[1] WU Z P, LU X, ZANG S, et al. Non‐Noble‐Metal‐Based Electrocatalysts toward the Oxygen Evolution Reaction[J]. Advanced Functional Materials, 2020, 30(15).
[2] CHEN X, ZHOU Z, KARAHAN H E, et al. Recent advances in materials and design of electrochemically rechargeable Zinc-Air batteries[J]. Small, 2018, 14(44).
[3] CHEN J, LI H, CHEN S, et al. Co-Fe-Cr (oxy)Hydroxides as Efficient Oxygen Evolution Reaction Catalysts[J]. Advanced Energy Materials, 2021, 11(11).
[4] TAN H, LI J, MIN H, et al. Global evolution of research on green energy and environmental technologies: A bibliometric study[J]. Journal of Environmental Management, 2021, 297: 113382.
[5] 杨宇, 于宏源, 鲁刚, 等. 世界能源百年变局与国家能源安全[J]. 自然资源学报, 2020, 35(11): 2803-2820.
[6] RAHMAN A, FARROK O, HAQUE M M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic[J]. Renewable & Sustainable Energy Reviews, 2022, 161: 112279.
[7] BLOMGREN G E. The development and future of lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 164(1): A5019-A5025.
[8] XU K. Electrolytes and Interphases in Li-Ion Batteries and Beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
[9] SON Y, CHA H, JO C, et al. Reliable protocols for calculating the specificenergy and energy density of Li-ion batteries[J]. Materials Today Energy, 2021, 21: 100838.
[10] BAJOLLE H, LAGADIC M, LOUVET N. The future of lithium-ion batteries: Exploring expert conceptions, market trends, and price scenarios[J]. Energy Research & Social Science, 2022, 93: 102850.
[11] YUN J J, JEON J, PARK K, et al. Benefits and Costs of Closed Innovation Strategy: Analysis of Samsung’s Galaxy Note 7 Explosion and Withdrawal Scandal[J]. Journal of Open Innovation: Technology, Market, and Complexity, 2018, 4(3): 20.
[12] SUN P, BISSCHOP R, NIU H, et al. A Review of Battery Fires in Electric Vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410.
[13] RAPPOLD T A, LACKNER K S. Large scale disposal of waste sulfur: From sulfide fuels to sulfate sequestration[J]. Energy, 2010, 35(3): 1368-1380.
[14] WAGENFELD J-G, AL-ALI K, ALMHEIRI S, et al. Sustainable applications utilizing sulfur, a by-product from oil and gas industry: A state-of-the-art review[J]. Waste Management, 2019, 95: 78-89.
[15] LIANG X, KWOK C Y, LODI-MARZANO F, et al. Tuning Transition Metal Oxide-Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks" Principle[J]. Advanced Energy Materials, 2016, 6(6).
[16] LIU Q, PAN Z, WANG E, et al. Aqueous metal-air batteries: Fundamentals and applications[J]. Energy Storage Materials, 2020, 27: 478-505.
[17] OLABI A G, SAYED E T, WILBERFORCE T, et al. Metal-Air Batteries—A Review[J]. Energies, 2021, 14(21): 7373.
[18] SUN W, WANG F, ZHANG B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry[J]. Science, 2021, 371(6524): 46-51.
[19] LEACH D L, BRADLEY D C, HUSTON D, et al. Sediment-Hosted Lead-Zinc Deposits in Earth History[J]. Economic Geology, 2010, 105(3): 593-625.
[20] ZHANG Y, WU D, HUANG F, ET AL. “Water-in-Salt” Nonalkaline Gel Polymer Electrolytes Enable Flexible Zinc-Air Batteries with Ultra-Long Operating Time[J]. Advanced Functional Materials, 2022, 32(34): 2203204.
[21] WANG J, YI S, LIU J, ET AL. Suppressing the Shuttle Effect and Dendrite Growth in Lithium–Sulfur Batteries[J]. ACS Nano, 2020, 14(8): 9819-9831.
[22] LUO M, SUN W, XU B B, et al. Interface Engineering of Air Electrocatalysts for Rechargeable Zinc-Air Batteries[J]. Advanced Energy Materials, 2021, 11(4): 2002762.
[23] LIU X, YUAN Y, LIU J, et al. Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery[J]. Nature Communications, 2019, 10(1): 4767.
[24] MA Z, DOU S, SHEN A, et al. Sulfur-Doped Graphene Derived from Cycled Lithium–Sulfur Batteries as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction[J]. Angewandte Chemie International Edition, 2015, 54(6): 1888-1892.
[25] LIN H, ZHANG S, ZHANG T, et al. Elucidating the Catalytic Activity of Oxygen Deficiency in the Polysulfide Conversion Reactions of Lithium-Sulfur Batteries[J]. Advanced Energy Materials, 2018, 8(30): 1801868.
[26] WANG Y, WANG D, LI Y. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts[J]. SmartMat, 2021, 2(1): 56-75.
[27] CRUZ-MARTÍNEZ H, ROJAS-CHÁVEZ H, MATADAMAS-ORTIZ P T, et al. Current progress of Pt-based ORR electrocatalysts for PEMFCs: An integrated view combining theory and experiment[J]. Materials Today Physics, 2021, 19: 100406.
[28] ZHAO T, LUO E-G, WANG X, et al. Challenges in the activity and stability of Pt-based catalysts toward ORR[J]. Journal of Electrochemistry, 2020, 26(1): 14.
[29] DU C Y, ZHAO T S, YANG W W. Effect of methanol crossover on the cathode behavior of a DMFC: A half-cell investigation[J]. Electrochimica Acta, 2007, 52(16): 5266-5271.
[30] ZHAO C X, LI B Q, LIU J N, et al. Intrinsic electrocatalytic activity regulation of M-N-C single‐atom catalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2021, 60(9): 4448-4463.
[31] ZHANG M, LI H, CHEN J, et al. High‐Loading Co Single Atoms and Clusters Active Sites toward Enhanced Electrocatalysis of Oxygen Reduction Reaction for High‐Performance Zn–Air Battery[J]. Advanced Functional Materials, 2023, 33(4): 2209726.
[32] ZHANG M, LI H, CHEN J, et al. Transition Metal (Co, Ni, Fe, Cu) Single‐Atom Catalysts Anchored on 3D Nitrogen‐Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn–Air Battery[J]. Small, 2022, 18(34): 2202476.
[33] WAN C, DUAN X, HUANG Y. Molecular Design of Single-Atom Catalysts for Oxygen Reduction Reaction[J]. Advanced Energy Materials, 2020, 10(14): 1903815.
[34] HUBERT M A, PATEL A M, GALLO A, et al. Acidic oxygen evolution reaction activity–stability relationships in Ru-based pyrochlores[J]. ACS Catalysis, 2020, 10(20): 12182-12196.
[35] WANG C, SCHECHTER A, FENG L. Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress[J]. Nano Research Energy, 2023, 2(2): e9120056.
[36] ZHENG X, LI P, DOU S, et al. Non-carbon-supported single-atom site catalysts for electrocatalysis[J]. Energy & Environmental Science, 2021, 14(5): 2809-2858.
[37] PAN Y, WANG X, ZHANG W, et al. Boosting the performance of single-atom catalysts via external electric field polarization[J]. Nature Communications, 2022, 13(1): 3063.
[38] WEI B, FU Z, LEGUT D, et al. Rational design of highly stable and active MXene‐based bifunctional ORR/OER double‐atom catalysts[J]. Advanced Materials, 2021, 33(40): 2102595.
[39] LI X, LIU L, REN X, et al. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion[J]. Science Advances, 2020, 6(39): eabb6833.
[40] SINGH B, SHARMA V, GAIKWAD R P, et al. Single-Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications[J]. Small, 2021, 17(16): 2006473.
[41] CURRY C. Lithium-ion battery costs and market[J]. Bloomberg New Energy Finance, 2017, 5(4-6): 43.
[42] SONG C, HU F, ZHANG T, et al. Promising single-atom catalysts for lithium-sulfur batteries screened by theoretical density functional theory calculations[J]. Science China Materials, 2023, 66(11): 4411-4418.
[43] WHITTINGHAM M S. Lithium Batteries and Cathode Materials[J]. Chemical Reviews, 2004, 104(10): 4271-4302.
[44] ZHANG S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013, 231: 153-162.
[45] WANG J, YANG J, XIE J, et al. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochemistry Communications, 2002, 4(6): 499-502.
[46] WANG J, YANG J, XIE J, et al. A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced materials, 2002, 14(13‐14): 963-965.
[47] MIKHAYLIK Y V, KOVALEV I, SCHOCK R, et al. High Energy Rechargeable Li-S Cells for EV Application: Status, Remaining Problems and Solutions[J]. ECS Transactions, 2010, 25(35): 23.
[48] JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
[49] LIM W G, KIM S, JO C, et al. A Comprehensive Review of Materials with Catalytic Effects in Li–S Batteries: Enhanced Redox Kinetics[J]. Angewandte Chemie, 2019, 131(52): 18920-18931.
[50] WANG P, XI B, HUANG M, et al. Emerging catalysts to promote kinetics of lithium–sulfur batteries[J]. Advanced Energy Materials, 2021, 11(7): 2002893.
[51] WANG Z Y, WANG L, LIU S, et al. Conductive CoOOH as carbon‐free sulfur immobilizer to fabricate sulfur‐based composite for lithium–sulfur battery[J]. Advanced Functional Materials, 2019, 29(23): 1901051.
[52] WANG Y, HE J, ZHANG Z, et al. Graphdiyne-modified polyimide separator: a polysulfide-immobilizing net hinders the shuttling of polysulfides in lithium–sulfur battery[J]. ACS applied materials & interfaces, 2019, 11(39): 35738-35745.
[53] XIA J, HUA W, WANG L, et al. Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li–S batteries[J]. Advanced Functional Materials, 2021, 31(26): 2101980.
[54] PENG H J, ZHANG Z W, HUANG J Q, et al. A cooperative interface for highly efficient lithium–sulfur batteries[J]. Advanced Materials, 2016, 28(43): 9551-9558.
[55] LIU S, LI J, YAN X, et al. Superhierarchical cobalt‐embedded nitrogen‐doped porous carbon nanosheets as two‐in‐one hosts for high‐performance lithium–sulfur batteries[J]. Advanced Materials, 2018, 30(12): 1706895.
[56] SUN W, LIU C, LI Y, et al. Rational construction of Fe2N@C yolk–shell nanoboxes as multifunctional hosts for ultralong lithium–sulfur batteries[J]. ACS nano, 2019, 13(10): 12137-12147.
[57] YU B, HUANG A, CHEN D, et al. In Situ Construction of Mo2C Quantum Dots‐Decorated CNT Networks as a Multifunctional Electrocatalyst for Advanced Lithium–Sulfur Batteries[J]. Small, 2021, 17(23): 2100460.
[58] LI Y, LIN S, WANG D, et al. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium–sulfur batteries[J]. Advanced Materials, 2020, 32(8): 1906722.
[59] STAMENKOVIC V, MUN B S, MAYRHOFER K J J, et al. Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure[J]. Angewandte Chemie International Edition, 2006, 45(18): 2897-2901.
[60] STAMENKOVIC V R, MUN B S, ARENZ M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007, 6(3): 241-247.
[61] WEI L, LI W, ZHAO T, et al. Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li-S batteries[J]. Chemical Communications, 2020, 56(20): 3007-3010.
[62] LIU Y, WEI Z, ZHONG B, et al. O-, N-Coordinated single Mn atoms accelerating polysulfides transformation in lithium-sulfur batteries[J]. Energy Storage Materials, 2021, 35: 12-18.
[63] LUO R, ZHANG Z, ZHANG J, et al. Bimetal CoNi active sites on mesoporous carbon nanosheets to kinetically boost lithium-sulfur batteries[J]. Small, 2021, 17(23): 2100414.
[64] DU Z, CHEN X, HU W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2019, 141(9): 3977-3985.
[65] LIU H, CHEN X, CHENG X B, et al. Uniform lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries[J]. Small Methods, 2019, 3(9): 1800354.
[66] GROVE W R. Experiments on the gas voltaic battery, with a view of ascertaining the rationale of its action and on its application to eudiometry[C]. Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London, 1843: 463-465.
[67] HEISE G W, SCHUMACHER E A. An Air-Depolarized Primary Cell with Caustic Alkali Electrolyte[J]. Transactions of the Electrochemical Society, 1932, 62(1): 383.
[68] LIU J-N, ZHAO C-X, WANG J, et al. A brief history of zinc-air batteries: 140 years of epic adventures[J]. Energy & Environmental Science, 2022, 15(11): 4542-4553.
[69] WANG N, MA S, ZUO P, et al. Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction[J]. Advanced Science, 2021, 8(15): 2100076.
[70] ZHANG L, JIANG S, MA W, et al. Oxygen reduction reaction on Pt-based electrocatalysts: four-electron vs. two-electron pathway[J]. Chinese Journal of Catalysis, 2022, 43(6): 1433-1443.
[71] ZHANG W, CHANG J, YANG Y. Strong precious metal-metal oxide interaction for oxygen reduction reaction: A strategy for efficient catalyst design[J]. Sustainable Materials, 2023, 3(1): 2-20.
[72] MAN I C, SU H Y, CALLE‐VALLEJO F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
[73] ZAGAL J H, KOPER M T M. Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction Reaction[J]. Angewandte Chemie International Edition, 2016, 55(47): 14510-14521.
[74] LU T, HU X, HE J, et al. Aqueous/solid state Zn-air batteries based on N doped graphdiyne as efficient metal-free bifunctional catalyst[J]. Nano Energy, 2021, 85: 106024.
[75] ZHOU Y, CHEN G, WANG Q, et al. Fe-N-C Electrocatalysts with Densely Accessible Fe-N4 Sites for Efficient Oxygen Reduction Reaction[J]. Advanced Functional Materials, 2021, 31(34): 2102420.
[76] FEI H, DONG J, FENG Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nature Catalysis, 2018, 1(1): 63-72.
[77] REN S, YU Q, YU X, et al. Graphene-supported metal single-atom catalysts: a concise review[J]. Science China Materials, 2020, 63(6): 903-920.
[78] ZHAO L, ZHANG Y, HUANG L-B, et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts[J]. Nature Communications, 2019, 10(1): 1278.
[79] YANG X-F, WANG A, QIAO B, et al. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748.
[80] RAO C N R, KULKARNI G U, THOMAS P J, et al. Metal nanoparticles and their assemblies[J]. Chemical Society Reviews, 2000, 29(1): 27-35.
[81] LIU D, TAO L, YAN D, et al. Recent Advances on Non-precious Metal Porous Carbon-based Electrocatalysts for Oxygen Reduction Reaction[J]. ChemElectroChem, 2018, 5(14): 1775-1785.
[82] QUÍLEZ-BERMEJO J, MORALLÓN E, CAZORLA-AMORÓS D. Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms[J]. Carbon, 2020, 165: 434-454.
[83] LIU X, DAI L. Carbon-based metal-free catalysts[J]. Nature Reviews Materials, 2016, 1(11): 16064.
[84] YUAN Y, CHEN Z, YU H, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials, 2020, 32: 65-90.
[85] ICZKOWSKI R P, MARGRAVE J L. Electronegativity[J]. Journal of the American Chemical Society, 1961, 83(17): 3547-3551.
[86] LOU Y, XU J, ZHANG Y, et al. Metal-support interaction for heterogeneous catalysis: from nanoparticles to single atoms[J]. Materials Today Nano, 2020, 12: 100093.
[87] GAO M, TIAN F, GUO Z, et al. Mutual-modification effect in adjacent Pt nanoparticles and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2022, 446: 137127.
[88] ZHAO S-N, LI J-K, WANG R, et al. Electronically and Geometrically Modified Single-Atom Fe Sites by Adjacent Fe Nanoparticles for Enhanced Oxygen Reduction[J]. Advanced Materials, 2022, 34(5): 2107291.
[89] ZHANG L, FISCHER J M T A, JIA Y, et al. Coordination of Atomic Co-Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction[J]. Journal of the American Chemical Society, 2018, 140(34): 10757-10763.
[90] WU L, GUO T, LI T. Data-Driven High-Throughput Rational Design of Double-Atom Catalysts for Oxygen Evolution and Reduction[J]. Advanced Functional Materials, 2022, 32(31): 2203439.
[91] HAN X, LING X, YU D, et al. Atomically Dispersed Binary Co-Ni Sites in Nitrogen-Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution[J]. Advanced Materials, 2019, 31(49): 1905622.
[92] YU Z, SI C, LAGROW A P, et al. Iridium–Iron Diatomic Active Sites for Efficient Bifunctional Oxygen Electrocatalysis[J]. ACS Catalysis, 2022, 12(15): 9397-9409.
[93] XIAO Z, SUN P, QIAO Z, et al. Atomically dispersed Fe-Cu dual-site catalysts synergistically boosting oxygen reduction for hydrogen fuel cells[J]. Chemical Engineering Journal, 2022, 446: 137112.
[94] MA D, WANG Y, LIU L, et al. Electrocatalytic nitrogen reduction on the transition-metal dimer anchored N-doped graphene: performance prediction and synergetic effect[J]. Physical Chemistry Chemical Physics, 2021, 23(6): 4018-4029.
[95] ZHU R, WANG D, LIU Y, et al. Bifunctional superwetting carbon nanotubes/cellulose composite membrane for solar desalination and oily seawater purification[J]. Chemical Engineering Journal, 2022, 433: 133510.
[96] QIU X, WANG S, CHEN S. The self-assembly of dialdehyde-cellulose-nanofiber-based hydrogels with high compression resilience[J]. Cellulose, 2022, 29(10): 5645-5658.
[97] WAN W, ZHAO Y, WEI S, et al. Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts[J]. Nature Communications, 2021, 12(1): 5589.
[98] LI S, YU J, LIU Q, et al. Preparation of carbon sponge loaded NiPt dual-metal single atom as self-supporting electrode based on inkjet printing technology for efficient hydrogen evolution[J]. Carbon, 2023, 215: 118456.
[99] ZENG Z, GAN L Y, BIN YANG H, et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution[J]. Nature Communications, 2021, 12(1): 4088.
[100]LI Y, ZHU J, CHENG H, et al. Developments of Advanced Electrospinning Techniques: A Critical Review[J]. Advanced Materials Technologies, 2021, 6(11): 2100410.
[101]GARG K, BOWLIN G L. Electrospinning jets and nanofibrous structures[J]. Biomicrofluidics, 2011, 5(1).
[102]HUANG H, LI J-R, WANG K, et al. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks[J]. Nature Communications, 2015, 6(1): 8847.
[103]HAN L, CHENG H, LIU W, et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs[J]. Nature Materials, 2022, 21(6): 681-688.
[104]BORA T, DOUSSE A, SHARMA K, et al. Modeling nanomaterial physical properties: theory and simulation[J]. International Journal of Smart and Nano Materials, 2019, 10(2): 116-143.
[105]ARGAMAN N, MAKOV G. Density functional theory: An introduction[J]. American Journal of Physics, 2000, 68(1): 69-79.
[106]SEH Z W, SUN Y, ZHANG Q, et al. Designing high-energy lithium–sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20): 5605-5634.
[107]FANG R, ZHAO S, SUN Z, et al. More reliable lithium‐sulfur batteries: status, solutions and prospects[J]. Advanced Materials, 2017, 29(48): 1606823.
[108]YUAN Z, PENG H J, HUANG J Q, et al. Hierarchical free‐standing carbon‐nanotube paper electrodes with ultrahigh sulfur‐loading for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(39): 6105-6112.
[109]LEE J S, KIM W, JANG J, et al. Sulfur-embedded activated multichannel carbon nanofiber composites for long‐life, high-rate lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(5): 1601943.
[110]HAMMEL E, TANG X, TRAMPERT M, et al. Carbon nanofibers for composite applications[J]. Carbon, 2004, 42(5): 1153-1158.
[111]WANG K, WANG Y, WANG Y, et al. Mesoporous Carbon Nanofibers for Supercapacitor Application[J]. The Journal of Physical Chemistry C, 2009, 113(3): 1093-1097.
[112]RODRIGUEZ N M. A review of catalytically grown carbon nanofibers[J]. Journal of Materials Research, 1993, 8(12): 3233-3250.
[113]YADAV D, AMINI F, EHRMANN A. Recent advances in carbon nanofibers and their applications – A review[J]. European Polymer Journal, 2020, 138: 109963.
[114]WANG J, LIU W, LUO G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction[J]. Energy & Environmental Science, 2018, 11(12): 3375-3379.
[115]YING Y, LUO X, QIAO J, et al. “More is different:” synergistic effect and structural engineering in double‐atom catalysts[J]. Advanced Functional Materials, 2021, 31(3): 2007423.
[116]ZHANG J, HUANG Q-A, WANG J, et al. Supported dual-atom catalysts: preparation, characterization, and potential applications[J]. Chinese Journal of Catalysis, 2020, 41(5): 783-798.
[117]ZHOU G, ZHAO S, WANG T, et al. Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li–S Batteries[J]. Nano Letters, 2020, 20(2): 1252-1261.
[118]SUN Y, LI X, ZHANG T, et al. Nitrogen-Doped Cobalt Diselenide with Cubic Phase Maintained for Enhanced Alkaline Hydrogen Evolution[J]. Angewandte Chemie International Edition, 2021, 60(39): 21575-21582.
[119]LEE M S, WHANG D R, SONG Y H, et al. Effects of pyridine and pyrrole moieties on supercapacitive properties of imine-rich nitrogen-doped graphene[J]. Carbon, 2019, 152: 915-923.
[120]LUO Z, LIM S, TIAN Z, et al. Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property[J]. Journal of Materials Chemistry, 2011, 21(22): 8038-8044.
[121]YE H, SUN J, ZHANG S, et al. Stepwise Electrocatalysis as a Strategy against Polysulfide Shuttling in Li-S Batteries[J]. ACS Nano, 2019, 13(12): 14208-14216.
[122]TU S, CHEN X, ZHAO X, et al. A Polysulfide-Immobilizing Polymer Retards the Shuttling of Polysulfide Intermediates in Lithium-Sulfur Batteries[J]. Advanced Materials, 2018, 30(45): 1804581.
[123]ZONG X, KIM K, FANG D, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer, 2002, 43(16): 4403-4412.
[124]FAN S, HUANG S, PAM M E, et al. Design Multifunctional Catalytic Interface: Toward Regulation of Polysulfide and Li2S Redox Conversion in Li–S Batteries[J]. Small, 2019, 15(51): 1906132.
[125] Sun Z, Zhang J, Yin L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications, 2017, 8(1): 14627.
[126]TIAN H, TIAN H, WANG S, et al. High-power lithium–selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode[J]. Nature Communications, 2020, 11(1): 5025.
[127]TAO Y, WEI Y, LIU Y, et al. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium–sulfur battery[J]. Energy & Environmental Science, 2016, 9(10): 3230-3239.
[128]WANG R, LUO C, WANG T, et al. Bidirectional Catalysts for Liquid–Solid Redox Conversion in Lithium–Sulfur Batteries[J]. Advanced Materials, 2020, 32(32): 2000315.
[129]REN W, ZHANG Y, LV R, et al. In-situ formation of quasi-solid polymer electrolyte for improved lithium metal battery performances at low temperatures[J]. Journal of Power Sources, 2022, 542: 231773.
[130]KOU W, WANG J, LI W, et al. Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium-sulfur battery[J]. Journal of Membrane Science, 2021, 634: 119432.
[131]ZHAI P, PENG N, SUN Z, et al. Thin laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2020, 8(44): 23344-23353.
[132]LEE J, KIM J, HYEON T. Recent Progress in the Synthesis of Porous Carbon Materials[J]. Advanced Materials, 2006, 18(16): 2073-2094.
[133]MATOS I, BERNARDO M, FONSECA I. Porous carbon: A versatile material for catalysis[J]. Catalysis Today, 2017, 285: 194-203.
[134]LI Z, WANG C, CHEN X, et al. MoOx nanoparticles anchored on N-doped porous carbon as Li-ion battery electrode[J]. Chemical Engineering Journal, 2020, 381: 122588.
[135]GUO J, HUO J, LIU Y, et al. Nitrogen-Doped Porous Carbon Supported Nonprecious Metal Single-Atom Electrocatalysts: from Synthesis to Application[J]. Small Methods, 2019, 3(9): 1900159.
[136]DUTTA S, BHAUMIK A, WU K C W. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications[J]. Energy & Environmental Science, 2014, 7(11): 3574-3592.
[137]MIAO Z, LI S, PRIEST C, et al. Effective Approaches for Designing Stable M–Nx/C Oxygen-Reduction Catalysts for Proton-Exchange-Membrane Fuel Cells[J]. Advanced Materials, 2022, 34(52): 2200595.
[138]KUMAR R, SINGH L, ZULARISAM A W, et al. Potential of porous Co3O4 nanorods as cathode catalyst for oxygen reduction reaction in microbial fuel cells[J]. Bioresource Technology, 2016, 220: 537-542.
[139]FERRARI A C, MEYER J C, SCARDACI V, et al. Raman Spectrum of Graphene and Graphene Layers[J]. Physical Review Letters, 2006, 97(18): 187401.
[140]GUEON D, JU M Y, MOON J H. Complete encapsulation of sulfur through interfacial energy control of sulfur solutions for high-performance Li-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23): 12686-12692.
[141]SUN X, QIU Y, JIANG B, et al. Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries[J]. Nature Communications, 2023, 14(1): 291.
[142]KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(6397): 710-712.
[143]ZHOU J, GUO Y, LIANG C, et al. Confining small sulfur molecules in peanut shell-derived microporous graphitic carbon for advanced lithium sulfur battery[J]. Electrochimica Acta, 2018, 273: 127-135.
[144]LI X, CAO Y, QI W, et al. Optimization of mesoporous carbon structures for lithium–sulfur battery applications[J]. Journal of Materials Chemistry, 2011, 21(41): 16603.
[145]ZOU W, LU R, LIU X, et al. Theoretical insights into dual-atom catalysts for the oxygen reduction reaction: the crucial role of orbital polarization[J]. Journal of Materials Chemistry A, 2022, 10(16): 9150-9160.
[146]PENG L, YANG J, YANG Y, et al. Mesopore-Rich Fe-N-C Catalyst with FeN4-O-NC Single-Atom Sites Delivers Remarkable Oxygen Reduction Reaction Performance in Alkaline Media[J]. Advanced Materials, 2022, 34(29): 2202544.
[147]YAN J, WANG Y, ZHANG Y, et al. Direct Magnetic Reinforcement of Electrocatalytic ORR/OER with Electromagnetic Induction of Magnetic Catalysts[J]. Advanced Materials, 2021, 33(5): 2007525.
[148]ZHONG L, JIANG C, ZHENG M, et al. Wood Carbon Based Single-Atom Catalyst for Rechargeable Zn–Air Batteries[J]. ACS Energy Letters, 2021, 6(10): 3624-3633.
[149]ZHAO C-X, LIU J-N, WANG J, et al. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis[J]. Science Advances, 2022, 8(11): eabn5091.
[150]HE R, YANG L, ZHANG Y, et al. A 3d-4d-5d High Entropy Alloy as a Bifunctional Oxygen Catalyst for Robust Aqueous Zinc–Air Batteries[J]. Advanced Materials, 2023, 35(46): 2303719.
[151]YAN Y, LIANG S, WANG X, et al. Robust wrinkled MoS2/N-C bifunctional electrocatalysts interfaced with single Fe atoms for wearable zinc-air batteries[J]. Proceedings of the National Academy of Sciences, 2021, 118(40): e2110036118.
[152]SARKAR S, BISWAS A, SIDDHARTHAN E E, et al. Strategic Modulation of Target-Specific Isolated Fe,Co Single-Atom Active Sites for Oxygen Electrocatalysis Impacting High Power Zn–Air Battery[J]. ACS Nano, 2022, 16(5): 7890-7903.
[153]SONG J, QIU S, HU F, et al. Sub‐2 nm thiophosphate nanosheets with heteroatom doping for enhanced oxygen electrocatalysis[J]. Advanced Functional Materials, 2021, 31(19): 2100618.
[154]WANG Z, JIN X, XU R, et al. Cooperation between dual metal atoms and nanoclusters enhances activity and stability for oxygen reduction and evolution[J]. ACS nano, 2023, 17(9): 8622-8633.
[155]RONG J, GAO E, LIU N, et al. Porphyrinic MOF-derived rich N-doped porous carbon with highly active CoN4C single-atom sites for enhanced oxygen reduction reaction and Zn-air batteries performance[J]. Energy Storage Materials, 2023, 56: 165-173.
[156]LI Z, JI S, WANG C, et al. Geometric and Electronic Engineering of Atomically Dispersed Copper‐Cobalt Diatomic Sites for Synergistic Promotion of Bifunctional Oxygen Electrocatalysis in Zinc–Air Batteries[J]. Advanced Materials, 2023, 35(25): 2300905.
[157]ZHOU C, CHEN X, LIU S, et al. Superdurable bifunctional oxygen electrocatalyst for high-performance zinc-air batteries[J]. Journal of the American Chemical Society, 2022, 144(6): 2694-2704.
[158]LEI X, TANG Q, ZHENG Y, et al. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis[J]. Nature Sustainability, 2023, 6(7): 816-826.
[159]ZHOU Y, LU R, TAO X, et al. Boosting oxygen electrocatalytic activity of Fe-N-C catalysts by phosphorus incorporation[J]. Journal of the American Chemical Society, 2023, 145(6): 3647-3655.
修改评论