[1] CHEN S X, PENG L. Distributed Statistical Inference for Massive Data[J]. The Annals of Statistics, 2021, 49(5): 2851-2869.
[2] GU J, CHEN S X. Distributed Statistical Inference under Heterogeneity[J]. Journal of Machine Learning Research, 2023, 24(387): 1-57.
[3] DUAN R, NING Y, CHEN Y. Heterogeneity–aware and Communication–efficient Distributed Statistical Inference[J]. Biometrika, 2022, 109(1): 67-83.
[4] ZHAO T, CHENG G, LIU H. A Partially Linear Framework for Massive Heterogeneous Data [J]. The Annals of Statistics, 2016, 44(4): 1400.
[5] CAI T T, WEI H. Distributed Adaptive Gaussian Mean Estimation with Unknown Variance:Interactive Protocol Helps Adaptation[J]. The Annals of Statistics, 2022, 50(4): 1992-2020.
[6] FISCHER H. A History of the Central Limit Theorem: from Classical to Modern Probability Theory: volume 4[M]. Springer, 2011.
[7] LAPLACE P S. Sur les Approximations des Formules qui sont Fonctions de tres Grands Nombres et Sur leur Application aux Probabilites[J]. Œuvres complètes, 1810, 12: 301-345.
[8] MARQUIS DE LAPLACE P S. Théorie Analytique des Probabilités: volume 7[M]. Courcier, 1820.
[9] LIAPOUNOFF A. Sur une Proposition de la théorie des Probabilités[J]. Известия Российской академии наук. Серия математическая, 1900, 13(4): 359-386.
[10] LINDEBERG J W. Über das Gauss’sche Fehlergesetz[J]. Skandinavisk Aktuarietidskrift, 1922, 5: 217-234.
[11] LINDEBERG J W. Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung[J]. Mathematische Zeitschrift, 1922, 15(1): 211-225.
[12] BROWN B M. Martingale Central Limit Theorems[J]. The Annals of Mathematical Statistics, 1971: 59-66.
[13] ROMANO J P, WOLF M. A More General Central Limit Theorem for M-dependent Random Variables with Unbounded[J]. Statistics & Probability Letters, 2000, 47(2): 115-124.
[14] STEIN C. A Bound for the Error in the Normal Approximation to the Distribution of a Sum of Dependent Random Variables[C]//Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: volume 6. University of California Press, 1972: 583-602.
[15] SHAO Q M, ZHANG K, ZHOU W X. Stein’s method for nonlinear statistics: A brief survey and recent progress[J]. Journal of Statistical Planning and Inference, 2016, 168: 68-89.
[16] BERRY A C. The Accuracy of the Gaussian Approximation to the Sum of Independent Variates [J]. Transactions of the American Mathematical Society, 1941, 49(1): 122-136.
[17] ESSEEN C G. On the Liapunoff Limit of Error in the Theory of Probability[J]. Arkiv för Matematik, Astronomi och Fysik, 1942, A28: 1-19.
[18] DIACONIS P. The Distribution of Leading Digits and Uniform Distribution Mod 1[J]. The Annals of Probability, 1977, 5(1): 72-81.
[19] BALDI P, RINOTT Y, STEIN C. A Normal Approximation for the Number of Local Maxima of a Random Function on a Graph[M]//Probability, statistics, and mathematics. Elsevier, 1989: 59-81.
[20] CHEN L H, SHAO Q M. A Non-uniform Berry–Esseen Bound via Stein’s Method[J]. Probability Theory and Related Fields, 2001, 120: 236-254.
[21] CHEN L H, SHAO Q M. Normal Approximation under Local Dependence[J]. The Annals of Probability, 2004, 32(3): 1985-2028.
[22] CHEN L H, SHAO Q M. Normal Approximation for Nonlinear Statistics Using a Concentration Inequality approach[J]. Bernoulli, 2007, 13(2): 581-599.
[23] CHEN L H, GOLDSTEIN L, SHAO Q M. Normal Approximation by Stein’s Method: Volume 2[M]. Springer, 2011.
[24] SHAO Q M. Stein’s method, Self-normalized Limit Theory and Applications[C]//Proceedings of the International Congress of Mathematicians: IV. New Delhi: Hindustan Book Agency, 2010: 2325-2350.
[25] SHAO Q M, ZHOU W X. Cramér Type Moderate Deviation Theorems for Self-normalized Processes[J]. Bernoulli, 2016, 22(4): 2029-2079.
[26] WANG Q, JING B Y, ZHAO L. The Berry–Esseen Bound for Studentized Statistics[J]. The Annals of Probability, 2000, 28(1): 511-535.
[27] GAO L, SHAO Q M, SHI J. Refined Cramér-type Moderate Deviation Theorems for General Self-normalized Sums with Applications to Dependent Random Variables and Winsorized mean [J]. The Annals of Statistics, 2022, 50(2): 673-697.
[28] CRAMÉR H. Sur un nouveau theoreme-limite de la theorie des probabilities[J]. Scientifiques et Industrielles, 1938, 736: 5-23.
[29] JING B Y, SHAO Q M, WANG Q. Self-normalized Cramér-type Large Deviations for Independent Random Variables[J]. The Annals of Probability, 2003, 31(4): 2167-2215.
[30] WANG Q. Refined Self-normalized Large Deviations for Independent Random Variables[J].Journal of Theoretical Probability, 2011, 24(2): 307-329.
[31] ZHANG Y, WAINWRIGHT M J, DUCHI J C. Communication-efficient algorithms for statistical optimization[J]. Advances in Neural Information Processing Systems, 2012, 25.
[32] CAI T T, WANG Y, ZHANG L. The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy[J]. The Annals of Statistics, 2021, 49(5): 28252850.
[33] WU S, HUANG D, WANG H. Quasi-Newton Updating for Large-scale Distributed Learning [J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2023, 85(4): 1326-1354.
[34] PAN R, REN T, GUO B, et al. A Note on Distributed Quantile Regression by Pilot Sampling and One-Step Updating[J]. Journal of Business & Economic Statistics, 2022, 40(4): 1691-1700.
[35] YU Y, CHAO S K, CHENG G. Distributed bootstrap for simultaneous inference under high dimensionality[J]. Journal of Machine Learning Research, 2022, 23(195): 1-77.
[36] CAI T T, WEI H. Distributed Gaussian Mean Estimation under Communication Constraints:Optimal Rates and Communication-Efficient Algorithms[J]. Journal of Machine Learning Research, 2024, 25(37): 1-63.
[37] CAI T T, WEI H. Distributed Nonparametric Function Estimation: Optimal Rate of Convergence and Cost of Adaptation[J]. The Annals of Statistics, 2022, 50(2): 698-725.
[38] LI H, LINDSAY B, WATERMAN R. Efficiency of Projected Score Methods in Rectangular Array Asymptotics[J]. Journal of the Royal Statistical Society Series B, 2003, 65(2): 191-208.
[39] SHAO Q M. An Explicit Berry–Esseen Bound for Student’s T-statistic via Stein’s Method[M]// Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap.: number 5 Stein’s Method and Applications. Singapore Univ. Press, 2005: 143-155.
[40] LEUNG D, SHAO Q M. Nonuniform Berry–Esseen Bounds for Studentized U-statistics[A].2024. arXiv: 2303.08619.
[41] VON BAHR B, ESSEEN C G. Inequalities for the rth Absolute Moment of a Sum of Random Variables, 1≤ r≤ 2[J]. The Annals of Mathematical Statistics, 1965: 299-303.
[42] CHEN L H, GOLDSTEIN L, SHAO Q M. Normal Approximation by Stein’s Method: volume 2 [M]. Springer Berlin, Heidelberg, 2011.
[43] HOEFFIDING W. A Class of Statistics with Asymptotically Normal Distributions[J]. The Annals of Mathematical Statistics, 1948, 19(3): 293-325.
[44] CHANG J, SHAO Q M, ZHOU W X. Cramér-type Moderate Deviations for Studentized Twosample 𝑈-statistics with Applications[J]. The Annals of Statistics, 2016, 44(5): 1931 - 1956.
[45] HASEENA A, SUVINTHRA M, MOHAN M T, et al. Moderate Deviations for Stochastic Tidal Dynamics Equations with Multiplicative Gaussian Noise[J]. Applicable Analysis, 2022, 101(4): 1456-1490.
[46] SHAO Q M, ZHANG Z S. Berry–Esseen Bounds for Multivariate Nonlinear Statistics with Applications to M-estimators and Stochastic Gradient Descent Algorithms[J]. Bernoulli, 2022, 28(3): 1548-1576.
[47] DE LA PEÑA V H, LAI T L, SHAO Q M. Cramér-Type Moderate Deviations for SelfNormalized Sums[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 87-106.
[48] BERNSTEIN S. On a Modification of Chebyshev’s Inequality and of the Error Formula of Laplace[J]. Annals Science Institute SAV. Ukraine, Sect. Math, 1924, 1(4): 38-49.
[49] BENTKUS V, JING B Y, SHAO Q M, et al. Limiting Distributions of the Non-central 𝑇 -statistic and Their Applications to the Power of 𝑇 -tests under Non-normality[J]. Bernoulli, 2007, 13(2): 346 - 364.
[50] GAO Y, LIU W, WANG H, et al. A Review of Distributed Statistical Inference[J]. Statistical Theory and Related Fields, 2022, 6(2): 89-99.
[51] CHEBYSHEV P L. Des valeurs moyennes[J]. Journal de Mathématiques Pures et Appliquées, 1867, 12: 177-184.
[52] LÉVY P. Théorie des Erreurs. La loi de Gauss et les lois exceptionnelles[J]. Bulletin de la Societé mathématique de France, 1924, 52: 49-85.
修改评论