[1] SUNG H, FERLAY J, SIEGEL RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J Clin 2021;71(3):209–249.
[2] Colorectal cancer. https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer.
[3] WANG R, LIAN J, WANG X, et al. Survival rate of colorectal cancer in China: A systematic review and meta-analysis. Frontiers in Oncology 2023;13. doi:10.3389/fonc.2023.1033154.
[4] CECCHINI M, SOKOL E, VASAN N, et al. Molecular characteristics of advanced colorectal cancer and multi-hit PIK3CA mutations. JCO 2022;40(16_suppl):3535–3535.
[5] WANG C, ZHANG L, VAKIANI E, et al. Detecting mismatch repair deficiency in solid neoplasms: immunohistochemistry, microsatellite instability, or both? Mod Pathol 2022;35(11):1515–1528.
[6] CHEN W, FRANKEL WL. A practical guide to biomarkers for the evaluation of colorectal cancer. Mod Pathol 2019;32(Suppl 1):1–15.
[7] BAGNARDI V, ROTA M, BOTTERI E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer 2015;112(3):580–593.
[8] FEDIRKO V, TRAMACERE I, BAGNARDI V, et al. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol 2011;22(9):1958–1972.
[9] LOCONTE NK, BREWSTER AM, KAUR JS, et al. Alcohol and Cancer: A Statement of the American Society of Clinical Oncology. J Clin Oncol 2018;36(1):83–93.
[10] CHANDRA R, KARALIS JD, LIU C, et al. The Colorectal Cancer Tumor Microenvironment and Its Impact on Liver and Lung Metastasis. Cancers (Basel) 2021;13(24):6206.
[11] SU C, WANG H, LIU Y, et al. Adverse Effects of Anti-PD-1/PD-L1 Therapy in Non-small Cell Lung Cancer. Front Oncol 2020;10:554313.
[12] SUN J-Y, ZHANG D, WU S, et al. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives. Biomark Res 2020;8:35.
[13] PICARD E, VERSCHOOR CP, MA GW, et al. Relationships Between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Front Immunol 2020;11:369.
[14] LIZARDO DY, KUANG C, HAO S, et al. Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: From bench to bedside. Biochim Biophys Acta Rev Cancer 2020;1874(2):188447.
[15] EVRARD M, KWOK IWH, CHONG SZ, et al. Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity 2018;48(2):364-379.e8.
[16] VÄYRYNEN JP, HARUKI K, LAU MC, et al. The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment. Cancer Immunol Res 2021;9(1):8–19.
[17] QIAN B-Z, POLLARD JW. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell 2010;141(1):39–51.
[18] MANTOVANI A, MARCHESI F, MALESCI A, et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017;14(7):399–416.
[19] AZIZI E, CARR AJ, PLITAS G, CORNISH AE, et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell 2018;174(5):1293-1308.e36.
[20] JABLONSKA J, LESCHNER S, WESTPHAL K, et al. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 2010;120(4):1151–1164.
[21] FRIDLENDER ZG, SUN J, KIM S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009;16(3):183–194.
[22] PONZETTA A, CARRIERO R, CARNEVALE S, et al. Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors. Cell 2019;178(2):346-360.e24.
[23] XUE R, ZHANG Q, CAO Q, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 2022. doi:10.1038/s41586-022-05400-x.
[24] ALMAND B, CLARK JI, NIKITINA E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001;166(1):678–689.
[25] COFFELT SB, KERSTEN K, DOORNEBAL CW, et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 2015;522(7556):345–348.
[26] AARTS CEM, HIEMSTRA IH, BÉGUIN EP, et al. Activated neutrophils exert myeloid-derived suppressor cell activity damaging T cells beyond repair. Blood Adv 2019;3(22):3562–3574.
[27] ALSHETAIWI H, PERVOLARAKIS N, MCINTYRE LL, et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Science Immunology 2020;5(44):eaay6017.
[28] HO DW-H, TSUI Y-M, CHAN L-K, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun 2021;12(1):3684.
[29] KANG B, CAMPS J, FAN B, et al. Parallel single-cell and bulk transcriptome analyses reveal key features of the gastric tumor microenvironment. Genome Biology 2022;23(1):265.
[30] HUANG C, WANG X, WANG Y, et al. Sirpα on tumor-associated myeloid cells restrains antitumor immunity in colorectal cancer independent of its interaction with CD47. Nat Cancer 2024;:1-17
[31] ZELENSKY AN, GREADY JE. The C-type lectin-like domain superfamily. FEBS J 2005;272(24):6179–6217.
[32] FISCHER S, STEGMANN F, GNANAPRAGASSAM VS, et al. From structure to function - Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022;20:5790–5812.
[33] MAYER S, RAULF M-K, LEPENIES B. C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol 2017;147(2):223–237.
[34] BAKKER AB, BAKER E, SUTHERLAND GR, et al. Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc Natl Acad Sci U S A 1999;96(17):9792–9796.
[35] PS S, YC P, SP Y, et al. CLEC5A is critical in Pseudomonas aeruginosa-induced NET formation and acute lung injury. JCI insight 2022;7(18). doi:10.1172/jci.insight.156613.
[36] CHEN S-T, LIN Y-L, HUANG M-T, et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 2008;453(7195):672–676.
[37] AOKI N, ZGANIACZ A, MARGETTS P, et al. Differential regulation of DAP12 and molecules associated with DAP12 during host responses to mycobacterial infection. Infect Immun 2004;72(5):2477–2483.
[38] CHEUNG R, SHEN F, PHILLIPS JH, et al. Activation of MDL-1 (CLEC5A) on immature myeloid cells triggers lethal shock in mice. J Clin Invest 2011;121(11):4446–4461.
[39] WANG Q, SHI M, SUN S, et al. CLEC5A promotes the proliferation of gastric cancer cells by activating the PI3K/AKT/mTOR pathway. Biochemical and Biophysical Research Communications 2020;524(3):656–662.
[40] ENGBLOM C, PFIRSCHKE C, ZILIONIS R, et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 2017;358(6367):eaal5081.
[41] ZILIONIS R, ENGBLOM C, PFIRSCHKE C, et al. Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity 2019;50(5):1317-1334.e10.
[42] KEUM N, GIOVANNUCCI E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 2019;16(12):713–732.
[43] EADEN JA, ABRAMS KR, MAYBERRY JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001;48(4):526–535.
[44] WANG L, LIU Y, DAI Y, et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut 2022;:gutjnl-2021-326070.
[45] NOMAN MZ, DESANTIS G, JANJI B, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014;211(5):781–790.
[46] QIAN B-Z, LI J, ZHANG H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011;475(7355):222–225.
[47] STRIBBLING SM, RYAN AJ. The cell-line-derived subcutaneous tumor model in preclinical cancer research. Nat Protoc 2022;17(9):2108–2128.
[48] OKAYASU I, OHKUSA T, KAJIURA K, et al. Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 1996;39(1):87–92.
[49] SNIDER AJ, BIALKOWSKA AB, GHALEB AM, et al. Murine Model for Colitis-Associated Cancer of the Colon. Methods Mol Biol 2016;1438:245–254.
[50] CHASSAING B, AITKEN JD, MALLESHAPPA M, et al. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 2014;104:15.25.1-15.25.14.
[51] TRINER D, DEVENPORT SN, RAMAKRISHNAN SK, et al. Neutrophils Restrict Tumor-Associated Microbiota to Reduce Growth and Invasion of Colon Tumors in Mice. Gastroenterology 2019;156(5):1467–1482.
[52] CHEN Y, BAI B, YING K, et al. Anti-PD-1 combined with targeted therapy: Theory and practice in gastric and colorectal cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022;1877(5):188775.
[53] SUNG P-S, HSIEH S-L. CLEC2 and CLEC5A: Pathogenic Host Factors in Acute Viral Infections. Front Immunol 2019;10:2867.
[54] HRDLICKOVA R, TOLOUE M, TIAN B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 2017;8(1). doi:10.1002/wrna.1364.
[55] CONESA A, MADRIGAL P, TARAZONA S, et al. A survey of best practices for RNA-seq data analysis. Genome Biol 2016;17:13.
[56] MAO Y, XU Y, CHANG J, et al. The immune phenotypes and different immune escape mechanisms in colorectal cancer. Front Immunol 2022;13:968089.
[57] ANDOR N, SIMONDS EF, CZERWINSKI DK, et al. Single-cell RNA-Seq of follicular lymphoma reveals malignant B-cell types and coexpression of T-cell immune checkpoints. Blood 2019;133(10):1119–1129.
[58] KLEIN AM, MAZUTIS L, AKARTUNA I, et al. Droplet barcoding for single cell transcriptomics applied to embryonic stem cells. Cell 2015;161(5):1187–1201.
[59] BD RhapsodyTM Single-Cell Analysis System Workflow: From Sample to Multimodal Single-Cell Sequencing Data | SpringerLink. https://link.springer.com/protocol/10.1007/978-1-0716-2756-3_2#Sec6 (accessed 2 Mar 2024).
[60] HAO Y, HAO S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell 2021;184(13):3573-3587.e29.
[61] CAO Y, LIN Y, ORMEROD JT, et al. scDC: single cell differential composition analysis. BMC Bioinformatics 2019;20(Suppl 19):721.
[62] KOLATA G. The Art of Learning from Experience: Statistician Bradley Efron tells what his field is about and how a new method, the bootstrap, exploits the power of large-scale computing. Science 1984;225(4658):156–158.
[63] NEUFERT C, BECKER C, NEURATH MF. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc 2007;2(8):1998–2004.
[64] LAFZI A, MOUTINHO C, PICELLI S, et al. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat Protoc 2018;13(12):2742–2757.
[65] XI NM, LI JJ. Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data. Cell Syst 2021;12(2):176-194.e6.
[66] Quality Assessment Using the Cell Ranger Web Summary - 10x Genomics. https://www.10xgenomics.com/cn/analysis-guides/quality-assessment-using-the-cell-ranger-web-summary.
[67] MONACO G, LEE B, XU W, et al. RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types. Cell Reports 2019;26(6):1627-1640.e7.
[68] ZHANG L, LI Z, SKRZYPCZYNSKA KM, et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer. Cell 2020;181(2):442-459.e29.
[69] HONG M, TAO S, ZHANG L, et al. RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol 2020;13(1):166.
[70] SINJAB A, HAN G, TREEKITKARNMONGKOL W, et al. Resolving the spatial and cellular architecture of lung adenocarcinoma by multi-region single-cell sequencing. Cancer Discov 2021;11(10):2506–2523.
[71] TANIGUCHI K, KARIN M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018;18(5):309–324.
[72] PORTA C, RIMOLDI M, RAES G, et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc Natl Acad Sci U S A 2009;106(35):14978–14983.
[73] HAGEMANN T, LAWRENCE T, MCNEISH I, et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med 2008;205(6):1261–1268.
[74] ZHANG W, LIU HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002;12(1):9–18.
[75] MURUGESAN G, CORREIA VG, PALMA AS, et al. Siglec-15 recognition of sialoglycans on tumor cell lines can occur independently of sialyl Tn antigen expression. Glycobiology 2021;31(1):44–54.
[76] TANG T, CHENG X, TRUONG B, et al. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther 2021;219:107709.
[77] LI Y, SHEN Z, CHAI Z, et al. Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity. Gut 2023;72(12):2307–2320.
[78] ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10(1):1523.
[79] JIN S, GUERRERO-JUAREZ CF, ZHANG L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021;12(1):1088.
[80] BROWAEYS R, SAELENS W, SAEYS Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods 2020;17(2):159–162.
[81] CHEN Y, MCANDREWS KM, KALLURI R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 2021;18(12):792–804.
[82] KIM HJ, BAR-SAGI D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol 2004;5(6):441–450.
[83] ULLAH R, YIN Q, SNELL AH, et al. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2022;85:123–154.
[84] VOUGIOUKALAKI M, KANELLIS DC, GKOUSKOU K, et al. Tpl2 kinase signal transduction in inflammation and cancer. Cancer Lett 2011;304(2):80–89.
[85] DUMITRU CD, CECI JD, TSATSANIS C, et al. TNF-α Induction by LPS Is Regulated Posttranscriptionally via a Tpl2/ERK-Dependent Pathway. Cell 2000;103(7):1071–1083.
[86] XU Q, LIU M, CHAO X, et al. Acidifiers Attenuate Diquat-Induced Oxidative Stress and Inflammatory Responses by Regulating NF-κB/MAPK/COX-2 Pathways in IPEC-J2 Cells. Antioxidants (Basel) 2022;11(10):2002.
[87] DI PAOLO NC, SHAYAKHMETOV DM. Interleukin 1α and the inflammatory process. Nat Immunol 2016;17(8):906–913.
[88] BHAT AA, NISAR S, SINGH M, et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun (Lond) 2022;42(8):689–715.
[89] KORBECKI J, GROCHANS S, GUTOWSKA I, et al. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int J Mol Sci 2020;21(20):7619.
[90] KATOH H, WANG D, DAIKOKU T, et al. CXCR2-Expressing Myeloid-Derived Suppressor Cells Are Essential to Promote Colitis-Associated Tumorigenesis. Cancer Cell 2013;24(5):631–644.
[91] PROPPER DJ, BALKWILL FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol 2022;19(4):237–253.
[92] CRUCERIU D, BALDASICI O, BALACESCU O, et al. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr) 2020;43(1):1–18.
[93] BRENNER D, BLASER H, MAK TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 2015;15(6):362–374.
[94] NAKAGAWA H, UMEMURA A, TANIGUCHI K, et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 2014;26(3):331–343.
[95] ZHU Y, ZHENG D, LEI L, et al. High expression of syndecan-4 is related to clinicopathological features and poor prognosis of pancreatic adenocarcinoma. BMC Cancer 2022;22(1):1042.
[96] WANG Q, GAO G, ZHANG T, et al. TRAF1 Is Critical for Regulating the BRAF/MEK/ERK Pathway in Non-Small Cell Lung Carcinogenesis. Cancer Res 2018;78(14):3982–3994.
[97] ERMOLAEVA MA, MICHALLET M-C, PAPADOPOULOU N, et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 2008;9(9):1037–1046.
[98] SYROVETS T, LUNOV O, SIMMET T. Plasmin as a proinflammatory cell activator. J Leukoc Biol 2012;92(3):509–519.
[99] HINDY G, TYRRELL DJ, VASBINDER A, et al. Increased soluble urokinase plasminogen activator levels modulate monocyte function to promote atherosclerosis. J Clin Invest;132(24):e158788.
[100]CHENG Y, HALL TR, XU X, et al. Targeting uPA-uPAR interaction to improve intestinal epithelial barrier integrity in inflammatory bowel disease. EBioMedicine 2021;75:103758.
[101]SHMAKOVA AA, POPOV VS, ROMANOV IP, et al. Urokinase System in Pathogenesis of Pulmonary Fibrosis: A Hidden Threat of COVID-19. Int J Mol Sci 2023;24(2):1382.
[102]ZHANG P, GU Y, WANG J, et al. Complement receptor C5aR1 blockade reprograms tumor-associated macrophages and synergizes with anti-PD-1 therapy in gastric cancer. Int J Cancer 2023;153(1):224–237.
[103]ZHENG Y, WANG N, WANG S, et al. Chronic psychological stress promotes breast cancer pre-metastatic niche formation by mobilizing splenic MDSCs via TAM/CXCL1 signaling. J Exp Clin Cancer Res 2023;42:129.
[104]RESCHKE R, GAJEWSKI TF. CXCL9 and CXCL10 bring the heat to tumors. Sci Immunol 2022;7(73):eabq6509.
[105]SCHLECKER E, STOJANOVIC A, EISEN C, et al. Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J Immunol 2012;189(12):5602–5611.
[106]NIEBOROWSKA-SKORSKA M, KOPINSKI PK, RAY R, et al. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 2012;119(18):4253–4263.
[107]ZHONG J, LI Q, LUO H, et al. Neutrophil-derived reactive oxygen species promote tumor colonization. Commun Biol 2021;4(1):865.
[108]CHEN S-T, LI F-J, HSU T-Y, et al. CLEC5A is a critical receptor in innate immunity against Listeria infection. Nat Commun 2017;8(1):299.
[109]OHL K, TENBROCK K. Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression. Front Immunol 2018;9:2499.
[110] MURPHY MP, BAYIR H, BELOUSOV V, et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 2022;4(6):651–662.
[111] ROCK KL, REITS E, NEEFJES J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends Immunol 2016;37(11):724–737.
[112] BORST J, AHRENDS T, BĄBAŁA N, et al. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 2018;18(10):635–647.
[113] AXELROD ML, COOK RS, JOHNSON DB, et al. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin Cancer Res 2019;25(8):2392–2402.
[114] LEONE P, SHIN E-C, PEROSA F, et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013;105(16):1172–1187.
[115] HUANG D, CAI DT, CHUA RYR, et al. Nitric-oxide synthase 2 interacts with CD74 and inhibits its cleavage by caspase during dendritic cell development. J Biol Chem 2008;283(3):1713–1722.
[116] SANSOM DM, MANZOTTI CN, ZHENG Y. What’s the difference between CD80 and CD86? Trends in Immunology 2003;24(6):313–318.
[117] MARTÍNEZ-REYES I, CHANDEL NS. Cancer metabolism: looking forward. Nat Rev Cancer 2021;21(10):669–680.
[118] BARYŁA M, SEMENIUK-WOJTAŚ A, RÓG L, et al. Oncometabolites-A Link between Cancer Cells and Tumor Microenvironment. Biology (Basel) 2022;11(2):270.
[119] NATH N, KASHFI K. Tumor associated macrophages and ‘NO.’ Biochemical Pharmacology 2020;176:113899.
[120]STUEHR DJ, NATHAN CF. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 1989;169(5):1543–1555.
[121]MACMICKING J, XIE Q, NATHAN C. Nitric Oxide and Macrophage Function. Annual Review of Immunology 1997;15(1):323–350.
[122]SUN L, KEES T, ALMEIDA AS, et al. Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell 2021;39(10):1361-1374.e9.
[123]ANDREJEVA G, RATHMELL JC. Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metab 2017;26(1):49–70.
[124]DENARDO DG, RUFFELL B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 2019;19(6):369–382.
[125]WENES M, SHANG M, DI MATTEO M, et al. Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis. Cell Metab 2016;24(5):701–715.
[126]MÓCSAI A, RULAND J, TYBULEWICZ VLJ. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010;10(6):387–402.
[127]VANDER HEIDEN MG, CANTLEY LC, THOMPSON CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324(5930):1029–1033.
修改评论