中文版 | English
题名

具备交叉校准功能的铵离子传感集成系统

其他题名
INTEGRATED AMMONIUM ION SENSING SYSTEM WITH CROSS-CALIBRATION FUNCTION
姓名
姓名拼音
HUANG Mingli
学号
12232543
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
林苑菁
导师单位
深港微电子学院
论文答辩日期
2024-05-16
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

在临床医学中,体液中铵离子的浓度监测对于肝功能障碍患者具有重 要意义。目前,铵离子监测主要依赖侵入式血液采集,并由专业复杂设备 进行检测,时间长、成本高,且无法满足实时、连续监测的需求。因此, 开发便携铵离子监测系统对于相关临床疾病的患者日常监测具有重要性及 必要性。本文提出了一种具有交叉校准功能的无线传感系统用于体液铵离 子浓度的监测。所制备的铵离子传感器在 10 μM 到 100 mM 的超宽范围内 具备 58.7 mV/decade 的灵敏度,能兼容血液以及汗液、唾液和尿液等多种 非侵入式采集的体液中铵离子浓度的监测需求。同时,针对研究中发现钾 离子对铵离子监测的干扰,通过钾、铵离子传感器阵列的交叉校准,提升 了铵监测的准确性。此外,基于传感阵列信号特性,设计了信号处理、无 线传输与显示系统的硬件电路与软件,实现了铵离子的便携式连续、实时 监测。在此基础上,通过体外模拟体液和动物体内安全性的实验,进一步 验证了传感阵列的生物相容性要求。与标准测试结果对比,所制备的传感 系统对小鼠血清和人体汗液、唾液、尿液等体液中铵离子浓度的检测平均 误差小于 20%。本文实现的具有超宽线性范围、可交叉校准的铵离子传感 监测系统有望应用于便携式生理标志物分析。

其他摘要

In clinical practice, the monitoring of ammonium (NH4 + ) level in body fluids holds great importance for patients with liver dysfunction. However, current methods mainly rely on invasive blood sampling and complicated laboratory apparatus, which are time-consuming and expensive, rendering them less practical for real-time and continuous monitoring. Therefore, it is critical and necessary to develop portable systems for real-time and continuous NH4 + sensing to fulfill patient daily monitoring. This study proposed a wireless sensing system with cross-calibration for the NH4 + levels monitoring in various body fluids. The optimized NH4 + sensors exhibit a wide linear response range of 10 μM -100 mM with a sensitivity of 58.7 mV/decade. The sensors provide excellent compatibility for blood and other fluids that can be collected non-invasively, such as sweat, saliva and urine. Me a n w hil e , t o t a c kl e t he is su e o f po t a ssi um (K+ ) int e r fe r e n ce , th e s e nso r s a r r ay fo r K + a nd NH4 + d e te c tio ns wit h c r ossc ali b r ati on wa s d ev e lo pe d to en h a nc e d th e s e nsi ng ac c u r ac y. Additionally, the hardware circuit and software for the sensors array signals processing, wireless transmission, and display were designed to enable continuous real-time monitoring in the portable fashion. Furthermore, the biocompatibility of the sensors array was validated through in vitro and in vivo experiments. As a proof of concept, the sensing system was utilized to assess NH4 + concentrations in the mice serum, as well as in a variety of body fluids such as human sweat, saliva, urine and etc. These assessments show in the average errors lower than 20%, compared to analytical results. The as-developed NH4 + sensing system with ultrawide linear range and cross-calibrating capability shows promising applications in portable biomarker analysis.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] HAN W B, KO G-J, JANG T-M, et al. Materials, devices, and applications for wearable and implantable electronics [J]. ACS Applied Electronic Materials, 2021, 3(2): 485-503.
[2] KOYDEMIR H C, OZCAN A. Wearable and implantable sensors for biomedical applications [J]. Annual Review of Analytical Chemistry, 2018, 11 (11): 127-146.
[3] WANG L, JIANG K, SHEN G. Wearable, implantable, and interventional medical devices based on smart electronic skins [J]. Advanced Materials Technologies, 2021, 6(6): 2100107.
[4] BARANWAL J, BARSE B, GATTO G, et al. Electrochemical sensors and their applications: a review [J]. Chemosensors, 2022, 10(9): 363 -385.
[5] KARTHIK V, SELVAKUMAR P, KUMAR P S, et al. Recent advances in electrochemical sensor developments for detecting emerging pollutant in water environment [J]. Chemosphere, 2022, 304: 135331.
[6] HE Q, WANG B, LIANG J, et al. Research on the construction of portable electrochemical sensors for environmental compounds quality monitoring [J]. Materials Today Advances, 2023, 17: 100340.
[7] MADURAIVEERAN G, SASIDHARAN M, GANESAN V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications [J]. Biosensors and Bioelectronics, 2018, 103: 113-129.
[8] XU C, WU F, YU P, et al. In vivo electrochemical sensors for neurochemicals: recent update [J]. ACS Sensors, 2019, 4(12): 3102-3118.
[9] ADEVA M M, SOUTO G, BLANCO N, et al. Ammonium metabolism in humans [J]. Metabolism, 2012, 61(11): 1495 -1511.
[10] HäUSSINGER D, SCHLIESS F. Pathogenetic mechanisms of hepatic encephalopathy [J]. Gut, 2008, 57(8): 1156 -1165.
[11] ATKINS C G, BUCKLEY K, BLADES M W, et al. Raman spectroscopy of blood and blood components [J]. Applied Spectroscopy, 2017, 71(5): 767-793.
[12] RAPHAEL K L, GILLIGAN S, IX J H. Urine anion gap to predict urine ammonium and related outcomes in kidney disease [J]. Clinical Journal of the American Society of Nephrology, 2018, 13(2): 205 -212.
[13] HA L Y, CHIU W W, DAVIDSON J S. Direct urine ammonium measurement: time to discard urine anion and osmolar gaps [J]. Annals of Clinical Biochemistry, 2012, 49(6): 606 -608.参考文献69
[14] SARIGUL N, KORKMAZ F, KURULTAK İ. A new artificial urine protocol to better imitate human urine [J]. Scientific Reports, 2019, 9(1): 20159.
[15] BRUSILOW S W, GORDES E H. Ammonia secretion in sweat [J]. American Journal of Physiology-Legacy Content, 1968, 214(3): 513 -517.
[16] ZAMARAYEVA A M, YAMAMOTO N A, TOOR A, et al. Optimization of printed sensors to monitor sodium, ammonium, and lactate in sweat [J]. APL Materials, 2020, 8(10): 100905.
[17] GUINOVART T, BANDODKAR A J, WINDMILLER J R, et al. A potentiometric tattoo sensor for monitoring ammonium in sweat [J]. Analyst, 2013, 138(22): 7031-7038.
[18] MITSUBAYASHI K, SUZUKI M, TAMIYA E, et al. Analysis of metabolites in sweat as a measure of physical condition [J]. Analytica Chimica Acta, 1994, 289(1): 27-34.
[19] BAKER L B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health [J]. Temperature, 2019, 6(3): 211 -259.
[20] BHOGADIA M, EDGAR M, HUNWIN K, et al. Detection and quantification of ammonia as the ammonium cation in human saliva by 1H NMR: a promising probe for health status monitoring, with special reference to cancer [J]. Metabolites, 2023, 13(7): 792-817.
[21] MONFORTE-GóMEZ B, HAKOBYAN L, MOLINS-LEGUA C, et al. Passive solid chemosensor as saliva point of need analysis for ammonium determination by using a smartphone [J]. Chemosensors, 2023, 11(7): 387 -400.
[22] THEPCHUAY Y, MESQUITA R B, NACAPRICHA D, et al. Micro -PAD card for measuring total ammonia nitrogen in saliva [J]. Analytical and Bioanalytical Chemistry, 2020, 412(13): 3167-3176.
[23] TIMMER B, OLTHUIS W, BERG A V D. Ammonia sensors and their applications—a review [J]. Sensors and Actuators B: Chemical, 2005, 107(2): 666-677.
[24] BARSOTTI R J. Measurement of ammonia in blood [J]. The Journal of Pediatrics, 2001, 138(1): S11 -S20.
[25] CUARTERO M, COLOZZA N, FERNáNDEZ-PéREZ B M, et al. Why ammonium detection is particularly challenging but insightful with ionophore -based potentiometric sensors –an overview of the progress in the last 20 years [J]. Analyst, 2020, 145(9): 3188 -3210.
[26] XU L, ZHONG L, TANG Y, et al. Beyond nonactin: potentiometric ammonium ion sensing based on ion-selective membrane-free prussian blue analogue transducers [J]. Analytical Chemistry, 2022, 94(29): 10487 -10496.
[27] RAPAPORT S I, SCHMAIER A H. Introduction to hematology [M]. Berlin: Springer International Publishing , 2019: 1-3.
[28] SALVAGNO G L, DANESE E, LIPPI G. Preanalytical variables for liquid chromatography-mass spectrometry (LC-MS) analysis of human blood specimens [J]. Clinical Biochemistry, 2017, 50(10): 582 -586.
[29] HURLEY I P, COOK R, LAUGHTON C W, et al. Detection of human blood by immunoassay for applications in forensic analysis [J]. Forensic Science International, 2009, 190(1): 91 -97.
[30] CALVO-LóPEZ A, REBOLLO-CALDERON B, ORMAZáBAL A, et al. Biomedical point-of-care microanalyzer for potentiometric determination of ammonium ion in plasma and whole blood [J]. Analytica Chimica Acta, 2022, 1205: 339782.
[31] LI C, GUO C, FITZPATRICK V, et al. Design of biodegradable, implantable devices towards clinical translation [J]. Nature Reviews Materials, 2020, 5(1): 61-81.
[32] KWON K, KIM J U, WON S M, et al. A battery -less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature [J]. Nature Biomedical Engineering, 2023, 7(10): 1215 -1228.
[33] WU T, REDOUTé J-M, YUCE M R. A wireless implantable sensor design with subcutaneous energy harvesting for long -term IoT healthcare applications [J]. IEEE Access, 2018, 6: 35801-35808.
[34] LIANG Q, XIA X, SUN X, et al. Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain neural signals [J]. Advanced Science, 2022, 9(16): 2201059.
[35] ANGOTZI G N, BOI F, LECOMTE A, et al. SiNAPS: an implantable active pixel sensor CMOS-probe for simultaneous large -scale neural recordings [J]. Biosensors and Bioelectronics, 2019, 126: 355 -364.
[36] YU H, SUN J. Sweat detection theory and fluid driven methods: a review [J]. Nanotechnology and Precision Engineering, 2020, 3(3): 126 -140.
[37] YANG Y, SONG Y, BO X, et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat [J]. Nature Biotechnology, 2020, 38(2): 217-224.
[38] KEENE S T, FOGARTY D, COOKE R, et al. Wearable organic electrochemical transistor patch for multiplexed sensing of calcium and ammonium ions from human perspiration [J]. Advanced Healthcare Materials, 2019, 8(24): 1901321.
[39] SONG Y, MIN J, YU Y, et al. Wireless battery -free wearable sweat sensor powered by human motion [J]. Science Advances, 2020, 6(40): 9842 -9851.
[40] TERSE-THAKOOR T, PUNJIYA M, MATHARU Z, et al. Thread -based multiplexed sensor patch for real-time sweat monitoring [J]. npj Flexible Electronics, 2020, 4(1): 18 -27.
[41] LIM H-R, LEE S M, MAHMOOD M, et al. Development of flexible ion -selective electrodes for saliva sodium detection [J]. Sensors, 2021, 21(5): 1642-1652.
[42] MAHIEU L, MARIEN A, DE DOOY J, et al. Implementation of a multiparameter point-of-care-blood test analyzer reduces central laboratory testing and need for blood transfusions in very low birth weight infants [J]. Clinica Chimica Acta, 2012, 413(1): 325 -330.
[43] BELLAGAMBI F G, LOMONACO T, SALVO P, et al. Saliva sampling: methods and devices. an overview [J]. TrAC Trends in Analytical Chemistry, 2020, 124: 115781.
[44] LIM H-R, LEE S M, PARK S, et al. Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes [J]. Biosensors and Bioelectronics, 2022, 210: 114329.
[45] HOEKE H, ROEDER S, BERTSCHE T, et al. Monitoring of drug intake during pregnancy by questionnaires and LC‐MS/MS drug urine screening: evaluation of both monitoring methods [J]. Drug Testing and Analysis, 2015, 7(8): 695 -702.
[46] LI X, ZHAN C, HUANG Q, et al. Smart diaper based on integrated multiplex carbon nanotube -coated electrode array sensors for in situ urine monitoring [J]. ACS Applied Nano Materials, 2022, 5(4): 4767 -4778.
[47] WALKER V. Ammonia metabolism and hyperammonemic disorders [J]. Advances in Clinical Chemistry, 2014, 67: 73-150.
[48] BAKKER E, PRETSCH E, BüHLMANN P. Selectivity of potentiometric ion sensors [J]. Analytical Chemistry, 2000, 72(6): 1127-1133.
[49] FAN Y, HUANG Y, LINTHICUM W, et al. Toward long -term accurate and continuous monitoring of nitrate in wastewater using poly (tetrafluoroethylene)(PTFE)–solid-state ion-selective electrodes (S-ISEs) [J]. ACS Sensors, 2020, 5(10): 3182-3193.
[50] YE W, YAN J, YE Q, et al. Template -free and direct electrochemical deposition of hierarchical dendritic gold microstructures: growth and their multiple applications [J]. The Journal of Physical Chemistry C, 2010, 114(37): 15617 -15624.
[51] FAN X, NIE W, TSAI H, et al. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications [J]. Advanced Science, 2019, 6(19): 1900813.
[52] ZDRACHEK E, BAKKER E. From molecular and emulsified ion sensors to membrane electrodes: molecular and mechanistic sensor design [J]. Accounts of Chemical Research, 2019, 52(5): 1400 -1408.
[53] GALLARDO-GONZALEZ J, BARAKET A, BOUDJAOUI S, et al. A fully integrated passive microfluidic lab-on-a-chip for real-time electrochemical detection of ammonium: sewage applications [J]. Science of the Total Environment, 2019, 653: 1223 -1230.
[54] HUANG Y, LI J, YIN T, et al. A novel all-solid-state ammonium electrode with polyaniline and copolymer of aniline/2, 5 -dimethoxyaniline as transducers [J]. Journal of Electroanalytical Chemistry, 2015, 741: 87 -92.
[55] YU Y, NASSAR J, XU C, et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human -machine interfaces [J]. Science Robotics, 2020, 5(41): 7946-7958.
[56] KUCHERENKO I S, SANBORN D, CHEN B, et al. Ion‐selective sensors based on laser‐induced graphene for evaluating human hydration levels using urine samples [J]. Advanced Materials Technologies, 2020, 5(6): 1901037.
[57] COLOZZA N, CASANOVA A, FERNáNDEZ‐PéREZ B M, et al. Insights into tripodal tris (pyrazolyl) compounds as ionophores for potentiometric ammonium ion sensing [J]. ChemElectroChem, 2022, 9(18): e202200716.
[58] KAN Y, HAN C, YE Y, et al. An all-solid-state ammonium ion-selective electrode based on polyaniline as transducer and poly (o -phenylenediamine) as sensitive membrane [J]. International Journal of Electrochemical Science, 2016, 11(12): 9928-9940.
[59] JIN S, LEE J S, KANG Y, et al. Voltammetric ion -channel sensing of ammonium ion using self-assembled monolayers modified with ionophoric receptors [J]. Sensors and Actuators B: Chemical, 2015, 207: 1026 -1034.
[60] BRANNELLY N, KILLARD A. A printed and microfabricated sensor device for the sensitive low volume measurement of aqueous ammonia [J]. Electroanalysis, 2017, 29(1): 162 -171.
[61] YOON J H, PARK H J, PARK S H, et al. Electrochemical characterization of reduced graphene oxide as an ion -to-electron transducer and application of screen-printed all-solid-state potassium ion sensors [J]. Carbon Letters, 2020, 30(1): 73-80.
[62] MO L, MA X, FAN L, et al. Weavable, large -scaled, rapid response, long-term stable electrochemical fabric sensor integrated into clothing for monitoring potassium ions in sweat [J]. Chemical Engineering Journal, 2023, 454: 140473.
[63] PINKERTON M, STEINRAUF L, DAWKINS P. The molecular structure and some transport properties of valinomycin [J]. Biochemical and Biophysical Research Communications, 1969, 35(4): 512 -518.
[64] NEUPERT‐LAVES K, DOBLER M. The crystal structure of a K + complex of valinomycin [J]. Helvetica Chimica Acta, 1975, 58(2): 432-442.
[65] BEREZIN S K. Valinomycin as a classical anionophore: mechanism and ion selectivity [J]. The Journal of Membrane Biology, 2015, 248(4): 713 -726.
[66] DOBLER M. The crystal structure of nonactin [J]. Helvetica Chimica Acta, 1972, 55(5): 1371-1384.
[67] DE BEER D, VAN DEN HEUVEL J. Response of ammonium-selective microelectrodes based on the neutral carrier nonactin [J]. Talanta, 1988, 35(9): 728-730.
[68] MARCUS Y. Ionic radii in aqueous solutions [J]. Chemical Reviews, 1988, 88(8): 1475-1498.
[69] RATNER B D. The biocompatibility manifesto: biocompatibility for the twenty-first century [J]. Journal of Cardiovascular Translational Research, 2011, 4: 523-527.
[70] AUNG S M, KANOKWIROON K, PHAIRATANA T, et al. Live and dead cells counting from microscopic trypan blue staining images using thresholding and morphological operation techniques [J]. International Journal of Electrical and Computer Engineering, 2019, 9(4): 2460-2468.
[71] MCCAUGHEY E J, VECELLIO E, LAKE R, et al. Key factors influencing the incidence of hemolysis: a critical appraisal of current evidence [J]. Critical Reviews in Clinical Laboratory Sciences, 2017, 54(1): 59 -72.
[72] FISCHER A H, JACOBSON K A, ROSE J, et al. Hematoxylin and eosin staining of tissue and cell sections [J]. Cold Spring Harbor Protocols, 2008, 2008(5): 4986-4993.
[73] WANG C, YUE F, KUANG S. Muscle histology characterization using H&E staining and muscle fiber type classification using immunofluorescence staining [J]. Bio-protocol, 2017, 7(10): e2279-e2280.
[74] HIESTER E D, SACKS M S. Optimal bovine pericardial tissue selection sites. I. Fiber architecture and tissue thickness measurements [J]. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1998, 39(2): 207 -214.
[75] FACCIOLI L A, DIAS M L, PARANHOS B A, et al. Liver cirrhosis: an overview of experimental models in rodents [J]. Life Sciences, 2022, 301: 120615.
[76] MARTíNEZ–HAYA B, AVILéS–MORENO J R, GáMEZ F, et al. Preferential host-guest coordination of nonactin with ammonium and hydroxylammonium [J]. The Journal of Chemical Physics, 2018, 149(22): 225101.
[77] AVILéS-MORENO J R, GáMEZ F, BERDEN G, et al. Inclusion complexes of the macrocycle nonactin with benchmark protonated amines: aniline and serine [J]. Physical Chemistry Chemical Physics, 2022, 24(14): 8422 -8431.
[78] CYNOBER L A. Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance [J]. Nutrition, 2002, 18(9): 761-766.

所在学位评定分委会
材料与化工
国内图书分类号
TN384
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778733
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
黄明丽. 具备交叉校准功能的铵离子传感集成系统[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232543-黄明丽-南方科技大学-(5295KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄明丽]的文章
百度学术
百度学术中相似的文章
[黄明丽]的文章
必应学术
必应学术中相似的文章
[黄明丽]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。