要原因是实体肿瘤内的肿瘤浸润髓系细胞塑造的免疫抑制性微环境限制了免疫治疗的效果。因此,寻找和靶向阻断肿瘤浸润髓系细胞的免疫抑制信号是进一步提升肿瘤免疫治疗疗效的一个重要方向。

本研究分析了实验室先前的结直肠癌单细胞转录组数据,发现CLEC5A在人肿瘤浸润髓系细胞中的表达显著高于癌旁组织。结直肠癌小鼠模型也显示Clec5a在肿瘤浸润髓系细胞中高表达。虽然有报道发现CLEC5A在感染应答中发挥着促炎的功能, CLEC5A在结直肠癌中的功能鲜有报道。于是,我们构建了MC38皮下移植瘤和AOM/DSS结直肠癌两个小鼠模型,结果都显示敲除Clec5a会抑制肿瘤生长。

为了进一步比较分析Clec5a对肿瘤微环境的影响,我们利用单细胞转录组技术对野生型和Clec5a-/-小鼠的AOM/DSS诱导肿瘤进行单细胞转录组测序和细胞图谱绘制。我们发现Clec5a-/-的小鼠的肿瘤浸润免疫细胞具有更低的炎症打分,这是由于Clec5a缺失抑制了NF-κB MAPK等促炎信号通路从而降低了炎症相关细胞因子的表达水平。Clec5a缺失会激活髓系细胞抗原呈递能力并提高糖代谢水平,从而与癌细胞争夺营养物质。

综上,我们的研究表明Clec5a的缺失减弱了炎性肿瘤微环境和增强了免疫应答来抑制肿瘤发展。我们也将借助实验,进一步探究Clec5a的缺失导致的促炎趋化因子水平降低是否限制了肿瘤转移,以及是否能通过髓系细胞来增强CD8+ T细胞的细胞毒性能力,从而揭示Clec5a在肿瘤微环境中的调节功能。

其他摘要

Colorectal cancer (CRC) is one of the most lethal cancers in the world. Immune checkpoint inhibitors including anti-PD-1/PD-L1, targeting exhausted T cells, have achieved efficacy in leukemia patients, but has obvious limitations in the treatment of solid tumors. The main reason is that the immunosuppressive tumor microenvironment created by tumor-infiltrated myeloid cells limits therapeutic efficacy. Therefore, finding and targeting the immunosuppressive signals of tumor infiltrating myeloid cells is important for further improving immunotherapy efficacy.

We analyzed the single cell RNA-seq (scRNA-seq) data of CRC generated by our labatory, and found that the expression of CLEC5A in human tumor-infiltrated myeloid cells is significantly higher than that in para-carcinoma samples. Besides, AOM/DSS mouse CRC model also showed Clec5a highly expressed in tumor-infiltrated myeloid cells. Although it has been reported that CLEC5A plays a pro-inflammatory role in response to infection, the function of CLEC5A in CRC is rarely reported. We constructed the MC38 subcutaneous tumor model and AOM/DSS-induced CRC mouse model, both of which showed that tumor was inhibited by Clec5a knockout.

To further analyze the effect of Clec5a on the tumor microenvironment, we generated the cell atlas of AOM/DSS-induced tumors in wild-type and Clec5a-/- mice using scRNA-seq. We found that the tumor-infiltrated immune cells in Clec5a-/- mice had a lower inflammatory score, which is caused by the inhibition of NF-κB and MAPK pro-inflammatory signaling after Clec5a deficiency, leading to decreased expression of inflammatory cytokines. Clec5a deficiency promotes the activation of antigen presenting and processing ability of myeloid cells. Moreover, Clec5a depletion would promote a high level of glucose metabolism in macrophages to compete for nutrients with cancer cells.

To sum up, our study suggested that Clec5a deficiency could weaken the inflammatory tumor microenvironment and activate immune response to inhibit cancer progression. Besides, we will further study whether decreasing level of pro-inflammatory chemokines caused by Clec5a deficiency restrained the tumor metastasis, and whether the cytotoxic ability of CD8+ T cells can be improved by myeloid cells, thus revealing the regulated function of Clec5a in the tumor microenvironment.

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] SUNG H, FERLAY J, SIEGEL RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J Clin 2021;71(3):209–249.
[2] Colorectal cancer. https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer.
[3] WANG R, LIAN J, WANG X, et al. Survival rate of colorectal cancer in China: A systematic review and meta-analysis. Frontiers in Oncology 2023;13. doi:10.3389/fonc.2023.1033154.
[4] CECCHINI M, SOKOL E, VASAN N, et al. Molecular characteristics of advanced colorectal cancer and multi-hit PIK3CA mutations. JCO 2022;40(16_suppl):3535–3535.
[5] WANG C, ZHANG L, VAKIANI E, et al. Detecting mismatch repair deficiency in solid neoplasms: immunohistochemistry, microsatellite instability, or both? Mod Pathol 2022;35(11):1515–1528.
[6] CHEN W, FRANKEL WL. A practical guide to biomarkers for the evaluation of colorectal cancer. Mod Pathol 2019;32(Suppl 1):1–15.
[7] BAGNARDI V, ROTA M, BOTTERI E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer 2015;112(3):580–593.
[8] FEDIRKO V, TRAMACERE I, BAGNARDI V, et al. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol 2011;22(9):1958–1972.
[9] LOCONTE NK, BREWSTER AM, KAUR JS, et al. Alcohol and Cancer: A Statement of the American Society of Clinical Oncology. J Clin Oncol 2018;36(1):83–93.
[10] CHANDRA R, KARALIS JD, LIU C, et al. The Colorectal Cancer Tumor Microenvironment and Its Impact on Liver and Lung Metastasis. Cancers (Basel) 2021;13(24):6206.
[11] SU C, WANG H, LIU Y, et al. Adverse Effects of Anti-PD-1/PD-L1 Therapy in Non-small Cell Lung Cancer. Front Oncol 2020;10:554313.
[12] SUN J-Y, ZHANG D, WU S, et al. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives. Biomark Res 2020;8:35.
[13] PICARD E, VERSCHOOR CP, MA GW, et al. Relationships Between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Front Immunol 2020;11:369.
[14] LIZARDO DY, KUANG C, HAO S, et al. Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: From bench to bedside. Biochim Biophys Acta Rev Cancer 2020;1874(2):188447.
[15] EVRARD M, KWOK IWH, CHONG SZ, et al. Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity 2018;48(2):364-379.e8.
[16] VÄYRYNEN JP, HARUKI K, LAU MC, et al. The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment. Cancer Immunol Res 2021;9(1):8–19.
[17] QIAN B-Z, POLLARD JW. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell 2010;141(1):39–51.
[18] MANTOVANI A, MARCHESI F, MALESCI A, et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017;14(7):399–416.
[19] AZIZI E, CARR AJ, PLITAS G, CORNISH AE, et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell 2018;174(5):1293-1308.e36.
[20] JABLONSKA J, LESCHNER S, WESTPHAL K, et al. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 2010;120(4):1151–1164.
[21] FRIDLENDER ZG, SUN J, KIM S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009;16(3):183–194.
[22] PONZETTA A, CARRIERO R, CARNEVALE S, et al. Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors. Cell 2019;178(2):346-360.e24.
[23] XUE R, ZHANG Q, CAO Q, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 2022. doi:10.1038/s41586-022-05400-x.
[24] ALMAND B, CLARK JI, NIKITINA E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001;166(1):678–689.
[25] COFFELT SB, KERSTEN K, DOORNEBAL CW, et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 2015;522(7556):345–348.
[26] AARTS CEM, HIEMSTRA IH, BÉGUIN EP, et al. Activated neutrophils exert myeloid-derived suppressor cell activity damaging T cells beyond repair. Blood Adv 2019;3(22):3562–3574.
[27] ALSHETAIWI H, PERVOLARAKIS N, MCINTYRE LL, et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Science Immunology 2020;5(44):eaay6017.
[28] HO DW-H, TSUI Y-M, CHAN L-K, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun 2021;12(1):3684.
[29] KANG B, CAMPS J, FAN B, et al. Parallel single-cell and bulk transcriptome analyses reveal key features of the gastric tumor microenvironment. Genome Biology 2022;23(1):265.
[30] HUANG C, WANG X, WANG Y, et al. Sirpα on tumor-associated myeloid cells restrains antitumor immunity in colorectal cancer independent of its interaction with CD47. Nat Cancer 2024;:1-17
[31] ZELENSKY AN, GREADY JE. The C-type lectin-like domain superfamily. FEBS J 2005;272(24):6179–6217.
[32] FISCHER S, STEGMANN F, GNANAPRAGASSAM VS, et al. From structure to function - Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022;20:5790–5812.
[33] MAYER S, RAULF M-K, LEPENIES B. C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol 2017;147(2):223–237.
[34] BAKKER AB, BAKER E, SUTHERLAND GR, et al. Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc Natl Acad Sci U S A 1999;96(17):9792–9796.
[35] PS S, YC P, SP Y, et al. CLEC5A is critical in Pseudomonas aeruginosa-induced NET formation and acute lung injury. JCI insight 2022;7(18). doi:10.1172/jci.insight.156613.
[36] CHEN S-T, LIN Y-L, HUANG M-T, et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 2008;453(7195):672–676.
[37] AOKI N, ZGANIACZ A, MARGETTS P, et al. Differential regulation of DAP12 and molecules associated with DAP12 during host responses to mycobacterial infection. Infect Immun 2004;72(5):2477–2483.
[38] CHEUNG R, SHEN F, PHILLIPS JH, et al. Activation of MDL-1 (CLEC5A) on immature myeloid cells triggers lethal shock in mice. J Clin Invest 2011;121(11):4446–4461.
[39] WANG Q, SHI M, SUN S, et al. CLEC5A promotes the proliferation of gastric cancer cells by activating the PI3K/AKT/mTOR pathway. Biochemical and Biophysical Research Communications 2020;524(3):656–662.
[40] ENGBLOM C, PFIRSCHKE C, ZILIONIS R, et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 2017;358(6367):eaal5081.
[41] ZILIONIS R, ENGBLOM C, PFIRSCHKE C, et al. Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity 2019;50(5):1317-1334.e10.
[42] KEUM N, GIOVANNUCCI E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 2019;16(12):713–732.
[43] EADEN JA, ABRAMS KR, MAYBERRY JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001;48(4):526–535.
[44] WANG L, LIU Y, DAI Y, et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut 2022;:gutjnl-2021-326070.
[45] NOMAN MZ, DESANTIS G, JANJI B, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014;211(5):781–790.
[46] QIAN B-Z, LI J, ZHANG H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011;475(7355):222–225.
[47] STRIBBLING SM, RYAN AJ. The cell-line-derived subcutaneous tumor model in preclinical cancer research. Nat Protoc 2022;17(9):2108–2128.
[48] OKAYASU I, OHKUSA T, KAJIURA K, et al. Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 1996;39(1):87–92.
[49] SNIDER AJ, BIALKOWSKA AB, GHALEB AM, et al. Murine Model for Colitis-Associated Cancer of the Colon. Methods Mol Biol 2016;1438:245–254.
[50] CHASSAING B, AITKEN JD, MALLESHAPPA M, et al. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 2014;104:15.25.1-15.25.14.
[51] TRINER D, DEVENPORT SN, RAMAKRISHNAN SK, et al. Neutrophils Restrict Tumor-Associated Microbiota to Reduce Growth and Invasion of Colon Tumors in Mice. Gastroenterology 2019;156(5):1467–1482.
[52] CHEN Y, BAI B, YING K, et al. Anti-PD-1 combined with targeted therapy: Theory and practice in gastric and colorectal cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022;1877(5):188775.
[53] SUNG P-S, HSIEH S-L. CLEC2 and CLEC5A: Pathogenic Host Factors in Acute Viral Infections. Front Immunol 2019;10:2867.
[54] HRDLICKOVA R, TOLOUE M, TIAN B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 2017;8(1). doi:10.1002/wrna.1364.
[55] CONESA A, MADRIGAL P, TARAZONA S, et al. A survey of best practices for RNA-seq data analysis. Genome Biol 2016;17:13.
[56] MAO Y, XU Y, CHANG J, et al. The immune phenotypes and different immune escape mechanisms in colorectal cancer. Front Immunol 2022;13:968089.
[57] ANDOR N, SIMONDS EF, CZERWINSKI DK, et al. Single-cell RNA-Seq of follicular lymphoma reveals malignant B-cell types and coexpression of T-cell immune checkpoints. Blood 2019;133(10):1119–1129.
[58] KLEIN AM, MAZUTIS L, AKARTUNA I, et al. Droplet barcoding for single cell transcriptomics applied to embryonic stem cells. Cell 2015;161(5):1187–1201.
[59] BD RhapsodyTM Single-Cell Analysis System Workflow: From Sample to Multimodal Single-Cell Sequencing Data | SpringerLink. https://link.springer.com/protocol/10.1007/978-1-0716-2756-3_2#Sec6 (accessed 2 Mar 2024).
[60] HAO Y, HAO S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell 2021;184(13):3573-3587.e29.
[61] CAO Y, LIN Y, ORMEROD JT, et al. scDC: single cell differential composition analysis. BMC Bioinformatics 2019;20(Suppl 19):721.
[62] KOLATA G. The Art of Learning from Experience: Statistician Bradley Efron tells what his field is about and how a new method, the bootstrap, exploits the power of large-scale computing. Science 1984;225(4658):156–158.
[63] NEUFERT C, BECKER C, NEURATH MF. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc 2007;2(8):1998–2004.
[64] LAFZI A, MOUTINHO C, PICELLI S, et al. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat Protoc 2018;13(12):2742–2757.
[65] XI NM, LI JJ. Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data. Cell Syst 2021;12(2):176-194.e6.
[66] Quality Assessment Using the Cell Ranger Web Summary - 10x Genomics. https://www.10xgenomics.com/cn/analysis-guides/quality-assessment-using-the-cell-ranger-web-summary.
[67] MONACO G, LEE B, XU W, et al. RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types. Cell Reports 2019;26(6):1627-1640.e7.
[68] ZHANG L, LI Z, SKRZYPCZYNSKA KM, et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer. Cell 2020;181(2):442-459.e29.
[69] HONG M, TAO S, ZHANG L, et al. RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol 2020;13(1):166.
[70] SINJAB A, HAN G, TREEKITKARNMONGKOL W, et al. Resolving the spatial and cellular architecture of lung adenocarcinoma by multi-region single-cell sequencing. Cancer Discov 2021;11(10):2506–2523.
[71] TANIGUCHI K, KARIN M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018;18(5):309–324.
[72] PORTA C, RIMOLDI M, RAES G, et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc Natl Acad Sci U S A 2009;106(35):14978–14983.
[73] HAGEMANN T, LAWRENCE T, MCNEISH I, et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med 2008;205(6):1261–1268.
[74] ZHANG W, LIU HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002;12(1):9–18.
[75] MURUGESAN G, CORREIA VG, PALMA AS, et al. Siglec-15 recognition of sialoglycans on tumor cell lines can occur independently of sialyl Tn antigen expression. Glycobiology 2021;31(1):44–54.
[76] TANG T, CHENG X, TRUONG B, et al. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther 2021;219:107709.
[77] LI Y, SHEN Z, CHAI Z, et al. Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity. Gut 2023;72(12):2307–2320.
[78] ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10(1):1523.
[79] JIN S, GUERRERO-JUAREZ CF, ZHANG L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021;12(1):1088.
[80] BROWAEYS R, SAELENS W, SAEYS Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods 2020;17(2):159–162.
[81] CHEN Y, MCANDREWS KM, KALLURI R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 2021;18(12):792–804.
[82] KIM HJ, BAR-SAGI D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol 2004;5(6):441–450.
[83] ULLAH R, YIN Q, SNELL AH, et al. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2022;85:123–154.
[84] VOUGIOUKALAKI M, KANELLIS DC, GKOUSKOU K, et al. Tpl2 kinase signal transduction in inflammation and cancer. Cancer Lett 2011;304(2):80–89.
[85] DUMITRU CD, CECI JD, TSATSANIS C, et al. TNF-α Induction by LPS Is Regulated Posttranscriptionally via a Tpl2/ERK-Dependent Pathway. Cell 2000;103(7):1071–1083.
[86] XU Q, LIU M, CHAO X, et al. Acidifiers Attenuate Diquat-Induced Oxidative Stress and Inflammatory Responses by Regulating NF-κB/MAPK/COX-2 Pathways in IPEC-J2 Cells. Antioxidants (Basel) 2022;11(10):2002.
[87] DI PAOLO NC, SHAYAKHMETOV DM. Interleukin 1α and the inflammatory process. Nat Immunol 2016;17(8):906–913.
[88] BHAT AA, NISAR S, SINGH M, et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun (Lond) 2022;42(8):689–715.
[89] KORBECKI J, GROCHANS S, GUTOWSKA I, et al. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int J Mol Sci 2020;21(20):7619.
[90] KATOH H, WANG D, DAIKOKU T, et al. CXCR2-Expressing Myeloid-Derived Suppressor Cells Are Essential to Promote Colitis-Associated Tumorigenesis. Cancer Cell 2013;24(5):631–644.
[91] PROPPER DJ, BALKWILL FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol 2022;19(4):237–253.
[92] CRUCERIU D, BALDASICI O, BALACESCU O, et al. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr) 2020;43(1):1–18.
[93] BRENNER D, BLASER H, MAK TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 2015;15(6):362–374.
[94] NAKAGAWA H, UMEMURA A, TANIGUCHI K, et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 2014;26(3):331–343.
[95] ZHU Y, ZHENG D, LEI L, et al. High expression of syndecan-4 is related to clinicopathological features and poor prognosis of pancreatic adenocarcinoma. BMC Cancer 2022;22(1):1042.
[96] WANG Q, GAO G, ZHANG T, et al. TRAF1 Is Critical for Regulating the BRAF/MEK/ERK Pathway in Non-Small Cell Lung Carcinogenesis. Cancer Res 2018;78(14):3982–3994.
[97] ERMOLAEVA MA, MICHALLET M-C, PAPADOPOULOU N, et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 2008;9(9):1037–1046.
[98] SYROVETS T, LUNOV O, SIMMET T. Plasmin as a proinflammatory cell activator. J Leukoc Biol 2012;92(3):509–519.
[99] HINDY G, TYRRELL DJ, VASBINDER A, et al. Increased soluble urokinase plasminogen activator levels modulate monocyte function to promote atherosclerosis. J Clin Invest;132(24):e158788.
[100]CHENG Y, HALL TR, XU X, et al. Targeting uPA-uPAR interaction to improve intestinal epithelial barrier integrity in inflammatory bowel disease. EBioMedicine 2021;75:103758.
[101]SHMAKOVA AA, POPOV VS, ROMANOV IP, et al. Urokinase System in Pathogenesis of Pulmonary Fibrosis: A Hidden Threat of COVID-19. Int J Mol Sci 2023;24(2):1382.
[102]ZHANG P, GU Y, WANG J, et al. Complement receptor C5aR1 blockade reprograms tumor-associated macrophages and synergizes with anti-PD-1 therapy in gastric cancer. Int J Cancer 2023;153(1):224–237.
[103]ZHENG Y, WANG N, WANG S, et al. Chronic psychological stress promotes breast cancer pre-metastatic niche formation by mobilizing splenic MDSCs via TAM/CXCL1 signaling. J Exp Clin Cancer Res 2023;42:129.
[104]RESCHKE R, GAJEWSKI TF. CXCL9 and CXCL10 bring the heat to tumors. Sci Immunol 2022;7(73):eabq6509.
[105]SCHLECKER E, STOJANOVIC A, EISEN C, et al. Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J Immunol 2012;189(12):5602–5611.
[106]NIEBOROWSKA-SKORSKA M, KOPINSKI PK, RAY R, et al. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 2012;119(18):4253–4263.
[107]ZHONG J, LI Q, LUO H, et al. Neutrophil-derived reactive oxygen species promote tumor colonization. Commun Biol 2021;4(1):865.
[108]CHEN S-T, LI F-J, HSU T-Y, et al. CLEC5A is a critical receptor in innate immunity against Listeria infection. Nat Commun 2017;8(1):299.
[109]OHL K, TENBROCK K. Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression. Front Immunol 2018;9:2499.
[110] MURPHY MP, BAYIR H, BELOUSOV V, et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 2022;4(6):651–662.
[111] ROCK KL, REITS E, NEEFJES J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends Immunol 2016;37(11):724–737.
[112] BORST J, AHRENDS T, BĄBAŁA N, et al. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 2018;18(10):635–647.
[113] AXELROD ML, COOK RS, JOHNSON DB, et al. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin Cancer Res 2019;25(8):2392–2402.
[114] LEONE P, SHIN E-C, PEROSA F, et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013;105(16):1172–1187.
[115] HUANG D, CAI DT, CHUA RYR, et al. Nitric-oxide synthase 2 interacts with CD74 and inhibits its cleavage by caspase during dendritic cell development. J Biol Chem 2008;283(3):1713–1722.
[116] SANSOM DM, MANZOTTI CN, ZHENG Y. What’s the difference between CD80 and CD86? Trends in Immunology 2003;24(6):313–318.
[117] MARTÍNEZ-REYES I, CHANDEL NS. Cancer metabolism: looking forward. Nat Rev Cancer 2021;21(10):669–680.
[118] BARYŁA M, SEMENIUK-WOJTAŚ A, RÓG L, et al. Oncometabolites-A Link between Cancer Cells and Tumor Microenvironment. Biology (Basel) 2022;11(2):270.
[119] NATH N, KASHFI K. Tumor associated macrophages and ‘NO.’ Biochemical Pharmacology 2020;176:113899.
[120]STUEHR DJ, NATHAN CF. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 1989;169(5):1543–1555.
[121]MACMICKING J, XIE Q, NATHAN C. Nitric Oxide and Macrophage Function. Annual Review of Immunology 1997;15(1):323–350.
[122]SUN L, KEES T, ALMEIDA AS, et al. Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell 2021;39(10):1361-1374.e9.
[123]ANDREJEVA G, RATHMELL JC. Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metab 2017;26(1):49–70.
[124]DENARDO DG, RUFFELL B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 2019;19(6):369–382.
[125]WENES M, SHANG M, DI MATTEO M, et al. Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis. Cell Metab 2016;24(5):701–715.
[126]MÓCSAI A, RULAND J, TYBULEWICZ VLJ. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010;10(6):387–402.
[127]VANDER HEIDEN MG, CANTLEY LC, THOMPSON CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324(5930):1029–1033.

所在学位评定分委会
生物学
国内图书分类号
Q354
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778724
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
Huang HW. CLEC5A DEFICIENCY INHIBITS INFLAMMATORY TUMOR MICROENVIRONMENT IN COLORECTAL CANCER[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133035-黄洪雯-生物系.pdf(6912KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄洪雯]的文章
百度学术
百度学术中相似的文章
[黄洪雯]的文章
必应学术
必应学术中相似的文章
[黄洪雯]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。