中文版 | English
题名

基于液态金属应变传感器的稀疏布局手势识别系统

其他题名
LIQUID METAL STRAIN SENSOR FOR SPARSE LAYOUT GESTURE RECOGNITION SYSTEM
姓名
姓名拼音
WU Zijian
学号
12233203
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
罗涛
导师单位
创新创意设计学院
论文答辩日期
2024-05-08
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  为了提升柔性传感器对人机交互中手势识别的支持能力,本文通过材料学研究,重点在柔性应变传感器的开发与应用创新方面展开。针对手部动作的敏感识别和减轻手部负担的需求,本研究设计了一种基于液态金属分形图案和高分子复合材料的柔性应变传感器,用于接检测手指动作,并探索了其在手势识别中的位置布局。本研究积极响应国家教育工程改革新要求,通过多学科交叉,积极应对社会发展需求,致力于探索材料工程与手势感知交互系统设计的融合。

  在材料方面,本研究采用PDMS和Ecoflex作为混合材料,研究了不同配比对性能的影响。同时,利用具有自相似性的液态金属分形图案,进行了理论分析和仿真验证,旨在提高对手部运动时皮肤应变的灵敏度,并完成了基于模版印刷方法快速制备传感器的工艺验证,进一步对其性能进行了表征评估。为了快速完成稀疏传感器布局设计,帮助手势设计和识别进行快速迭代和验证,本研究基于所研发的应变传感器,获得了与手指关节更好的线性对应关系,并以此训练梯度学习树模型,完成了稀疏传感器布局设计工具的开发,从材料学层面支持和赋能了交互手势的设计和创新。

  实验结果表明,基于液态金属分形图案的柔性电阻式应变传感器具有良好的传感性能,为手势识别提供了重要支持。通过稀疏传感器布局设计工具,可以实现手势的高效采集与验证,并实现仅用3个传感器对6个手势分类的准确率达到93.27%。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] 国务院关于印发“十四五”数字经济发展规划的通知[J]. 中华人民共和国国务院公报, 2022(03): 5-18.
[2] 五部门联合发布《虚拟现实与行业应用融合发展行动计划 (2022—2026 年)》[J]. 信息技术与标准化, 2022(11): 5.
[3] SI Y, CHEN S, LI M, et al. Flexible strain sensors for wearable hand gesture recognition: from devices to systems[J]. Advanced Intelligent Systems, 2022, 4(2): 2100046.
[4] LI J, LIU X, WANG Z, et al. Real-time hand gesture tracking for human–computer interface based on multi-sensor data fusion[J]. IEEE Sensors Journal, 2021, 21(23): 26642-26654.
[5] 杨平安, 刘中邦, 李锐, 等. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(09): 36-49.
[6] 朱琦玉, 童子祥, 员方, 等. 抓取过程中的手部运动变形特征[J/OL]. 医用生物力学, 2021, 36(03): 423-430. DOI: 10.16156/j.1004-7220.2021.03.020.
[7] LUO Y, FAN H, LAI X, et al. Flexible liquid metal-based microfluidic strain sensors with fractal-designed microchannels for monitoring human motion and physiological signals[J]. Biosensors and Bioelectronics, 2024, 246: 115905.
[8] JIANG S, LI L, XU H, et al. Stretchable e-skin patch for gesture recognition on the back of the hand[J]. IEEE Transactions on Industrial Electronics, 2019, 67(1): 647-657.
[9] ZHANG W, YU J Z, ZHU F, et al. High degree of freedom hand pose tracking using lim ited strain sensing and optical training[J]. Journal of Computing and Information Science in Engineering, 2019, 19(3): 031014.
[10] 吴杰, 王旭, 刘英, 等. 基于高分子聚合物的柔性传感器研究进展[J/OL]. 传感器与微系统, 2022, 41(03): 7-11. DOI: 10.13873/J.1000-9787(2022)03-0007-05.
[11] 胡海龙, 马亚伦, 张帆, 等. 柔性纳米复合材料压阻式应变传感器的研究进展[J/OL]. 复合材料学报, 2022, 39(01): 1-22. DOI: 10.13801/j.cnki.fhclxb.20210729.004.
[12] JEONG Y R, KIM J, XIE Z, et al. A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities[J]. NPG Asia Materials, 2017, 9(10): e443-e443.
[13] ZHENG Y, LI Y, LI Z, et al. The effect of filler dimensionality on the electromechanical per formance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors [J]. Composites Science and Technology, 2017, 139: 64-73.
[14] 钱鑫, 苏萌, 李风煜, 等. 柔性可穿戴电子传感器研究进展[J]. 化学学报, 2016, 74(07): 565-575.
[15] 黄志勇, 李红强, 陈保登, 等. 基于 PDMS 的柔性压阻式传感器的研究进展[J]. 有机硅材 料, 2024, 38(01): 66-75.
[16] 田文帅, 曹厚勇, 高杰, 等. 基于聚二甲基硅氧烷的可穿戴柔性传感器的研究进展[J/OL]. 分析化学, 2022, 50(11): 1712-1722. DOI: 10.19756/j.issn.0253-3820.221274.
[17] LIAO X, ZHANG Z, KANG Z, et al. Ultrasensitive and stretchable resistive strain sensors designed for wearable electronics[J]. Materials Horizons, 2017, 4(3): 502-510.
[18] VERMA L, KARNAWAL I, CHAUDHARY V, et al. Design and Fabrication of Flexible Carbon Fabric PDMS Based Strain Sensor for Human Motion Monitoring[J]. IEEE Sensors Journal, 2023.
[19] YEASMIN R, HAN S I, AHN B, et al. A Skin-like Self-healing and stretchable substrate for wearable electronics[J]. Chemical Engineering Journal, 2023, 455: 140543.
[20] ULLAH N, CUI J, REN X, et al. Structural, optical, and electrical characterizations of silver nanowire/single-layer graphene oxide composite film[J]. Applied Surface Science, 2022, 602: 154343.
[21] 程芳华, 于云飞, 高嘉辰, 等. 热塑性聚氨酯/碳纳米管湿纺导电纳米复合纤维的应变响应行为研究[J/OL]. 塑料科技, 2018, 46(09): 56-60. DOI: 10.15925/j.cnki.issn1005-3360.2018 .09.008.
[22] LIN Y, LIU S, CHEN S, et al. A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network[J]. Journal of Ma terials Chemistry C, 2016, 4(26): 6345-6352.
[23] NATARAJAN T S, ESHWARAN S B, STÖCKELHUBER K W, et al. Strong strain sensing performance of natural rubber nanocomposites[J]. ACS applied materials & interfaces, 2017, 9(5): 4860-4872.
[24] KOUEDIATOUKA A N, LIU Q, MAWIGNON F J, et al. Sensing characterization of an amorphous PDMS/Ecoflex blend composites with an improved interfacial bonding and rubbing performance[J]. Applied Surface Science, 2023: 157675.
[25] ZHAO J, DAI K, LIU C, et al. A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites [J]. Composites Part A: Applied Science and Manufacturing, 2013, 48: 129-136.
[26] 陈艺星. 基于镓基液态金属的柔性传感器设计与实验研究[D]. 哈尔滨工业大学, 2022.
[27] YAMADA T, HAYAMIZU Y, YAMAMOTO Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature nanotechnology, 2011, 6(5): 296-301.
[28] DUAN S, WANG Z, ZHANG L, et al. A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires [J]. Advanced Materials Technologies, 2018, 3(6): 1800020.
[29] HU Y, ZHAO T, ZHU P, et al. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring[J]. Nano Research, 2018, 11: 1938-1955.
[30] DING Y, XU W, WANG W, et al. Scalable and facile preparation of highly stretchable electro-spun PEDOT: PSS@ PU fibrous nonwovens toward wearable conductive textile applications [J]. ACS applied materials & interfaces, 2017, 9(35): 30014-30023.
[31] YOON S G, PARK B J, CHANG S T. Highly sensitive microfluidic strain sensors with low hysteresis using a binary mixture of ionic liquid and ethylene glycol[J]. Sensors and Actuators A: Physical, 2017, 254: 1-8.
[32] TANG L, CHENG S, ZHANG L, et al. Printable metal-polymer conductors for highly stretchable bio-devices[J]. IScience, 2018, 4: 302-311.
[33] CHOI D Y, KIM M H, OH Y S, et al. Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring[J]. ACS applied materials & interfaces, 2017, 9 (2): 1770-1780.
[34] 李灵. 基于柔性材料的电子皮肤传感系统设计[D]. 上海交通大学, 2019.
[35] TANG L, SHANG J, JIANG X. Multilayered electronic transfer tattoo that can enable the crease amplification effect[J]. Science Advances, 2021, 7(3): eabe3778.
[36] ZHOU Z, CHEN K, LI X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays[J]. Nature Electronics, 2020, 3(9): 571-578.
[37] HU X, HUANG T, LIU Z, et al. Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors[J]. Journal of Ma terials Chemistry A, 2020, 8(29): 14778-14787.
[38] 赵帅, 徐一博, 王海军, 等. 用于偏瘫患者功能训练的全印刷柔性传感手套系统[J/OL]. 微纳电子技术, 2023, 60(06): 876-885. DOI: 10.13250/j.cnki.wndz.2023.06.008.
[39] 刘会聪, 杨梦柯, 袁鑫, 等. 液态金属柔性感知的人机交互软体机械手[J]. 中国机械工程, 2021, 32(12): 1470-1478.
[40] 王骏昇, 陈舒雅, 杨子涵, 等. 基于液态金属应变传感器监控射箭动作拉力变化的实证研究[J/OL]. 武汉体育学院学报, 2022, 56(10): 82-86. DOI: 10.15930/j.cnki.wtxb.2022.10.011.
[41] MA J, KRISNADI F, VONG M H, et al. Shaping a soft future: patterning liquid metals[J]. Advanced Materials, 2023, 35(19): 2205196.
[42] 王曦宇, 李科, 王源升, 等. 聚合物/镓基液态金属复合材料的研究及应用进展[J/OL]. 高分子材料科学与工程, 2021, 37(01): 327-334. DOI: 10.16865/j.cnki.1000-7555.2021.0025.
[43] ZHAO Z, SONI S, LEE T, et al. Smart Eutectic Gallium–Indium: From Properties to Applications[J]. Advanced Materials, 2023, 35(1): 2203391.
[44] LIN Y, COOPER C, WANG M, et al. Handwritten, soft circuit boards and antennas using liquid metal nanoparticles[J]. Small, 2015, 11(48): 6397-6403.
[45] GAO Q, LI H, ZHANG J, et al. Microchannel structural design for a room-temperature liquid metal based super-stretchable sensor[J]. Scientific reports, 2019, 9(1): 5908.
[46] DONG T, CHEN Y, WANG J, et al. Low-hysteresis Flexible Strain Sensors Based on Liquid Metal for Human-Robot Interaction[C]//YANG H, LIU H, ZOU J, et al. Intelligent Robotics and Applications. Singapore: Springer Nature Singapore, 2023: 243-252.
[47] FAN J A, YEO W H, SU Y, et al. Fractal design concepts for stretchable electronics[J]. Nature communications, 2014, 5(1): 3266.
[48] JACOB A R, PAREKH D P, DICKEY M D, et al. Interfacial rheology of gallium-based liquid metals[J]. Langmuir, 2019, 35(36): 11774-11783.
[49] DICKEY M D, CHIECHI R C, LARSEN R J, et al. Eutectic gallium-indium (EGaIn): a liq uid metal alloy for the formation of stable structures in microchannels at room temperature[J]. Advanced functional materials, 2008, 18(7): 1097-1104.
[50] BOLEY J W, WHITE E L, CHIU G T C, et al. Direct writing of gallium-indium alloy for stretchable electronics[J]. Advanced Functional Materials, 2014, 24(23): 3501-3507.
[51] CAO L, YU D, XIA Z, et al. Ferromagnetic liquid metal putty-like material with transformed shape and reconfigurable polarity[J]. Advanced Materials, 2020, 32(17): 2000827.
[52] JI B, WANG X, LIANG Z, et al. Flexible Strain Sensor-Based Data Glove for Gesture Inter action in the Metaverse: A Review[J]. International Journal of Human–Computer Interaction, 2023: 1-20.
[53] 谢振文. 基于液态金属的柔性应变传感器性能优化模拟与实验研究[D]. 重庆大学, 2021.
[54] SHARMA A. Design and recognition of microgestures for always-available input[M]. Saarländische Universitäts-und Landesbibliothek, 2022.
[55] KUBO Y, KOGUCHI Y, SHIZUKI B, et al. Audiotouch: Minimally invasive sensing of micro gestures via active bio-acoustic sensing[C]//Proceedings of the 21st international conference on human-computer interaction with mobile devices and services. 2019: 1-13.
[56] SHARMA A, SALCHOW-HÖMMEN C, MOLLYN V S, et al. SparseIMU: Computational design of sparse IMU layouts for sensing fine-grained finger microgestures[J]. ACM Transactions on Computer-Human Interaction, 2023, 30(3): 1-40.
[57] CHEN S, LOU Z, CHEN D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves[J]. Advanced Materials Technologies, 2016, 1 (7): 1600136.
[58] BENITEZ-GARCIA G, HARIS M, TSUDA Y, et al. Continuous Finger Gesture Spotting and Recognition Based on Similarities Between Start and End Frames[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 296-307. DOI: 10.1109/TITS.2020.3010306.
[59] LEE M, BAE J. Real-Time Gesture Recognition in the View of Repeating Characteristics of Sign Languages[J/OL]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8818-8828. DOI: 10.1109/TII.2022.3152214.
[60] MICHAUD H O, DEJACE L, DE MULATIER S, et al. Design and functional evaluation of an epidermal strain sensing system for hand tracking[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 3186-3191.
[61] CHAN E, SEYED T, STUERZLINGER W, et al. User elicitation on single-hand microgestures [C]//Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. 2016: 3403-3414.
[62] WOLF K, NAUMANN A, ROHS M, et al. A taxonomy of microinteractions: Defining mi crogestures based on ergonomic and scenario-Dependent requirements[C]//Human-Computer Interaction–INTERACT 2011: 13th IFIP TC 13 International Conference, Lisbon, Portugal, September 5-9, 2011, Proceedings, Part I 13. Springer, 2011: 559-575.
[63] LU S, CHEN D, LIU C, et al. A 3-D finger motion measurement system via soft strain sensors for hand rehabilitation[J]. Sensors and Actuators A: Physical, 2019, 285: 700-711.
[64] WOBBROCK J O, WILSON A D, LI Y. Gestures without libraries, toolkits or training: a $1 recognizer for user interface prototypes[C]//Proceedings of the 20th annual ACM symposium on User interface software and technology. 2007: 159-168.
[65] LÜ H, LI Y. Gesture coder: a tool for programming multi-touch gestures by demonstration [C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2012: 2875-2884.
[66] PATEL K, BANCROFT N, DRUCKER S M, et al. Gestalt: integrated support for implemen tation and analysis in machine learning[C]//Proceedings of the 23nd annual ACM symposium on User interface software and technology. 2010: 37-46.
[67] CARNEY M, WEBSTER B, ALVARADO I, et al. Teachable machine: Approachable Web based tool for exploring machine learning classification[C]//Extended abstracts of the 2020 CHI conference on human factors in computing systems. 2020: 1-8.
[68] DOVE G, HALSKOV K, FORLIZZI J, et al. UX design innovation: Challenges for work ing with machine learning as a design material[C]//Proceedings of the 2017 chi conference on human factors in computing systems. 2017: 278-288.
[69] BRUNTON B W, BRUNTON S L, PROCTOR J L, et al. Optimal sensor placement and en hanced sparsity for classification[A]. 2013.
[70] LIN J W, WANG C, HUANG Y Y, et al. Backhand: Sensing hand gestures via back of the hand [C]//Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. 2015: 557-564.
[71] 门海蛟, 宋健尧, 黄秉经, 等. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 45-67.
[72] FORSYTHE A, NADAL M, SHEEHY N, et al. Predicting beauty: Fractal dimension and visual complexity in art[J]. British journal of psychology, 2011, 102(1): 49-70.
[73] TIAN F, JIANG A, YANG T, et al. Application of Fractal Geometry in Gas Sensor: A Review [J/OL]. IEEE Sensors Journal, 2021, 21(13): 14587-14600. DOI: 10.1109/JSEN.2021.3072621.
[74] PAN T, ZHANG C, ZHANG S, et al. Skin-Attachable and Stretchable Patch Antenna with Fractal Design for Remote On-Body Motion Sensing[J]. ACS Applied Materials & Interfaces, 2023.
[75] 孙英, 汪忠晟, 韩智昊, 等. 镓基液态金属柔性应变传感器的设计优化与实验验证[J/OL]. 仪器仪表学报, 2023, 44(01): 16-26. DOI: 10.19650/j.cnki.cjsi.J2210618.
[76] LANDSMEER J. The anatomy of the dorsal aponeurosis of the human finger and its functional significance[J]. The Anatomical Record, 1949, 104(1): 31-44.
[77] COONEY 3RD W, LUCCA M J, CHAO E, et al. The kinesiology of the thumb trapeziometacarpal joint.[J]. JBJS, 1981, 63(9): 1371-1381.
[78] INGRAM J N, KÖRDING K P, HOWARD I S, et al. The statistics of natural hand movements [J]. Experimental brain research, 2008, 188: 223-236.

所在学位评定分委会
材料与化工
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778729
专题创新创意设计学院
推荐引用方式
GB/T 7714
吴子鉴. 基于液态金属应变传感器的稀疏布局手势识别系统[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233203-吴子鉴-创新创意设计学(29572KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴子鉴]的文章
百度学术
百度学术中相似的文章
[吴子鉴]的文章
必应学术
必应学术中相似的文章
[吴子鉴]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。