[
[TALBERT P B, HENIKOFF S. Histone variants at a glance[J]. J Cell Sci, 2021, 134(6)
[2] MORRISON O, THAKUR J. Molecular complexes at euchromatin, heterochromatin and centromeric chromatin[J]. Int J Mol Sci, 2021, 22(13)
[3] BISWAS S, RAO C M. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy[J]. Eur J Pharmacol, 2018, 837: 8-24.
[4] GODWIN J, FARRONA S. Plant epigenetic stress memory induced by drought: a physiological and molecular perspective[J]. Methods Mol Biol, 2020, 2093: 243-259.
[5] ZHANG H, LANG Z, ZHU J K. Dynamics and function of DNA methylation in plants[J]. Nat Rev Mol Cell Biol, 2018, 19(8): 489-506.
[6] ZHANG Y, SUN Z, JIA J, et al. Overview of histone modification[J]. Adv Exp Med Biol, 2021, 1283: 1-16.
[7] VERTINO P M, YEN R W, GAO J, et al. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase[J]. Mol Cell Biol, 1996, 16(8): 4555-4565.
[8] MOORE L D, LE T, FAN G. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38.
[9] HORVATH S, RAJ K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing[J]. Nat Rev Genet, 2018, 19(6): 371-384.
[10] HASHIMOTO H, VERTINO P M, CHENG X. Molecular coupling of DNA methylation and histone methylation[J]. Epigenomics, 2010, 2(5): 657-669.
[11] LAW J A, JACOBSEN S E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet, 2010, 11(3): 204-220.
[12] HERR A J, JENSEN M B, DALMAY T, et al. RNA polymerase IV directs silencing of endogenous DNA[J]. Science, 2005, 308(5718): 118-120.
[13] WIERZBICKI A T, HAAG J R, PIKAARD C S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes[J]. Cell, 2008, 135(4): 635-648.
[14] DUBIN M J, MITTELSTEN SCHEID O, BECKER C. Transposons: a blessing curse[J]. Curr Opin Plant Biol, 2018, 42: 23-29.
[15] SIGMAN M J, SLOTKIN R K. The first rule of plant transposable element silencing: location, location, location[J]. Plant Cell, 2016, 28(2): 304-313.
[16] CUERDA-GIL D, SLOTKIN R K. Non-canonical RNA-directed DNA methylation[J]. Nat Plants, 2016, 2(11): 16163.
[17] MATZKE M A, MOSHER R A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity[J]. Nat Rev Genet, 2014, 15(6): 394-408.
[18] LUO J, HALL B D. A multistep process gave rise to RNA polymerase IV of land plants[J]. J Mol Evol, 2007, 64(1): 101-112.
[19] ZHANG H, ZHU J K. RNA-directed DNA methylation[J]. Curr Opin Plant Biol, 2011, 14(2): 142-147.
[20] CHEN X, RECHAVI O. Plant and animal small RNA communications between cells and organisms[J]. Nat Rev Mol Cell Biol, 2022, 23(3): 185-203.
[21] TUCKER S L, REECE J, REAM T S, et al. Evolutionary history of plant multisubunit RNA polymerases IV and V: subunit origins via genome-wide and segmental gene duplications, retrotransposition, and lineage-specific subfunctionalization[J]. Cold Spring Harb Symp Quant Biol, 2010, 75: 285-297.
[22] HAAG J R, REAM T S, MARASCO M, et al. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing[J]. Mol Cell, 2012, 48(5): 811-818.
[23] MARASCO M, LI W, LYNCH M, et al. Catalytic properties of RNA polymerases IV and V: accuracy, nucleotide incorporation and rNTP/dNTP discrimination[J]. Nucleic Acids Res, 2017, 45(19): 11315-11326.
[24] MATZKE M A, KANNO T, MATZKE A J. RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants[J]. Annu Rev Plant Biol, 2015, 66: 243-267.
[25] ZHU J K. Active DNA demethylation mediated by DNA glycosylases[J]. Annu Rev Genet, 2009, 43: 143-166.
[26] STROUD H, DO T, DU J, et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis[J]. Nat Struct Mol Biol, 2014, 21(1): 64-72.
[27] KIM M, OHR H, LEE J W, et al. Temporal and spatial downregulation of Arabidopsis MET1 activity results in global DNA hypomethylation and developmental defects[J]. Mol Cells, 2008, 26(6): 611-615.
[28] SASAKI E, KAWAKATSU T, ECKER J R, et al. Common alleles of CMT2 and NRPE1 are major determinants of CHH methylation variation in Arabidopsis thaliana[J]. PLoS Genet, 2019, 15(12): e1008492.
[29] BEWICK A J, NIEDERHUTH C E, JI L, et al. The evolution of chromomethylases and gene body DNA methylation in plants[J]. Genome Biol, 2017, 18(1): 65.
[30] WENDTE J M, SCHMITZ R J. Specifications of targeting heterochromatin modifications in plants[J]. Mol Plant, 2018, 11(3): 381-387.
[31] CHOI Y, GEHRING M, JOHNSON L, et al. Demeter, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis[J]. Cell, 2002, 110(1): 33-42.
[32] GONG Z, MORALES-RUIZ T, ARIZA R R, et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase[J]. Cell, 2002, 111(6): 803-814.
[33] ORTEGA-GALISTEO A P, MORALES-RUIZ T, ARIZA R R, et al. Arabidopsis DEMETER-like proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks[J]. Plant Mol Biol, 2008, 67(6): 671-681.
[34] PENTERMAN J, ZILBERMAN D, HUH J H, et al. DNA demethylation in the Arabidopsis genome[J]. Proc Natl Acad Sci U S A, 2007, 104(16): 6752-6757.
[35] WU X, ZHANG Y. TET-mediated active DNA demethylation: mechanism, function and beyond[J]. Nat Rev Genet, 2017, 18(9): 517-534.
[36] SHEN L, SONG C X, HE C, et al. Mechanism and function of oxidative reversal of DNA and RNA methylation[J]. Annu Rev Biochem, 2014, 83: 585-614.
[37] DU X, YANG Z, XIE G, et al. Molecular basis of the plant ROS1-mediated active DNA demethylation[J]. Nat Plants, 2023, 9(2): 271-279.
[38] ARORA H, SINGH R K, SHARMA S, et al. DNA methylation dynamics in response to abiotic and pathogen stress in plants[J]. Plant Cell Rep, 2022, 41(10): 1931-1944.
[39] DENG Y, ZHAI K, XIE Z, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355(6328): 962-965.
[40] HALTER T, WANG J, AMESEFE D, et al. The Arabidopsis active demethylase ROS1 cis-regulates defence genes by erasing DNA methylation at promoter-regulatory regions[J]. Elife, 2021, 10
[41] TORCHETTI E M, PEGORARO M, NAVARRO B, et al. A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA[J]. Sci Rep, 2016, 6: 35101.
[42] SINGH R K, JAISHANKAR J, MUTHAMILARASAN M, et al. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress[J]. Sci Rep, 2016, 6: 32641.
[43] LIU S, DE JONGE J, TREJO-ARELLANO M S, et al. Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress[J]. New Phytol, 2021, 229(4): 2238-2250.
[44] WANG L, CAO S, WANG P, et al. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance[J]. Proc Natl Acad Sci U S A, 2021, 118(13)
[45] WANG L, DING Y, HE L, et al. A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body[J]. Elife, 2020, 9
[46] FORTES A M, GALLUSCI P. Plant stress responses and phenotypic plasticity in the epigenomics era: perspectives on the grapevine Scenario, a Model for Perennial Crop Plants[J]. Front Plant Sci, 2017, 8: 82.
[47] ERDMANN R M, PICARD C L. RNA-directed DNA methylation[J]. PLoS Genet, 2020, 16(10): e1009034.
[48] CASTEL S E, MARTIENSSEN R A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond[J]. Nat Rev Genet, 2013, 14(2): 100-112.
[49] LUTEIJN M J, KETTING R F. PIWI-interacting RNAs: from generation to transgenerational epigenetics[J]. Nat Rev Genet, 2013, 14(8): 523-534.
[50] DENIZ O, FROST J M, BRANCO M R. Regulation of transposable elements by DNA modifications[J]. Nat Rev Genet, 2019, 20(7): 417-431.
[51] ZHAI J, BISCHOF S, WANG H, et al. A one precursor one siRNA model for Pol IV-dependent siRNA biogenesis[J]. Cell, 2015, 163(2): 445-455.
[52] BLEVINS T, PODICHETI R, MISHRA V, et al. Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis[J]. Elife, 2015, 4: e09591.
[53] HUANG K, WU X X, FANG C L, et al. Pol IV and RDR2: A two-RNA-polymerase machine that produces double-stranded RNA[J]. Science, 2021, 374(6575): 1579-1586.
[54] FUKUDOME A, SINGH J, MISHRA V, et al. Structure and RNA template requirements of Arabidopsis RNA-dependent RNA polymerase 2[J]. Proc Natl Acad Sci U S A, 2021, 118(51)
[55] WANG Q, XUE Y, ZHANG L, et al. Mechanism of siRNA production by a plant Dicer-RNA complex in dicing-competent conformation[J]. Science, 2021, 374(6571): 1152-1157.
[56] ZILBERMAN D, CAO X, JACOBSEN S E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation[J]. Science, 2003, 299(5607): 716-719.
[57] CHAN S W, ZILBERMAN D, XIE Z, et al. RNA silencing genes control de novo DNA methylation[J]. Science, 2004, 303(5662): 1336.
[58] ROWLEY M J, AVRUTSKY M I, SIFUENTES C J, et al. Independent chromatin binding of Argonaute4 and SPT5L/KTF1 mediates transcriptional gene silencing[J]. PLoS Genet, 2011, 7(6): e1002120.
[59] ZHONG X, HALE C J, LAW J A, et al. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons[J]. Nat Struct Mol Biol, 2012, 19(9): 870-875.
[60] BOHMDORFER G, ROWLEY M J, KUCINSKI J, et al. RNA-directed DNA methylation requires stepwise binding of silencing factors to long non-coding RNA[J]. Plant J, 2014, 79(2): 181-191.
[61] HENDERSON I R, DELERIS A, WONG W, et al. The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana[J]. PLoS Genet, 2010, 6(10): e1001182.
[62] CAO X, AUFSATZ W, ZILBERMAN D, et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation[J]. Curr Biol, 2003, 13(24): 2212-2217.
[63] NUTHIKATTU S, MCCUE A D, PANDA K, et al. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs[J]. Plant Physiol, 2013, 162(1): 116-131.
[64] MARI-ORDONEZ A, MARCHAIS A, ETCHEVERRY M, et al. Reconstructing de novo silencing of an active plant retrotransposon[J]. Nat Genet, 2013, 45(9): 1029-1039.
[65] LAW J A, VASHISHT A A, WOHLSCHLEGEL J A, et al. SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV[J]. PLoS Genet, 2011, 7(7): e1002195.
[66] ZHANG H, MA Z Y, ZENG L, et al. DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV[J]. Proc Natl Acad Sci U S A, 2013, 110(20): 8290-8295.
[67] LAW J A, DU J, HALE C J, et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1[J]. Nature, 2013, 498(7454): 385-389.
[68] ZHOU M, PALANCA A M S, LAW J A. Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family[J]. Nat Genet, 2018, 50(6): 865-873.
[69] TAOCHY C, YU A, BOUCHE N, et al. Post-transcriptional gene silencing triggers dispensable DNA methylation in gene body in Arabidopsis[J]. Nucleic Acids Res, 2019, 47(17): 9104-9114.
[70] ZHOU M, CORUH C, XU G, et al. The CLASSY family controls tissue-specific DNA methylation patterns in Arabidopsis[J]. Nat Commun, 2022, 13(1): 244.
[71] SMITH L M, PONTES O, SEARLE I, et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis[J]. Plant Cell, 2007, 19(5): 1507-1521.
[72] SCHMITZ R J, HONG L, FITZPATRICK K E, et al. Dicer-like 1 and Dicer-like 3 redundantly act to promote flowering via repression of Flowering locus C in Arabidopsis thaliana[J]. Genetics, 2007, 176(2): 1359-1362.
[73] TABARA M, YAMANASHI R, KURIYAMA K, et al. The dicing activity of DCL3 and DCL4 is negatively affected by flavonoids[J]. Plant Mol Biol, 2023, 111(1-2): 107-116.
[74] CHAN S W, HENDERSON I R, ZHANG X, et al. RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in arabidopsis[J]. PLoS Genet, 2006, 2(6): e83.
[75] KANNO T, METTE M F, KREIL D P, et al. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation[J]. Curr Biol, 2004, 14(9): 801-805.
[76] WONGPALEE S P, LIU S, GALLEGO-BARTOLOME J, et al. CryoEM structures of Arabidopsis DDR complexes involved in RNA-directed DNA methylation[J]. Nat Commun, 2019, 10(1): 3916.
[77] SONG J J, JOSHUA-TOR L. Argonaute and RNA--getting into the groove[J]. Curr Opin Struct Biol, 2006, 16(1): 5-11.
[78] VAUCHERET H. Plant ARGONAUTES[J]. Trends Plant Sci, 2008, 13(7): 350-358.
[79] BAUMBERGER N, BAULCOMBE D C. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs[J]. Proc Natl Acad Sci U S A, 2005, 102(33): 11928-11933.
[80] ZHA X, XIA Q, YUAN Y A. Structural insights into small RNA sorting and mRNA target binding by Arabidopsis Argonaute Mid domains[J]. FEBS Lett, 2012, 586(19): 3200-3207.
[81] CABEZAS-FUSTER A, MICOL-PONCE R, FONTCUBERTA-CERVERA S, et al. Missplicing suppressor alleles of Arabidopsis Pre-mrna processing factor 8 increase splicing fidelity by reducing the use of novel splice sites[J]. Nucleic Acids Res, 2022, 50(10): 5513-5527.
[82] FAN L, ZHANG C, GAO B, et al. Microtubules promote the non-cell autonomous action of microRNAs by inhibiting their cytoplasmic loading onto Argonaute 1 in Arabidopsis[J]. Dev Cell, 2022, 57(8): 995-1008 e1005.
[83] HACQUARD T, CLAVEL M, BALDRICH P, et al. The Arabidopsis F-box protein FBW2 targets AGO1 for degradation to prevent spurious loading of illegitimate small RNA[J]. Cell Rep, 2022, 39(2): 110671.
[84] PONTIER D, PICART C, ROUDIER F, et al. NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis[J]. Mol Cell, 2012, 48(1): 121-132.
[85] LIU W, SHOJI K, NAGANUMA M, et al. The mechanisms of siRNA selection by plant Argonaute proteins triggering DNA methylation[J]. Nucleic Acids Res, 2022, 50(22): 12997-13010.
[86] HE X J, HSU Y F, ZHU S, et al. An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein[J]. Cell, 2009, 137(3): 498-508.
[87] BIES-ETHEVE N, PONTIER D, LAHMY S, et al. RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family[J]. EMBO Rep, 2009, 10(6): 649-654.
[88] YAMAGUCHI Y, WADA T, WATANABE D, et al. Structure and function of the human transcription elongation factor DSIF[J]. J Biol Chem, 1999, 274(12): 8085-8092.
[89] YAMAGUCHI Y, TAKAGI T, WADA T, et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation[J]. Cell, 1999, 97(1): 41-51.
[90] IVANOV D, KWAK Y T, GUO J, et al. Domains in the SPT5 protein that modulate its transcriptional regulatory properties[J]. Mol Cell Biol, 2000, 20(9): 2970-2983.
[91] GREENBERG M V, AUSIN I, CHAN S W, et al. Identification of genes required for de novo DNA methylation in Arabidopsis[J]. Epigenetics, 2011, 6(3): 344-354.
[92] MEYER P A, LI S, ZHANG M, et al. Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5[J]. Mol Cell Biol, 2015, 35(19): 3354-3369.
[93] LI W, GILES C, LI S. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair[J]. Nucleic Acids Res, 2014, 42(11): 7069-7083.
[94] EHARA H, YOKOYAMA T, SHIGEMATSU H, et al. Structure of the complete elongation complex of RNA polymerase II with basal factors[J]. Science, 2017, 357(6354): 921-924.
[95] CARTHEW R W, SONTHEIMER E J. Origins and Mechanisms of miRNAs and siRNAs[J]. Cell, 2009, 136(4): 642-655.
[96] KOBAYASHI H, TOMARI Y. RISC assembly: Coordination between small RNAs and Argonaute proteins[J]. Biochim Biophys Acta, 2016, 1859(1): 71-81.
[97] FAGARD M, VAUCHERET H. (TRANS)Gene silencing in plants: How many mechanisms?[J]. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 167-194.
[98] XIE Z, ALLEN E, FAHLGREN N, et al. Expression of Arabidopsis MIRNA genes[J]. Plant Physiol, 2005, 138(4): 2145-2154.
[99] RAJAGOPALAN R, VAUCHERET H, TREJO J, et al. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana[J]. Genes Dev, 2006, 20(24): 3407-3425.
[100] YAN K, LIU P, WU C A, et al. Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana[J]. Mol Cell, 2012, 48(4): 521-531.
[101] YANG G D, YAN K, WU B J, et al. Genomewide analysis of intronic microRNAs in rice and Arabidopsis[J]. J Genet, 2012, 91(3): 313-324.
[102] WU L, ZHOU H, ZHANG Q, et al. DNA methylation mediated by a microRNA pathway[J]. Mol Cell, 2010, 38(3): 465-475.
[103] CHAVEZ MONTES R A, DE FATIMA ROSAS-CARDENAS F, DE PAOLI E, et al. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs[J]. Nat Commun, 2014, 5: 3722.
[104] AXTELL M J, MEYERS B C. Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data[J]. Plant Cell, 2018, 30(2): 272-284.
[105] ONODERA Y, HAAG J R, REAM T, et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation[J]. Cell, 2005, 120(5): 613-622.
[106] MOSHER R A, SCHWACH F, STUDHOLME D, et al. PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis[J]. Proc Natl Acad Sci U S A, 2008, 105(8): 3145-3150.
[107] ZHANG X, HENDERSON I R, LU C, et al. Role of RNA polymerase IV in plant small RNA metabolism[J]. Proc Natl Acad Sci U S A, 2007, 104(11): 4536-4541.
[108] HAAG J R, BROWER-TOLAND B, KRIEGER E K, et al. Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits[J]. Cell Rep, 2014, 9(1): 378-390.
[109] HUANG Y, KENDALL T, FORSYTHE E S, et al. Ancient Origin and Recent Innovations of RNA Polymerase IV and V[J]. Mol Biol Evol, 2015, 32(7): 1788-1799.
[110] WANG Y, MA H. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits[J]. New Phytol, 2015, 207(4): 1198-1212.
[111] HUANG L, JONES A M, SEARLE I, et al. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II[J]. Nat Struct Mol Biol, 2009, 16(1): 91-93.
[112] REAM T S, HAAG J R, WIERZBICKI A T, et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II[J]. Mol Cell, 2009, 33(2): 192-203.
[113] LANDICK R. Functional divergence in the growing family of RNA polymerases[J]. Structure, 2009, 17(3): 323-325.
[114] HAAG J R, PIKAARD C S. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing[J]. Nat Rev Mol Cell Biol, 2011, 12(8): 483-492.
[115] AZEVEDO J, COOKE R, LAGRANGE T. Taking RISCs with Ago hookers[J]. Curr Opin Plant Biol, 2011, 14(5): 594-600.
[116] EL-SHAMI M, PONTIER D, LAHMY S, et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components[J]. Genes Dev, 2007, 21(20): 2539-2544.
[117] BELLAOUI M, GRUISSEM W. Altered expression of the Arabidopsis ortholog of DCL affects normal plant development[J]. Planta, 2004, 219(5): 819-826.
[118] LAHMY S, GUILLEMINOT J, CHENG C M, et al. DOMINO1, a member of a small plant-specific gene family, encodes a protein essential for nuclear and nucleolar functions[J]. Plant J, 2004, 39(6): 809-820.
[119] ZHANG Y, SHI C, FU W, et al. Arabidopsis MED18 Interaction With RNA Pol IV and V Subunit NRPD2a in Transcriptional Regulation of Plant Immune Responses[J]. Front Plant Sci, 2021, 12: 692036.
[120] CONAWAY R C, CONAWAY J W. Origins and activity of the Mediator complex[J]. Semin Cell Dev Biol, 2011, 22(7): 729-734.
[121] LIAO C J, LAI Z, LEE S, et al. Arabidopsis HOOKLESS1 Regulates Responses to Pathogens and Abscisic Acid through Interaction with MED18 and Acetylation of WRKY33 and ABI5 Chromatin[J]. Plant Cell, 2016, 28(7): 1662-1681.
[122] LAI Z, SCHLUTTENHOFER C M, BHIDE K, et al. MED18 interaction with distinct transcription factors regulates multiple plant functions[J]. Nat Commun, 2014, 5: 3064.
[123] LI Y, YUAN Y, FANG X, et al. A Role for MINIYO and QUATRE-QUART2 in the Assembly of RNA Polymerases II, IV, and V in Arabidopsis[J]. Plant Cell, 2018, 30(2): 466-480.
[124] CHEN L, GUAN L, QIAN P, et al. NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis[J]. Development, 2016, 143(9): 1600-1611.
[125] WOYCHIK N A, YOUNG R A. RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth[J]. Mol Cell Biol, 1989, 9(7): 2854-2859.
[126] MCKUNE K, RICHARDS K L, EDWARDS A M, et al. RPB7, one of two dissociable subunits of yeast RNA polymerase II, is essential for cell viability[J]. Yeast, 1993, 9(3): 295-299.
[127] GNATT A L, CRAMER P, FU J, et al. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution[J]. Science, 2001, 292(5523): 1876-1882.
[128] LAHMY S, PONTIER D, CAVEL E, et al. PolV(PolIVb) function in RNA-directed DNA methylation requires the conserved active site and an additional plant-specific subunit[J]. Proc Natl Acad Sci U S A, 2009, 106(3): 941-946.
[129] MARTINEZ-FERNANDEZ V, NAVARRO F. Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI[J]. AIMS Genet, 2018, 5(1): 63-74.
[130] LIN Y, NOMURA T, CHEONG J, et al. Hepatitis B virus X protein is a transcriptional modulator that communicates with transcription factor IIB and the RNA polymerase II subunit 5[J]. J Biol Chem, 1997, 272(11): 7132-7139.
[131] TAN E H, BLEVINS T, REAM T S, et al. Functional consequences of subunit diversity in RNA polymerases II and V[J]. Cell Rep, 2012, 1(3): 208-214.
[132] WOYCHIK N A, LANE W S, YOUNG R A. Yeast RNA polymerase II subunit RPB9 is essential for growth at temperature extremes[J]. J Biol Chem, 1991, 266(28): 19053-19055.
[133] SEIN H, REINMETS K, PEIL K, et al. Rpb9-deficient cells are defective in DNA damage response and require histone H3 acetylation for survival[J]. Sci Rep, 2018, 8(1): 2949.
[134] KOYAMA H, ITO T, NAKANISHI T, et al. Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast[J]. Genes Cells, 2007, 12(5): 547-559.
[135] SUN Z W, TESSMER A, HAMPSEY M. Functional interaction between TFIIB and the Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces cerevisiae[J]. Nucleic Acids Res, 1996, 24(13): 2560-2566.
[136] NESSER N K, PETERSON D O, HAWLEY D K. RNA polymerase II subunit Rpb9 is important for transcriptional fidelity in vivo[J]. Proc Natl Acad Sci U S A, 2006, 103(9): 3268-3273.
[137] WALMACQ C, KIREEVA M L, IRVIN J, et al. Rpb9 subunit controls transcription fidelity by delaying NTP sequestration in RNA polymerase II[J]. J Biol Chem, 2009, 284(29): 19601-19612.
[138] RUAN W, LEHMANN E, THOMM M, et al. Evolution of two modes of intrinsic RNA polymerase transcript cleavage[J]. J Biol Chem, 2011, 286(21): 18701-18707.
[139] TAN Q, PRYSAK M H, WOYCHIK N A. Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II, and III[J]. Mol Cell Biol, 2003, 23(9): 3329-3338.
[140] ISHIGURO A, NOGI Y, HISATAKE K, et al. The Rpb6 subunit of fission yeast RNA polymerase II is a contact target of the transcription elongation factor TFIIS[J]. Mol Cell Biol, 2000, 20(4): 1263-1270.
[141] OKUDA M, SUWA T, SUZUKI H, et al. Three human RNA polymerases interact with TFIIH via a common RPB6 subunit[J]. Nucleic Acids Res, 2022, 50(1): 1-16.
[142] BOHMDORFER G, SETHURAMAN S, ROWLEY M J, et al. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin[J]. Elife, 2016, 5
[143] CRAMER P, BUSHNELL D A, KORNBERG R D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution[J]. Science, 2001, 292(5523): 1863-1876.
[144] CHEN X, LIU W, WANG Q, et al. Structural visualization of transcription initiation in action[J]. Science, 2023, 382(6677): eadi5120.
[145] BERNECKY C, HERZOG F, BAUMEISTER W, et al. Structure of transcribing mammalian RNA polymerase II[J]. Nature, 2016, 529(7587): 551-554.
[146] CRAMER P, BUSHNELL D A, FU J, et al. Architecture of RNA polymerase II and implications for the transcription mechanism[J]. Science, 2000, 288(5466): 640-649.
[147] CRAMER P, ARMACHE K J, BAUMLI S, et al. Structure of eukaryotic RNA polymerases[J]. Annu Rev Biophys, 2008, 37: 337-352.
[148] BRUECKNER F, CRAMER P. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation[J]. Nat Struct Mol Biol, 2008, 15(8): 811-818.
[149] KETTENBERGER H, ARMACHE K J, CRAMER P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS[J]. Mol Cell, 2004, 16(6): 955-965.
[150] WESTOVER K D, BUSHNELL D A, KORNBERG R D. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center[J]. Cell, 2004, 119(4): 481-489.
[151] CHEUNG A C, SAINSBURY S, CRAMER P. Structural basis of initial RNA polymerase II transcription[J]. EMBO J, 2011, 30(23): 4755-4763.
[152] WANG D, BUSHNELL D A, WESTOVER K D, et al. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis[J]. Cell, 2006, 127(5): 941-954.
[153] CHEUNG A C, CRAMER P. Structural basis of RNA polymerase II backtracking, arrest and reactivation[J]. Nature, 2011, 471(7337): 249-253.
[154] SYDOW J F, BRUECKNER F, CHEUNG A C, et al. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA[J]. Mol Cell, 2009, 34(6): 710-721.
[155] SIGURDSSON S, DIRAC-SVEJSTRUP A B, SVEJSTRUP J Q. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability[J]. Mol Cell, 2010, 38(2): 202-210.
[156] PONTIER D, YAHUBYAN G, VEGA D, et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis[J]. Genes Dev, 2005, 19(17): 2030-2040.
[157] KATO H, OKAZAKI K, IIDA T, et al. Spt6 prevents transcription-coupled loss of posttranslationally modified histone H3[J]. Sci Rep, 2013, 3: 2186.
[158] CHEN C, SHU J, LI C, et al. RNA polymerase II-independent recruitment of SPT6L at transcription start sites in Arabidopsis[J]. Nucleic Acids Res, 2019, 47(13): 6714-6725.
[159] ANTOSZ W, PFAB A, EHRNSBERGER H F, et al. The Composition of the Arabidopsis RNA Polymerase II Transcript Elongation Complex Reveals the Interplay between Elongation and mRNA Processing Factors[J]. Plant Cell, 2017, 29(4): 854-870.
[160] SAINSBURY S, NIESSER J, CRAMER P. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex[J]. Nature, 2013, 493(7432): 437-440.
[161] FERNANDEZ-TORNERO C, MORENO-MORCILLO M, RASHID U J, et al. Crystal structure of the 14-subunit RNA polymerase I[J]. Nature, 2013, 502(7473): 644-649.
[162] HOFFMANN N A, JAKOBI A J, MORENO-MORCILLO M, et al. Molecular structures of unbound and transcribing RNA polymerase III[J]. Nature, 2015, 528(7581): 231-236.
[163] TUROWSKI T W, TOLLERVEY D. Transcription by RNA polymerase III: insights into mechanism and regulation[J]. Biochem Soc Trans, 2016, 44(5): 1367-1375.
[164] BORCHERT G M, LANIER W, DAVIDSON B L. RNA polymerase III transcribes human microRNAs[J]. Nat Struct Mol Biol, 2006, 13(12): 1097-1101.
[165] HOU H, LI Y, WANG M, et al. Structural insights into RNA polymerase III-mediated transcription termination through trapping poly-deoxythymidine[J]. Nat Commun, 2021, 12(1): 6135.
[166] LEE T F, GURAZADA S G, ZHAI J, et al. RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats[J]. Epigenetics, 2012, 7(7): 781-795.
[167] SINGH J, MISHRA V, WANG F, et al. Reaction Mechanisms of Pol IV, RDR2, and DCL3 Drive RNA Channeling in the siRNA-Directed DNA Methylation Pathway[J]. Mol Cell, 2019, 75(3): 576-589 e575.
[168] YE R, CHEN Z, LIAN B, et al. A Dicer-Independent Route for Biogenesis of siRNAs that Direct DNA Methylation in Arabidopsis[J]. Mol Cell, 2016, 61(2): 222-235.
[169] ZONG J, YAO X, YIN J, et al. Evolution of the RNA-dependent RNA polymerase (RdRP) genes: duplications and possible losses before and after the divergence of major eukaryotic groups[J]. Gene, 2009, 447(1): 29-39.
[170] DU X, YANG Z, ARIZA A J F, et al. Structure of plant RNA-DEPENDENT RNA POLYMERASE 2, an enzyme involved in small interfering RNA production[J]. Plant Cell, 2022, 34(6): 2140-2149.
[171] GIRBIG M, MISIASZEK A D, MULLER C W. Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases[J]. Nat Rev Mol Cell Biol, 2022, 23(9): 603-622.
[172] ANDRULIS E D, GUZMAN E, DORING P, et al. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation[J]. Genes Dev, 2000, 14(20): 2635-2649.
[173] KAPLAN C D, MORRIS J R, WU C, et al. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster[J]. Genes Dev, 2000, 14(20): 2623-2634.
[174] MAYER A, LIDSCHREIBER M, SIEBERT M, et al. Uniform transitions of the general RNA polymerase II transcription complex[J]. Nat Struct Mol Biol, 2010, 17(10): 1272-1278.
[175] ARDEHALI M B, YAO J, ADELMAN K, et al. Spt6 enhances the elongation rate of RNA polymerase II in vivo[J]. EMBO J, 2009, 28(8): 1067-1077.
[176] YOH S M, CHO H, PICKLE L, et al. The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export[J]. Genes Dev, 2007, 21(2): 160-174.
[177] DRONAMRAJU R, HEPPERLA A J, SHIBATA Y, et al. Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription[J]. Mol Cell, 2018, 70(6): 1054-1066 e1054.
[178] DORIS S M, CHUANG J, VIKTOROVSKAYA O, et al. Spt6 Is Required for the Fidelity of Promoter Selection[J]. Mol Cell, 2018, 72(4): 687-699 e686.
[179] EHARA H, KUJIRAI T, SHIROUZU M, et al. Structural basis of nucleosome disassembly and reassembly by RNAPII elongation complex with FACT[J]. Science, 2022, 377(6611): eabp9466
修改评论