[1] Chen KJ, Häberlen O, Lidow A, et al. GaN-on-Si Power Technology: Devices and Applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779-795.
[2] Dang K, Zhang J, Zhou H, et al. A 5.8-GHz High-Power and High-Efficiency Rectifier Circuit With Lateral GaN Schottky Diode for Wireless Power Transfer[J]. IEEE Transactions on Power Electronics, 2020, 35(3): 2247-2252.
[3] Aklimi E, Piedra D, Tien K, et al. Hybrid CMOS/GaN 40-MHz Maximum 20-V Input DC–DC Multiphase Buck Converter[J]. IEEE Journal of Solid-State Circuits, 2017, 52(6): 1618-1627.
[4] Jones EA, Wang FF, Costinett D. Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 707-719.
[5] Reusch D, Strydom J. Understanding the Effect of PCB Layout on Circuit Performance in a High-Frequency Gallium-Nitride-Based Point of Load Converter[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 2008-2015.
[6] Chu R, Cao Y, Chen M, et al. An Experimental Demonstration of GaN CMOS Technology[J]. IEEE Electron Device Letters, 2016, 37(3): 269-271.
[7] Wang B, Riva M, Bakos JD, Monti A. Integrated Circuit Implementation for a GaN HFET Driver Circuit[J]. IEEE Transactions on Industry Applications, 2010, 46(5): 2056-2067.
[8] Ekström M, Malm BG, Zetterling CM. High-Temperature Recessed Channel SiC CMOS Inverters and Ring Oscillators[J]. IEEE Electron Device Letters, 2019, 40(5): 670-673.
[9] Cai Y, Cheng Z, Yang Z, et al. High-Temperature Operation of AlGaN/GaN HEMTs Direct-Coupled FET Logic (DCFL) Integrated Circuits[J]. IEEE Electron Device Letters, 2007, 28(5): 328-331.
[10] Tang G, Kwan AMH, Wong RKY, et al. Digital Integrated Circuits on an E-Mode GaN Power HEMTs Platform[J]. IEEE Electron Device Letters, 2017, 38(9): 1282-1285.
[11] Nakajima A, Unni V, Menon KG, et al. GaN-based bidirectional Super HFETs Using polarization junction concept on insulator substrate; proceedings of the 2012 24th International Symposium on Power Semiconductor Devices and ICs, F 3-7 June 2012, 2012 [C].
[12] Sun S, Fu K, Yu G, et al. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation[J]. Applied Physics Letters, 2016, 108(1): 013507.
[13] Gallacher K, Velha P, Paul DJ, et al. Ohmic contacts to n-type germanium with low specific contact resistivity[J]. Applied Physics Letters, 2012, 100(2): 022113.
[14] Fan Z, Mohammad SN, Kim W, et al. Very low resistance multilayer Ohmic contact to n-GaN[J]. Applied Physics Letters, 1996, 68(12): 1672-1674.
[15] Nakajima A, Kubota S, Tsutsui K, et al. GaN-based complementary metal-oxide-semiconductor inverter with normally off Pch and Nch MOSFETs fabricated using polarisation-induced holes and electron channels[J]. IET Power Electronics, 2018, 11(4): 689-694.
[16] Yang TH, Brown J, Fu K, et al. AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors (MISHEMTs) using plasma deposited BN as gate dielectric[J]. Applied Physics Letters, 2021, 118(7): 072102.
[17] Cao XA, Pearton SJ, Zhang AP, et al. Electrical effects of plasma damage in p-GaN[J]. Applied Physics Letters, 1999, 75(17): 2569-2571.
[18] Cao XA, Pearton SJ, Dang GT, et al. GaN n- and p-type Schottky diodes: Effect of dry etch damage[J]. IEEE Transactions on Electron Devices, 2000, 47(7): 1320-1324.
[19] Narita T, Kikuta D, Takahashi N, et al. Study of etching-induced damage in GaN by hard X-ray photoelectron spectroscopy[J]. physica status solidi (a), 2011, 208(7): 1541-1544.
[20] Ambacher O, Foutz B, Smart J, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures[J]. Journal of Applied Physics, 2000, 87(1): 334-344.
[21] 郝跃, 张金凤, 张进成. 氮化物宽禁带半导体材料与电子器件[M]. 北京: 科学出版社,2013,1-250.
[22] Hangleiter A, Heppel S, Im JS, et al. The role of piezoelectric fields in GaN-based quantum wells[J]. MRS Internet Journal of Nitride Semiconductor Research, 1998, 3: e15.
[23] Cheng K, Leys M, Degroote S, et al. AlGaN/GaN High Electron Mobility Transistors Grown on 150 mm Si(111) Substrates with High Uniformity[J]. Japanese Journal of Applied Physics, 2008, 47(3R): 1553.
[24] Chen X, Zhong Y, Zhou Y, et al. Determination of carbon-related trap energy level in (Al)GaN buffers for high electron mobility transistors through a room-temperature approach[J]. Applied Physics Letters, 2020, 117(26): 263501.
[25] Bindra A. Wide-Bandgap-Based Power Devices: Reshaping the power electronics landscape[J]. IEEE Power Electronics Magazine, 2015, 2(1): 42-47.
[26] Amano H, Baines Y, Beam E, et al. The 2018 GaN power electronics roadmap[J]. Journal of Physics D: Applied Physics, 2018, 51(16): 163001.
[27] Mishra U K, Shen L, Kazior TE, Wu YF. GaN-Based RF Power Devices and Amplifiers[J]. Proceedings of the IEEE, 2008, 96(2): 287-305.
[28] Meneghini M, Bisi D, Marcon D, et al. Trapping and Reliability Assessment in D-Mode GaN-Based MIS-HEMTs for Power Applications[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2199-2207.
[29] Palacios T, Suh CS, Chakraborty A, et al. High-performance E-mode AlGaN/GaN HEMTs[J]. IEEE Electron Device Letters, 2006, 27(6): 428-430.
[30] Yong C, Yugang Z, Chen K J, Lau KM. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment[J]. IEEE Electron Device Letters, 2005, 26(7): 435-437.
[31] Cai Y, Zhou Y, Lau KM, Chen KJ. Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode[J]. IEEE Transactions on Electron Devices, 2006, 53(9): 2207-2215.
[32] Hua M, Wei J, Tang G, et al. Normally-Off LPCVD-SiNx/GaN MIS-FET With Crystalline Oxidation Interlayer[J]. IEEE Electron Device Letters, 2017, 38(7): 929-932.
[33] Wang H, Wang J, Liu J, et al. Normally-off fully recess-gated GaN metal–insulator–semiconductor field-effect transistor using Al2O3/Si3N4 bilayer as gate dielectrics[J]. Applied Physics Express, 2017, 10(10): 106502.
[34] Zhou Q, Yang Y, Hu K, et al. Device Technologies of GaN-on-Si for Power Electronics: Enhancement-Mode Hybrid MOS-HFET and Lateral Diode[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8971-8979.
[35] Wang H, Wang J, Li M, et al. 823 mA/mm Drain Current Density and 945 MW/cm2 Baliga’s Figure-of-Merit Enhancement-Mode GaN MISFETs With a Novel PEALD-AlN/LPCVD-Si3N4 Dual-Gate Dielectric[J]. IEEE Electron Device Letters, 2018, 39(12): 1888-1891.
[36] Sun Z, Huang H, Wang R, et al. Improving Performances of Enhancement-Mode AlGaN/GaN MIS-HEMTs on 6-inch Si Substrate Utilizing SiON/Al2O3 Stack Dielectrics[J]. IEEE Electron Device Letters, 2020, 41(1): 135-138.
[37] Hao R, Fu K, Yu G, et al. Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment[J]. Applied Physics Letters, 2016, 109(15): 152106.
[38] Ren J, Tang C W, Feng H, et al. A Novel 700 V Monolithically Integrated Si-GaN Cascoded Field Effect Transistor[J]. IEEE Electron Device Letters, 2018, 39(3): 394-396.
[39] Wu CC, Jeng SL. Comparing of Parasitic Capacitances on Packaged Cascode Gallium Nitride Field-effect Transistors[J]. Sensors and Materials, 2018, 30: 453-461.
[40] Elangovan S, Cheng S, Chang EY. Reliability Characterization of Gallium Nitride MIS-HEMTs Based Cascode Devices for Power Electronic Applications[J] 2020, 13(10):10.3390/en13102628
[41] Xue P, Maresca L, Riccio M, et al. Experimental Study on the Short-Circuit Instability of Cascode GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2020, 67(4): 1686-1692.
[42] Uemoto Y, Hikita M, Ueno H, et al. Gate Injection Transistor (GIT)-A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation[J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3393-3399.
[43] Zhou Y, Zhong Y, Gao H, et al. p-GaN Gate Enhancement-Mode HEMTs Through a High Tolerance Self-Terminated Etching Process[J]. IEEE Journal of the Electron Devices Society, 2017, 5(5): 340-346.
[44] Rose M, Bergveld HJ. Integration Trends in Monolithic Power ICs: Application and Technology Challenges[J]. IEEE Journal of Solid-State Circuits, 2016, 51(9): 1965-1974.
[45] Disney D, Letavic T, Trajkovic T, et al. High-Voltage Integrated Circuits: History, State of the Art, and Future Prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 659-673.
[46] Trescases O, Murray SK, Jiang WL, Zaman MS. GaN Power ICs: Reviewing Strengths, Gaps, and Future Directions; proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), F 12-18 Dec. 2020, 2020 [C].
[47] Li X, Geens K, Amirifar N, et al. Integration of GaN analog building blocks on p-GaN wafers for GaN ICs[J]. Journal of Semiconductors, 2021, 42(2): 024103.
[48] Wong KY, Chen W, Chen KJ. Integrated voltage reference and comparator circuits for GaN smart power chip technology; proceedings of the 2009 21st International Symposium on Power Semiconductor Devices & IC's, F 14-18 June 2009, 2009 [C].
[49] Uemoto Y, Morita T, Ikoshi A, et al. GaN monolithic inverter IC using normally-off gate injection transistors with planar isolation on Si substrate; proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), F 7-9 Dec. 2009, 2009 [C].
[50] Wang H, Kwan AMH, Jiang Q, Chen KJ. A GaN Pulse Width Modulation Integrated Circuit for GaN Power Converters[J]. IEEE Transactions on Electron Devices, 2015, 62(4): 1143-1149.
[51] Tang G, Kwan MH, Zhang Z, et al. High-speed, high-reliability GaN power device with integrated gate driver; proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), F 13-17 May, 2018 [C].
[52] Li X, Amirifar N, Geens K, et al. GaN-on-SOI: Monolithically Integrated All-GaN ICs for Power Conversion; proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), F 7-11 Dec, 2019 [C].
[53] Cui M, Cai Y, Bu Q, et al. The Impact of Etch Depth of D-mode AlGaN/GaN MIS-HEMTs on DC and AC Characteristics of 10 V Input Direct-Coupled FET Logic (DCFL) Inverters; proceedings of the 2019 International Conference on IC Design and Technology (ICICDT), F 17-19 June, 2019 [C].
[54] Chowdhury N, Xie Q, Yuan M, et al. Regrowth-Free GaN-Based Complementary Logic on a Si Substrate[J]. IEEE Electron Device Letters, 2020, 41(6): 820-823.
[55] Xie Q, Yuan M, Niroula J, et al. Highly-Scaled Self-Aligned GaN Complementary Technology on a GaN-on-Si Platform; proceedings of the 2022 International Electron Devices Meeting (IEDM), F 3-7 Dec, 2022 [C].
[56] Chowdhury N, Jung J, Xie Q, et al. Performance Estimation of GaN CMOS Technology; proceedings of the 2021 Device Research Conference (DRC), F 20-23 June, 2021 [C].
[57] Nakajima A, Nishizawa SI, Kubota S, et al. An Overview of GaN-Based Monolithic Power Integrated Circuit Technology on Polarization-Junction Platform; proceedings of the 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), F 11-14 Oct, 2015 [C].
[58] Chen J, Liu Z, Wang H, et al. A GaN Complementary FET Inverter With Excellent Noise Margins Monolithically Integrated With Power Gate-Injection HEMTs[J]. IEEE Transactions on Electron Devices, 2022, 69(1): 51-56.
[59] Zheng Z, Zhang L, Song W, et al. Gallium nitride-based complementary logic integrated circuits[J]. Nature Electronics, 2021, 4(8): 595-603.
[60] Del Alamo JA. Nanometre-scale electronics with III–V compound semiconductors[J]. Nature, 2011, 479(7373): 317-323.
[61] Mcewen B, Reshchikov MA, Rocco E, et al. MOCVD Growth and Characterization of Be-Doped GaN[J]. ACS Applied Electronic Materials, 2022, 4(8): 3780-3785.
[62] Marini J, Mahaboob I, Hogan K, et al. Mg Incorporation Efficiency in Pulsed MOCVD of N-Polar GaN:Mg[J]. Journal of Electronic Materials, 2017, 46(10): 5820-5826.
[63] Demchenko D, Reshchikov M. Blue luminescence and Zn acceptor in GaN[J]. Physical Review B, 2013, 88
[64] Kozodoy P, Xing H, Denbaars SP, et al. Heavy doping effects in Mg-doped GaN[J]. Journal of Applied Physics, 2000, 87(4): 1832-1835.
[65] Miceli G, Pasquarello A. Self-compensation due to point defects in Mg-doped GaN[J]. Physical Review B, 2016, 93(16): 165207.
[66] Obloh H, Bachem KH, Kaufmann U, et al. Self-compensation in Mg doped p-type GaN grown by MOCVD[J]. Journal of Crystal Growth, 1998, 195(1): 270-273.
[67] Bader SJ, Chaudhuri R, Nomoto K, et al. Gate-Recessed E-mode p-Channel HFET With High On-Current Based on GaN/AlN 2D Hole Gas[J]. IEEE Electron Device Letters, 2018, 39(12): 1848-1851.
[68] Zheng Z, Song W, Zhang L, et al. High ION and ION/IOFF Ratio Enhancement-Mode Buried p-Channel GaN MOSFETs on p-GaN Gate Power HEMTs Platform[J]. IEEE Electron Device Letters, 2020, 41(1): 26-29.
[69] Raj A, Krishna A, Hatui N, et al. Demonstration of a GaN/AlGaN Superlattice-Based p-Channel FinFET With High ON-Current[J]. IEEE Electron Device Letters, 2020, 41(2): 220-223.
[70] Krishna A, Raj A, Hatui N, et al. Investigation of nitrogen polar p-type doped GaN/AlxGa(1-x)N superlattices for applications in wide-bandgap p-type field effect transistors[J]. Applied Physics Letters, 2019, 115(17): 172105.
[71] Krishna A, Raj A, Hatui N, et al. AlGaN/GaN Superlattice-Based p-Type Field-Effect Transistor with Tetramethylammonium Hydroxide Treatment[J]. physica status solidi (a), 2020, 217(7): 1900692.
[72] Shur MS, Bykhovski AD, Gaska R, et al. Accumulation hole layer in p-GaN/AlGaN heterostructures[J]. Applied Physics Letters, 2000, 76(21): 3061-3063.
[73] Shatalov M, Simin G, Jianping Z, et al. GaN/AlGaN p-channel inverted heterostructure JFET[J]. IEEE Electron Device Letters, 2002, 23(8): 452-454.
[74] Nakajima A, Sumida Y, Dhyani MH, et al. High Density Two-Dimensional Hole Gas Induced by Negative Polarization at GaN/AlGaN Heterointerface[J]. Applied Physics Express, 2010, 3(12): 121004.
[75] Li G, Wang R, Song B, et al. Polarization-Induced GaN-on-Insulator E/D Mode p-Channel Heterostructure FETs[J]. IEEE Electron Device Letters, 2013, 34(7): 852-854.
[76] Hahn H, Reuters B, Pooth A, et al. p-Channel Enhancement and Depletion Mode GaN-Based HFETs With Quaternary Backbarriers[J]. IEEE Transactions on Electron Devices, 2013, 60(10): 3005-3011.
[77] Nakajima A, Liu P, Ogura M, et al. Generation and transportation mechanisms for two-dimensional hole gases in GaN/AlGaN/GaN double heterostructures[J]. Journal of Applied Physics, 2014, 115(15): 153707.
[78] Reuters B, Hahn H, Pooth A, et al. Fabrication of p-channel heterostructure field effect transistors with polarization-induced two-dimensional hole gases at metal–polar GaN/AlInGaN interfaces[J]. Journal of Physics D: Applied Physics, 2014, 47(17): 175103.
[79] Zhang K, Sumiya M, Liao M, et al. P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas[J]. Scientific Reports, 2016, 6(1): 23683.
[80] Hahn H, Reuters B, Pooth A, et al. Characterization of GaN-based p-channel device structures at elevated temperatures[J]. Semiconductor Science and Technology, 2014, 29(7): 075002.
[81] Chowdhury N, Lemettinen J, Xie Q, et al. p-Channel GaN Transistor Based on p-GaN/AlGaN/GaN on Si[J]. IEEE Electron Device Letters, 2019, 40(7): 1036-1039.
[82] Hahn H, Reuters B, Pooth A, et al. First Small-Signal Data of GaN-Based p-Channel Heterostructure Field Effect Transistors[J]. Japanese Journal of Applied Physics, 2013, 52(12R): 128001.
[83] Bader SJ, Chaudhuri R, Hickman A, et al. GaN/AlN Schottky-gate p-channel HFETs with InGaN contacts and 100 mA/mm on-current; proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), F 7-11 Dec, 2019 [C].
[84] Nomoto K, Chaudhuri R, Bader SJ, et al. GaN/AlN p-channel HFETs with Imax >420 mA/mm and ~20 GHz fT/fMAX; proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), F 12-18 Dec, 2020 [C].
[85] Chowdhury N, Xie Q, Palacios T. Tungsten-Gated GaN/AlGaN p-FETs With Imax>120 mA/mm on GaN-on-Si[J]. IEEE Electron Device Letters, 2022, 43(4): 545-548.
[86] Beckmann C, Yang Z, Wieben J, et al. Depletion- and Enhancement-Mode p-Channel MISHFET Based on GaN/AlGaN Single Heterostructures on Sapphire Substrates[J]. IEEE Journal of the Electron Devices Society, 2023, 11: 248-255.
[87] Nomoto K, Bader SJ, Lee K, et al. Wide-bandgap Gallium Nitride p-channel MISFETs with enhanced performance at high temperature; proceedings of the 2017 75th Annual Device Research Conference (DRC), F 25-28 June 2017, 2017 [C].
[88] Du H, Liu Z, Hao L, et al. High-Performance E-Mode p-Channel GaN FinFET on Silicon Substrate With High ION/IOFF and High Threshold Voltage[J]. IEEE Electron Device Letters, 2022, 43(5): 705-708.
[89] Yin Y, Lee KB. High-Performance Enhancement-Mode p-Channel GaN MISFETs With Steep Subthreshold Swing[J]. IEEE Electron Device Letters, 2022, 43(4): 533-536.
[90] Yang C, Fu H, Peri P, et al. Enhancement-Mode Gate-Recess-Free GaN-Based p-Channel Heterojunction Field-Effect Transistor With Ultra-Low Subthreshold Swing[J]. IEEE Electron Device Letters, 2021, 42(8): 1128-1131.
[91] Chowdhury N, Xie Q, Yuan M, et al. First Demonstration of a Self-Aligned GaN p-FETs; proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), F 7-11 Dec, 2019 [C].
[92] Chowdhury N, Xie Q, Niroula J, et al. Field-induced Acceptor Ionization in Enhancement-mode GaN p-MOSFETs; proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), F 12-18 Dec, 2020 [C].
[93] Chowdhury N, Xie Q, Palacios T. Self-Aligned E-Mode GaN p-Channel FinFET With ION> 100 mA/mm and ION/IOFF > 10⁷[J]. IEEE Electron Device Letters, 2022, 43(3): 358-361.
[94] Zheng Z, Song W, Zhang L, et al. Enhancement-Mode GaN p-Channel MOSFETs for Power Integration; proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), F 13-18 Sept, 2020 [C].
[95] Zhang L, Zheng Z, Cheng Y, et al. SiN/in-situ-GaON Staggered Gate Stack on p-GaN for Enhanced Stability in Buried-Channel GaN p-FETs; proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), F 11-16 Dec, 2021 [C].
[96] Zhang L, Zheng Z, Song W, et al. Gate Leakage and Reliability of GaN -Channel FET With SiNₓ/GaON Staggered Gate Stack[J]. IEEE Electron Device Letters, 2022, 43(11): 1822-1825.
[97] Jin H, Jiang Q, Huang S, et al. An Enhancement-Mode GaN p-FETs With Improved Breakdown Voltage[J]. IEEE Electron Device Letters, 2022, 43(8): 1191-1194.
[98] Ke JH, Lee CS, Li YX, Hsu WC. High-Breakdown P-Channel GaN MOS-HFETs With Al2O3-Dielectric and Drain Field-Plate[J]. IEEE Journal of the Electron Devices Society, 2023, 11: 421-425.
[99] Lin YJ, Chu YL. Effect of reactive ion etching-induced defects on the surface band bending of heavily Mg-doped p-type GaN[J]. Journal of Applied Physics, 2005, 97(10): 104904.
[100] Kato M, Ichimura M, Arai E, Ramasamy P. Electrochemical Etching of 6H-SiC Using Aqueous KOH Solutions with Low Surface Roughness[J]. Japanese Journal of Applied Physics, 2003, 42(7R): 4233.
[101] Fu K, Fu H, Huang X, et al. Reverse Leakage Analysis for As-Grown and Regrown Vertical GaN-on-GaN Schottky Barrier Diodes[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 74-83.
[102] Fu K, Fu H, Huang X, et al. Demonstration of 1.27 kV Etch-Then-Regrow GaN p-n Junctions With Low Leakage for GaN Power Electronics[J]. IEEE Electron Device Letters, 2019, 40(11): 1728-1731.
[103] Foster GM, Koehler A, Ebrish M, et al. Recovery from plasma etching-induced nitrogen vacancies in p-type gallium nitride using UV/O3 treatments[J]. Applied Physics Letters, 2020, 117(8): 082103.
[104] Chen J, Liu Z, Wang H, et al. Investigation on the interface trap characteristics in a p-channel GaN MOSFET through temperature-dependent subthreshold slope analysis[J]. Journal of Physics D: Applied Physics, 2022, 55(9): 095112.
[105] Su H, Zhang T, Xu S, et al. Normally-Off p-Channel AlGaN/GaN/AlGaN MESFET With High Breakdown Voltage and Ultra-Low Interface State Density[J]. IEEE Electron Device Letters, 2023, 44(12): 1939-1942.
[106] Hahn H, Lükens G, Ketteniss N, et al. Recessed-Gate Enhancement-Mode AlGaN/GaN Heterostructure Field-Effect Transistors on Si with Record DC Performance[J]. Applied Physics Express, 2011, 4(11): 114102.
[107] Hahn H, Reuters B, Kotzea S, et al. First monolithic integration of GaN-based enhancement mode n-channel and p-channel heterostructure field effect transistors; proceedings of the 72nd Device Research Conference, F 22-25 June, 2014 [C].
[108] He J, Wang Q, Zhou G, et al. Normally-OFF AlGaN/GaN MIS-HEMTs With Low RON and Vth Hysteresis by Functioning In-situ SiNx in Regrowth Process[J]. IEEE Electron Device Letters, 2022, 43(4): 529-532.
[109] Cheng WC, Zeng F, He M, et al. Quasi-Normally-Off AlGaN/GaN HEMTs With SiNₓ Stress Liner and Comb Gate for Power Electronics Applications[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 1138-1144.
[110] Chen LC, Chen FR, Kai JJ, et al. Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN[J]. Journal of Applied Physics, 1999, 86(7): 3826-3832.
[111] Nakajima A, Nishizawa SI, Ohashi H, et al. One-chip operation of GaN-based P-channel and N-channel heterojunction field effect transistors; proceedings of the 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), F 15-19 Jun, 2014 [C].
[112] González-Posada F, Bardwell JA, Moisa S, et al. Surface cleaning and preparation in AlGaN/GaN-based HEMTs processing as assessed by X-ray photoelectron spectroscopy[J]. Applied Surface Science, 2007, 253(14): 6185-6190.
[113] Pankove JI, Torvik JT, Qiu CH, et al. Molecular doping of gallium nitride[J]. Applied Physics Letters, 1999, 74(3): 416-418.
[114] Gorczyca I, Svane A, Christensen NE. Mg-O and MgVN defect complexes in cubic GaN[J]. Physical Review B, 2000, 61(11): 7494-7498.
[115] Yan J, Kappers MJ, Barber ZH, Humphreys CJ. Effects of oxygen plasma treatments on the formation of ohmic contacts to GaN[J]. Applied Surface Science, 2004, 234(1): 328-332.
[116] Klootwijk JH, Timmering CE. Merits and limitations of circular TLM structures for contact resistance determination for novel III-V HBTs; Proceedings of the 2004 International Conference on Microelectronic Test Structures (IEEE Cat No04CH37516), F 22-25 March 2004, 2004 [C].
[117] Krämer M. Fabrication and characterization of metal-semiconductor contacts for application in AlxGa1-xN/GaN HEMTs[J]. GaN HEMTs, 2000
[118] Sheu JK, Su YK, Chi GC, et al. The effect of thermal annealing on the Ni/Au contact of p-type GaN[J]. Journal of Applied Physics, 1998, 83(6): 3172-3175.
[119] Bermudez VM, Kaplan R, Khan MA, Kuznia JN. Growth of thin Ni films on GaN(0001)-(1×1) [J]. Physical Review B, 1993, 48(4): 2436-2444.
[120] Steirer KX, Chesin JP, Widjonarko NE, et al. Solution deposited NiO thin-films as hole transport layers in organic photovoltaics[J]. Organic Electronics, 2010, 11(8): 1414-1418.
[121] Davis RF, Hartlieb PJ, Nemanich RJ, et al. Chemical, Electrical, and Structural Properties of Au/Pd Contacts on Chemical Vapor Cleaned p-type GaN Surfaces[J]. MRS Proceedings, 2001, 693: I11.40.11.
[122] Klump A, Kaess F, Sarkar B, et al. Au:Ga Alloyed Clusters to Enhance Al Contacts to P-type GaN; proceedings of the 2018 IEEE Research and Applications of Photonics In Defense Conference (RAPID), F 22-24 Aug, 2018 [C].
[123] Kim JK, Lee JL, Lee JW, et al. Effect of surface treatment by (NH4)2Sx solution on the reduction of ohmic contact resistivity of p-type GaN[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1999, 17(2): 497-499.
[124] Ishikawa H, Kobayashi S, Koide Y, et al. Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces[J]. Journal of Applied Physics, 1997, 81(3): 1315-1322.
[125] Nakajima A, Nishizawa SI, Ohashi H, et al. GaN-based monolithic power integrated circuit technology with wide operating temperature on polarization-junction platform; proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD), F 10-14 May, 2015 [C].
[126] Liu CY, Chang CC, Chen YJ, Chen PH. A self-formed nanonetwork meshed Pt layer on an epitaxial GaN surface[J]. Scripta Materialia, 2011, 64(6): 533-536.
[127] Okamoto H. Au-Ga (Gold-Gallium)[J]. Journal of Phase Equilibria and Diffusion, 2013, 34(2): 174-175.
[128] Park Y, Kim H. Carrier Transport and Effective Barrier Height of Low Resistance Metal Contact to Highly Mg-Doped p-GaN[J]. Applied Physics Express, 2011, 4(8): 085701.
[129] Choi Y, Kim H. Surface Fermi level pinning and carrier transport of indium-tin-oxide Ohmic contact to p-type GaN[J]. Journal of Alloys and Compounds, 2012, 533: 15-18.
[130] Kwak JS, Nam OH, Park Y. Temperature-dependent contact resistivity of the nonalloyed ohmic contacts to p-GaN[J]. Journal of Applied Physics, 2004, 95(10): 5917-5919.
[131] Park Y, Ahn KS, Kim H. Carrier Transport Mechanism of Ni/Ag/Pt Contacts to p-Type GaN[J]. IEEE Transactions on Electron Devices, 2012, 59(3): 680-684.
[132] Tang CY, Lu HH, Qiao ZP, et al. Ohmic Contact With a Contact Resistivity of 12 Ω ⋅ mm on p-GaN/AlGaN/GaN[J]. IEEE Electron Device Letters, 2022, 43(9): 1412-1415.
[133] Wang J, Lu S, Cai W, et al. Ohmic Contact to p-Type GaN Enabled by Post-Growth Diffusion of Magnesium[J]. IEEE Electron Device Letters, 2022, 43(1): 150-153.
[134] Lu S, Deki M, Wang J, et al. Ohmic contact on low-doping-density p-type GaN with nitrogen-annealed Mg[J]. Applied Physics Letters, 2021, 119(24): 242104.
[135] KordoŠ P, Morvic M, Betko J, et al. Conductivity and Hall effect characterization of highly resistive molecular-beam epitaxial GaN layers[J]. Journal of Applied Physics, 2000, 88(10): 5821-5826.
[136] Yamamoto H, Fang ZQ, Look DC. Nonalloyed ohmic contacts on low-temperature molecular beam epitaxial GaAs: Influence of deep donor band[J]. Applied Physics Letters, 1990, 57(15): 1537-1539.
[137] Hu ZF, Li XY, Zhang Y. Characteristics of Ni/Au/Ni/Au ohmic contact in a p-AlGaN/GaN semiconductor[J]. IOP Conference Series: Materials Science and Engineering, 2020, 770(1): 012018.
[138] Cui J, Wu Y, Yang J, et al. Method to Study Dynamic Depletion Behaviors in High-Voltage BV=1.4kV p-GaN Gate HEMTs on Sapphire Substrate; proceedings of the 2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD), F 28 May-1 June, 2023 [C].
[139] Xie Q, Yuan M, Niroula J, et al. Highly Scaled GaN Complementary Technology on a Silicon Substrate[J]. IEEE Transactions on Electron Devices, 2023, 70(4): 2121-2128.
[140] Zhang Y, Sun Z, Wang W, et al. Low-Resistance Ni/Ag Contacts on GaN-Based p-Channel Heterojunction Field-Effect Transistor[J]. IEEE Transactions on Electron Devices, 2023, 70(1): 31-35.
[141] Yu Y, Lee D, Jeong B. The dependence of the work function of Pt(111) on surface carbon investigated with near ambient pressure X-ray photoelectron spectroscopy[J]. Applied Surface Science, 2022, 607: 155005.
[142] Ho JK, Jong CS, Chiu CC, et al. Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films[J]. Journal of Applied Physics, 1999, 86(8): 4491-4497.
[143] Li XJ, Zhao DG, Jiang DS, et al. The significant effect of the thickness of Ni film on the performance of the Ni/Au Ohmic contact to p-GaN[J]. Journal of Applied Physics, 2014, 116(16): 163708.
[144] Chiou GC, Lin MW, Lai YL, et al. Fluorene Conjugated Polymer/Nickel Oxide Nanocomposite Hole Transport Layer Enhances the Efficiency of Organic Photovoltaic Devices[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2232-2239.
[145] Zhong H, Liu Z, Shi L, et al. Graphene in ohmic contact for both n-GaN and p-GaN[J]. Applied Physics Letters, 2014, 104(21): 212101.
[146] Buttari D, Chini A, Palacios T, et al. Origin of etch delay time in Cl2 dry etching of AlGaN/GaN structures[J]. Applied Physics Letters, 2003, 83(23): 4779-4781.
[147] Zhou S, Cao B, Liu S. Dry etching characteristics of GaN using Cl2/BCl3 inductively coupled plasmas[J]. Applied Surface Science, 2010, 257(3): 905-910.
[148] Cai Y, Zhang Y, Liang Y, et al. Low ON-State Resistance Normally-OFF AlGaN/GaN MIS-HEMTs With Partially Recessed Gate and ZrOₓ Charge Trapping Layer[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4310-4316.
修改评论