[1] 张弛, 林宇震, 徐华胜, 等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报, 2014, 35(2): 332-350.
[2] 《新时代的中国能源发展》白皮书[M]. 国务院新闻办公室, 2020.
[3] RUPP J. Acoustic absorption and the unsteady flow associated with circular apertures in a gasturbine environment[D]. Loughborough University, 2013.
[4] HART R, MCCLURE F T. Theory of acoustic instability in solid-propellant rocket combustion[C]//Symposium (International) on Combustion: volume 10. Elsevier, 1965: 1047-1065.
[5] YANG V. Liquid rocket engine combustion instability[J]. Progress in Astronautics and Aeronautics, 1995.
[6] CULICK F, KUENTZMANN P. Unsteady motions in combustion chambers for propulsionsystems[M]. NATO, Research and Technology Organization, 2006.
[7] SCARINCI T, HALPIN J L. Industrial trent combustor—combustion noise characteristics[J].J. Eng. Gas Turbines Power, 2000, 122(2): 280-286.
[8] DOWLING A P, STOW S R. Acoustic analysis of gas turbine combustors[J]. Journal of Propulsion and Power, 2003, 19(5): 751-764.
[9] ECKSTEIN J. On the mechanisms of combustion driven low-frequency oscillations in aeroengines[J]. Technische Universität München, 2004.
[10] KAUFMANN P, KREBS W, VALDES R, et al. 3D thermoacoustic properties of single can andmulti can combustor configurations[C]//Turbo Expo: Power for Land, Sea, and Air: volume43130. 2008: 527-538.
[11] ROGERS D E, MARBLE F E. A mechanism for high-frequency oscillation in ramjet combustors and afterburners[J]. Journal of Jet Propulsion, 1956, 26(6): 456-462.
[12] BONNELL J, MARSHALL R, RIECKE G. Combustion instability in turbojet and turbofanaugmentors[C]//7th Propulsion Joint Specialist Conference. 1971: 698.
[13] LANGHORNE P. Reheat buzz: an acoustically coupled combustion instability. Part 1. Experiment[J]. Journal of Fluid Mechanics, 1988, 193: 417-443.
[14] YANG D. The acoustics of short circular holes and their damping of thermoacoustic oscillations[D]. Imperial College London, 2017.
[15] LAHIRI C. Acoustic performance of bias flow liners in gas turbine combustors[D]. TU Berlin,2014.
[16] 余志健, 杨倩雯, 王译晨, 等. 燃烧振荡声学抑制器的机理分析与设计优化[J]. 清华大学学报: 自然科学版, 2023, 63(4): 487.
[17] KIM B, KIM S, PARK Y, et al. Development of a Slit-Type Soundproof Panel for a Reduction inWind Load and Low-Frequency Noise with Helmholtz Resonators[J]. Applied Sciences, 2021,11(18): 8678.
[18] RAYLEIGH J, LINDSAY R. The theory of sound, 1st American ed[M]. Dover Publications,New York, 1945.
[19] NORRIS A, SHENG I. Acoustic radiation from a circular pipe with an infinite flange[J]. Journalof Sound and Vibration, 1989, 135(1): 85-93.
[20] LEVINE H, SCHWINGER J. On the radiation of sound from an unflanged circular pipe[J].Physical Review, 1948, 73(4): 383.
[21] SELAMET A, JI Z, KACH R. Wave reflections from duct terminations[J]. The Journal of theAcoustical Society of America, 2001, 109(4): 1304-1311.
[22] MUNT R. Acoustic transmission properties of a jet pipe with subsonic jet flow: I. The cold jetreflection coefficient[J]. Journal of Sound and Vibration, 1990, 142(3): 413-436.
[23] RIENSTRA S W. A small Strouhal number analysis for acoustic wave-jet flow-pipe interaction[J]. Journal of Sound and Vibration, 1983, 86(4): 539-556.
[24] SU J, YANG D, MORGANS A S. Low-frequency acoustic radiation from a flanged circularpipe at an inclined angle[J]. The Journal of the Acoustical Society of America, 2022, 151(2):1142-1157.
[25] SU J, CHEN H, YANG D. Low-frequency still-air acoustic inertia of inclined circular aperturein an infinite flat plate of finite thickness[J]. Journal of Sound and Vibration, 2024, 570: 118119.
[26] SILVA A, MAREZE P, LENZI A. Approximate Expressions for the Reflection Coefficientof Ducts Terminated by Circular Flanges[J]. Journal of the Brazilian Society of MechanicalSciences and Engineering, 2012, 34: 219-224.
[27] RONNEBERGER D. The acoustical impedance of holes in the wall of flow ducts[J]. Journalof Sound and Vibration, 1972, 24(1): 133-150.
[28] JING X, SUN X. Effect of plate thickness on impedance of perforated plates with bias flow[J].AIAA Journal, 2000, 38(9): 1573-1578.
[29] LAURENS S, PIOT E, BENDALI A, et al. Effective conditions for the reflection of an acousticwave by low-porosity perforated plates[J]. Journal of Fluid Mechanics, 2014, 743: 448-480.
[30] HOWE M. On the theory of unsteady high Reynolds number flow through a circular aperture[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1979,366(1725): 205-223.
[31] HUGHES I, DOWLING A. The absorption of sound by perforated linings[J]. Journal of FluidMechanics, 1990, 218: 299-335.
[32] ELDREDGE J D, DOWLING A P. The absorption of axial acoustic waves by a perforated linerwith bias flow[J]. Journal of Fluid Mechanics, 2003, 485: 307-335.
[33] MENDEZ S, ELDREDGE J D. Acoustic modeling of perforated plates with bias flow for largeeddy simulations[J]. Journal of Computational Physics, 2009, 228(13): 4757-4772.
[34] YANG D, MORGANS A S. A semi-analytical model for the acoustic impedance of finite lengthcircular holes with mean flow[J]. Journal of Sound and Vibration, 2016, 384: 294-311.
[35] BELLUCCI V, FLOHR P, PASCHEREIT C O. Numerical and Experimental Study of AcousticDamping Generated by Perforated Screens.[J]. AIAA Journal, 2004, 42(8): 1543-1549.
[36] ZHAO D, LI X. A review of acoustic dampers applied to combustion chambers in aerospaceindustry[J]. Progress in Aerospace Sciences, 2015, 74: 114-130.
[37] LAHIRI C, BAKE F. A review of bias flow liners for acoustic damping in gas turbine combustors[J]. Journal of Sound and Vibration, 2017, 400: 564-605.
[38] CHEN Z, JI Z, HUANG H. Acoustic impedance of perforated plates in the presence of biasflow[J]. Journal of Sound and Vibration, 2019, 446: 159-175.
[39] ELDREDGE J, BODONY D, SHOEYBI M. Numerical investigation of the acoustic behaviorof a multi-perforated liner[C]//13th AIAA/CEAS aeroacoustics conference (28th AIAA aeroacoustics conference). 2007: 3683.
[40] BROKOF P, GUZMAN-INIGO J, YANG D, et al. The acoustics of short circular holes withreattached bias flow[J]. Journal of Sound and Vibration, 2023, 546: 117435.
[41] PEERLINGS L. Methods and techniques for precise and accurate in-duct aero-acoustic measurements: Application to the area expansion[D]. KTH Royal Institute of Technology, 2015.
[42] CHU S C A, DOWLING D R. Effect of bevel angle on the reflection coefficient from openunflanged pipes[J]. The Journal of the Acoustical Society of America, 2018, 144(3): 1212-1215.
[43] ALLAM S, ÅBOM M. Investigation of damping and radiation using full plane wave decomposition in ducts[J]. Journal of Sound and Vibration, 2006, 292(3-5): 519-534.
[44] DUCRET F. Studies of sound generation and propagation in flow ducts[D]. KTH, 2006.
[45] ZHAO D, JI C, WANG B. Geometric shapes effect of in-duct perforated orifices on aeroacoustics damping performances at low Helmholtz and Strouhal number[J]. The Journal of theAcoustical Society of America, 2019, 145(4): 2126-2137.
[46] PETERS M, HIRSCHBERG A, REIJNEN A, et al. Damping and reflection coefficient measurements for an open pipe at low Mach and low Helmholtz numbers[J]. Journal of FluidMechanics, 1993, 256: 499-534.
[47] YANAZ CINAR O, BOIJ S, CINAR G, et al. Jet pipe reflections-influence of geometrical andflow exit conditions[C]//16th AIAA/CEAS Aeroacoustics Conference. 2010: 4013.
[48] DALMONT J P, NEDERVEEN C J, JOLY N. Radiation impedance of tubes with differentflanges: numerical and experimental investigations[J]. Journal of Sound and Vibration, 2001,244(3): 505-534.
[49] 李奇. 李奇博士带您探访声学工作者摇篮 KTH MWL 实验室(上)[EB/OL]. http://www.yiduo-tech.com/nd.jsp?id=71.
[50] DLR. Atmospheric liner test rig DUCT[EB/OL]. https://www.dlr.de/at/en/desktopdefault.aspx/tabid-9019/15997_read-38541/.
[51] BAKE F, BURGMAYER R, SCHULZ A, et al. IFAR liner benchmark challenge# 1–DLRimpedance eduction of uniform and axially segmented liners and comparison with NASA results[J]. International Journal of Aeroacoustics, 2021, 20(5-7): 478-496.
[52] INGARD U, ISING H. Acoustic nonlinearity of an orifice[J]. The Journal of the AcousticalSociety of America, 1967, 42(1): 6-17.
[53] GUZMÁN-IÑIGO J, YANG D, JOHNSON H G, et al. Sensitivity of the acoustics of shortcircular holes with bias flow to inlet edge geometries[J]. AIAA Journal, 2019, 57(11): 4835-4844.
[54] Transmission loss tube/Impedance tube kits[EB/OL]. https://www.bksv.com/en/transducers/acoustic/acoustic-material-testing-kits/transmission-loss-and-impedance-tube-kits-4206.
[55] ISO 5136:2003 Acoustics - Determination of sound power radiated into a duct by fans and otherair-moving devices - In-duct method[S]. rue de Stassart, 36 B-1050 Brussels, 2003.
[56] XIN B, YANG J, JING X, et al. Experimental and numerical investigation of anechoic termination for a duct with mean flow[J]. Applied Acoustics, 2018, 139: 213-221.
[57] BOLLETER U, COHEN R, WANG J. Design considerations for an in-duct soundpower measuring system[J]. Journal of Sound and Vibration, 1973, 28(4): 669-685.
[58] NEISE W, STAHL B. The flow noise level at microphones in flow ducts[J]. Journal of Soundand Vibration, 1979, 63(4): 561-579.
[59] NEISE W, FROMMHOLD W, MECHEL F, et al. Sound power determination in rectangularflow ducts[J]. Journal of Sound and Vibration, 1994, 174(2): 201-237.
[60] NEISE W, ARNOLD F. On sound power determination in flow ducts[J]. Journal of Sound andVibration, 2001, 244(3): 481-503.
[61] ELNADY T, BODÉN H. An inverse analytical method for extracting liner impedance frompressure measurements[C]//10th AIAA/CEAS Aeroacoustics Conference. 2004: 2836.
[62] BRACCIALI A, CASCINI G. Measurement of the lateral noise emission of an UIC 60 rail witha custom device[J]. Journal of Sound and Vibration, 2000, 231(3): 653-665.
[63] YU H, TANG S. Sound transmission across a narrow sidebranch array duct muffler at low Machnumber[J]. The Journal of the Acoustical Society of America, 2020, 148(3): 1692-1702.
[64] TANG S K. On sound transmission loss across a Helmholtz resonator in a low Mach numberflow duct[J]. The Journal of the Acoustical Society of America, 2010, 127(6): 3519-3525.
[65] BERTOLUCCI B L. An experimental investigation of the grazing flow impedance duct at theUniversity of Florida for acoustic liner applications[M]. University of Florida, 2012.
[66] LAUFER J. The structure of turbulence in fully developed pipe flow[R]. 1954.
[67] ÅBOM M, BODÉN H. Error analysis of two-microphone measurements in ducts with flow[J].The Journal of the Acoustical Society of America, 1988, 83(6): 2429-2438.
[68] ASTM. Standard Test Method for Impedance and Absorption of Acoustical Materials Using aTube, Two Microphones and a Digital Frequency Analysis System[S]. United States, 2003.
[69] BOONEN R, SAS P, DESMET W, et al. Calibration of the two microphone transfer functionmethod with hard wall impedance measurements at different reference sections[J]. MechanicalSystems and Signal Processing, 2009, 23(5): 1662-1671.
[70] BODÉN H, ÅBOM M. Influence of errors on the two-microphone method for measuring acoustic properties in ducts[J]. The Journal of the Acoustical Society of America, 1986, 79(2): 541-549.
[71] KATZ B F. Method to resolve microphone and sample location errors in the two-microphoneduct measurement method[J]. The Journal of the Acoustical Society of America, 2000, 108(5):2231-2237.
[72] KRISHNAPPA G. Cross-spectral method of measuring acoustic intensity by correcting phaseand gain mismatch errors by microphone calibration[J]. The Journal of the Acoustical Societyof America, 1981, 69(1): 307-310.
[73] FUSCO A M, WARD W C, SWIFT G W. Two-sensor power measurements in lossy ducts[J].The Journal of the Acoustical Society of America, 1992, 91(4): 2229-2235.
[74] YAZAKI T, TASHIRO Y, BIWA T. Measurements of sound propagation in narrow tubes[J].Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007,463(2087): 2855-2862.
[75] CHUNG J, BLASER D. Transfer function method of measuring in-duct acoustic properties. I.Theory[J]. The Journal of the Acoustical Society of America, 1980, 68(3): 907-913.
[76] SEYBERT A F, ROSS D F. Experimental determination of acoustic properties using a twomicrophone random-excitation technique[J]. the Journal of the Acoustical Society of America,1977, 61(5): 1362-1370.
[77] ENGLISH E J. A measurement based study of the acoustics of pipe systems with flow[D].University of Southampton, 2010.
[78] CRAMER O. The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration[J]. The Journal of the Acoustical Society ofAmerica, 1993, 93(5): 2510-2516.
[79] GIBIAT V, LALOË F. Acoustical impedance measurements by the two-microphone-threecalibration (TMTC) method[J]. The Journal of the Acoustical Society of America, 1990, 88(6):2533-2545.
[80] CERNA M, HARVEY A F. The fundamentals of FFT-based signal analysis and measurement[R]. Citeseer, 2000.
[81] SU J. Unsteady aerodynamic response characteristics of gas turbine fuel injectors[D]. Loughborough University, 2017.
[82] KINSLER L E, FREY A R, COPPENS A B, et al. Fundamentals of acoustics[M]. John wiley& sons, 2000.
[83] YANG D, MORGANS A S. The acoustics of short circular holes opening to confined andunconfined spaces[J]. Journal of Sound and Vibration, 2017, 393: 41-61.
[84] SU J, GARMORY A, CARROTTE J. On the acoustic response of a generic gas turbine fuelinjector passage[J]. Journal of Sound and Vibration, 2019, 446: 343-373.
[85] DA SILVA A, SCAVONE G, LEFEBVRE A. Sound reflection at the open end of axisymmetricducts issuing a subsonic mean flow: A numerical study[J]. Journal of Sound and Vibration,2009, 327(3-5): 507-528.
[86] SU J, YANG D, MORGANS A S. Modelling of sound-vortex interaction for the flow throughan annular aperture[J]. Journal of Sound and Vibration, 2021, 509: 116250.
[87] JI C, ZHAO D. Lattice Boltzmann investigation of acoustic damping mechanism and performance of an in-duct circular orifice[J]. The Journal of the Acoustical Society of America, 2014,135(6): 3243-3251.
[88] SU J, RUPP J, GARMORY A, et al. Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices[J]. Journal of Sound and Vibration, 2015, 352:174-191.
[89] NOMURA Y, YAMAMURA I, INAWASHIRO S. On the acoustic radiation from a flangedcircular pipe[J]. Journal of the Physical Society of Japan, 1960, 15(3): 510-517.
[90] MECHEL F, SCHILZ W, DIETZ J. Akustische Impedanz einer luftdurchströmten Öffnung[J].Acta Acustica united with Acustica, 1965, 15(4): 199-206.
修改评论