[1] HASSAN Q, ALGBURI S, SAMEEN A Z, et al. A comprehensive review of international renewable energy growth [J]. Energy and Built Environment, 2024.
[2] COUNCIL G W E. GWEC Global Wind Report 2018 [J]. Global Wind Energy Council: Bonn, Germany, 2019: 5.
[3] 中华人民共和国可再生能源法 [J]. 中华人民共和国全国人民代表大会常务委员会公报, 2005, (02): 129-133.
[4] 可再生能源中长期发展规划 [J]. 可再生能源, 2007, (05): 1-5.
[5] 国家发展改革委. 《"十四五"可再生能源发展规划》答记者问 [J]. 电力设备管理, 2022, (12): 4-6.
[6] TASNEEM Z, AL NOMAN A, DAS S K, et al. An analytical review on the evaluation of wind resource and wind turbine for urban application: Prospect and challenges [J]. Developments in the Built Environment, 2020, 4: 100033.
[7] ZHU L L, YE Z Y. Research on a universal design method for inflatable wings [J]. Journal of Air Force Engineering University, 2009, 10(5): 16-21.
[8] WOUTERS I, VAN DE VOORDE S, BERTELS I, et al. Building Knowledge, Constructing Histories: Proceedings of the 6th International Congress on Construction History (6ICCH 2018), July 9-13, 2018, Brussels, Belgium [M]. CRC Press, 2018.
[9] ALEXEY K. Chapter 2 - Inflatable structures [M]//ALEXEY K. Design and Fabrication of Large Polymer Constructions in Space. Elsevier. 2023: 29-63.
[10] CADOGAN D, SMITH T, LEE R, et al. Inflatable and rigidizable wing components for unmanned aerial vehicles[C] // 44th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. 2003: 1801.
[11] WANG C, LIU Y, ZHANG L, et al. A novel lattice-based design and analysis of inflatable wing[C] // 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, 2013: 1882.
[12] KEARNS J, USUI M, SMITH S, et al. Development of UV-Curable Inflatable Wings for Low-Density Flight Applications [Z]. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. 2004: 1503.
[13] SONG Y, GANDHI U, ARIS A. A baffled inflatable wing made from high performance textile materials: Design, analysis, and experiments[C] // AIAA Scitech 2021 Forum, F, 2021: 0430.
[14] RAKSHITH K S, DUSANE C R, MISTRI S, et al. Analytical Modelling of Baffled Inflatable Wing for Failure Prediction[C] // AIAA Aviation 2019 Forum, F, 2019: 3366.
[15] SAREEN H, UMAPATHI U, SHIN P, et al. Printflatables: printing human-scale, functional and dynamic inflatable objects[C] // Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. 2017: 3669-3680.
[16] MARTINEZ R V, FISH C R, CHEN X, et al. Elastomeric origami: programmable paper‐elastomer composites as pneumatic actuators [J]. Advanced functional materials, 2012, 22(7): 1376-1384.
[17] NASSOUR J. Marionette-based programming of a soft textile inflatable actuator [J]. Sensors and Actuators A: Physical, 2019, 291: 93-98.
[18] SATO H, SEONG Y A, YAMAMURA R, et al. Soft yet Strong Inflatable Structures for a Foldable and Portable Mobility [Z]. Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. 2020: 1-4.
[19] NIIYAMA R, SATO H, TSUJIMURA K, et al. Poimo: Portable and inflatable mobility devices customizable for personal physical characteristics[C] // Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology. 2020: 912-923.
[20] LI Q, GUO X, GONG J, et al. Experimental deployment behavior of air-inflated fabric arches and a full-scale fabric arch frame [J]. Thin-Walled Structures, 2016, 103: 90-104.
[21] LIU P, YUE M, FENG S Z, et al. Structural behaviour of air-inflated beams. [C] // Structures. Elsevier, 2023, 47: 1613-1623.
[22] LACHENAL X, DAYNES S, WEAVER P M. Review of morphing concepts and materials for wind turbine blade applications [J]. Wind energy, 2013, 16(2): 283-307.
[23] CAIRO R R. Inflatable wind turbine blade and method for forming said rotor blade [Z]. Google Patents. 2011
[24] MENDOZA N R, FEIL R, JOHNSON N, et al. Conceptual Designs of the Structure of Inflatable Blades for Enabling Larger Turbines[C] // AIAA Scitech 2021: 0815.
[25] MALDAR N R, NG C Y, OGUZ E. A review of the optimization studies for Savonius turbine considering hydrokinetic applications [J]. Energy Conversion and Management, 2020, 226: 113495.
[26] ROY S, SAHA U K. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine [J]. Applied Energy, 2015, 137: 117-125.
[27] JIA R, XIA H, ZHANG S, et al. Optimal design of Savonius wind turbine blade based on support vector regression surrogate model and modified flower pollination algorithm [J]. Energy Conversion and Management, 2022, 270: 116247.
[28] XIANGLEI J, XULIANG L, HONGXU L, et al. Blade optimization design of Savonius hydraulic turbine based on radial basis function surrogate model and L-SHADE algorithm [J]. Ocean Engineering, 2023, 286: 115620.
[29] HUAIJIE X, SONG Z, RONGYUAN J, et al. [J]. Energy Reports, 2022, 8: 12366-12378.
[30] WENLONG T, ZHAOYONG M, BAOSHOU Z, et al. Shape optimization of a Savonius wind rotor with different convex and concave sides [J]. Renewable Energy, 2018, 117: 287-299.
[31] EMEEL K, DOMINIQUE T. Optimal shape of thick blades for a hydraulic Savonius turbine [J]. Renewable Energy, 2019, 134: 629-638.
[32] CUEVAS-CARVAJAL N, CORTES-RAMIREZ J, NORATO J A, et al. Effect of geometrical parameters on the performance of conventional Savonius VAWT: A review [J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112314.
[33] SAAD A S, EL-SHARKAWY I I, OOKAWARA S, et al. Performance enhancement of twisted-bladed Savonius vertical axis wind turbines [J]. Energy Conversion and Management, 2020, 209: 112673.
[34] KOTHE L B, MöLLER S V, PETRY A P. Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine [J]. Renewable Energy, 2020, 148: 627-638.
[35] MAHMOUD N, EL-HAROUN A, WAHBA E, et al. An experimental study on improvement of Savonius rotor performance [J]. Alexandria Engineering Journal, 2012, 51(1): 19-25.
[36] Lates M, Velicu R. CFD analysis and theoretical modelling of multiblade small Savonius wind turbines[C] // Sustainable Energy in the Built Environment-Steps Towards nZEB: Proceedings of the Conference for Sustainable Energy (CSE) 2014. Springer International Publishing, 2014: 403-415. SAHA U K, THOTLA S, MAITY D. Optimum design configuration of Savonius rotor through wind tunnel experiments [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(8-9): 1359-1375.
[37] ALEXANDER A, HOLOWNIA B. Wind tunnel tests on a Savonius rotor [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1978, 3(4): 343-351.
[38] USHIYAMA I, NAGAI H, SHINODA J. Experimentally determining the optimum design configuration for Savonius rotors [J]. Bulletin of JSME, 1986, 29(258): 4130-4138.
[39] ALI M H. Experimental comparison study for Savonius wind turbine of two & three blades at low wind speed [J]. International Journal of Modern Engineering Research (IJMER), 2013, 3(5): 2978-2986.
[40] ROY S, SAHA U K. Review on the numerical investigations into the design and development of Savonius wind rotors [J]. Renewable and Sustainable Energy Reviews, 2013, 24: 73-83.
[41] MAO Z, TIAN W. Effect of the blade arc angle on the performance of a Savonius wind turbine [J]. Advances in Mechanical Engineering, 2015, 7(5): 1687814015584247.
[42] ABDELAZIZ K R, NAWAR M A A, RAMADAN A, et al. Performance investigation of a Savonius rotor by varying the blade arc angles [J]. Ocean Engineering, 2022, 260.
[43] SAAD A S, ELWARDANY A, EL-SHARKAWY I I, et al. Performance evaluation of a novel vertical axis wind turbine using twisted blades in multi-stage Savonius rotors [J]. Energy Conversion and Management, 2021, 235: 114013.
[44] ZHAO Z, ZHENG Y, XU X, et al. Research on the improvement of the performance of Savonius rotor based on numerical study[C] // 2009 International Conference on Sustainable Power Generation and Supply. IEEE, 2009: 1-6.
[45] FERRARI G, FEDERICI D, SCHITO P, et al. CFD study of Savonius wind turbine: 3D model validation and parametric analysis [J]. Renewable Energy, 2017, 105: 722-734.
[46] CHEN Y, CHEN Y, ZHOU J, et al. Optimization and performance study of bidirectional Savonius tidal turbine cluster with deflectors [J]. Energy Conversion and Management, 2023, 283: 116947.
[47] YONGCHAO Z, CAN K, HEXIANG Z, et al. Effects of the deflector plate on performance and flow characteristics of a drag-type hydrokinetic rotor [J]. Ocean Engineering, 2021, 238: 109760.
[48] SIVASEGARAM S. Secondary parameters affecting the performance of resistance-type vertical-axis wind rotors [J]. Wind Engineering, 1978: 49-58.
[49] JEON K S, JEONG J I, PAN J-K, et al. Effects of end plates with various shapes and sizes on helical Savonius wind turbines [J]. Renewable energy, 2015, 79: 167-176.
[50] NIMVARI M E, FATAHIAN H, FATAHIAN E. Performance improvement of a Savonius vertical axis wind turbine using a porous deflector [J]. Energy Conversion and Management, 2020, 220: 113062.
[51] GUO F, SONG B, MAO Z, et al. Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector [J]. Energy, 2020, 196: 117132.
[52] STOUT C, ISLAM S, WHITE A, et al. Efficiency improvement of vertical axis wind turbines with an upstream deflector [J]. Energy procedia, 2017, 118: 141-148.
[53] MOHAMED M H, ALQURASHI F, THéVENIN D. Performance enhancement of a Savonius turbine under effect of frontal guiding plates [J]. Energy Reports, 2021, 7: 6069-6076.
[54] FATAHIAN E, ISMAIL F, ISHAK M H H, et al. An innovative deflector system for drag-type Savonius turbine using a rotating cylinder for performance improvement [J]. Energy Conversion and Management, 2022, 257: 115453.
[55] RAMARAJAN J, JAYAVEL S. Numerical study on the effect of out-of-phase wavy confining walls on the performance of Savonius rotor [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 226: 105023.
[56] HESAMI A, NIKSERESHT A H, MOHAMED M H. Feasibility study of twin-rotor Savonius wind turbine incorporated with a wind-lens [J]. Ocean Engineering, 2022, 247: 110654.
[57] MARINIĆ-KRAGIĆ I, VUČINA D, MILAS Z. Robust optimization of Savonius-type wind turbine deflector blades considering wind direction sensitivity and production material decrease [J]. Renewable energy, 2022, 192: 150-163.
[58] ABOUJAOUDE H, BEAUMONT F, MURER S, et al. Aerodynamic performance enhancement of a Savonius wind turbine using an axisymmetric deflector [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220.
[59] MANDLEKAR N, JOSHI M, BUTOLA B S. A review on specialty elastomers based potential inflatable structures and applications [J]. Advanced Industrial and Engineering Polymer Research, 2022, 5(1): 33-45.
[60] 胡满钰. EVA胶膜层压复合织物的制备及其湿传导性能研究 [D]; 浙江理工大学, 2024.
[61] 陈洵凛. 面向大幅面布料激光切割快速标定与多目标识别算法研究 [D]; 广东工业大学, 2018.
[62] STAFF P. Radio Frequency Welding - ScienceDirect [J]. Handbook of Plastics Joining, 1997: 75-78.
[63] HAQUE M S, SIDDIQUI M A. Plastic welding: important facts and developments [J]. American Journal of Mechanical and Industrial Engineering, 2016, 1(2): 15-19.
[64] 曾晓天. 异质高分子材料热风焊接工艺研究 [D]; 杭州电子科技大学, 2024.
[65] 张哲贤. 拉丝布和气肋式充气膜结构受力性能试验研究 [D]; 南京航空航天大学, 2023.
[66] 潘宸. 阻力型水力转轮的流体动力学特征与性能研究 [D]; 江苏大学, 2019.
[67] ABDELAZIZ K R, NAWAR M A A, RAMADAN A, et al. Performance improvement of a Savonius turbine by using auxiliary blades [J]. Energy, 2022, 244.
[68] XU W, LI C-C, HUANG S-X, et al. Aerodynamic performance improvement analysis of Savonius Vertical Axis Wind Turbine utilizing plasma excitation flow control [J]. Energy, 2022, 239.
[69] BAZ A M, MAHMOUD N A, HAMED A M, et al. Optimization of two and three rotor Savonius wind turbine[C] // Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2015, 56802: V009T46A026.
[70] EL-DEEN A E S, NAWAR M A, ATTAI Y A, et al. On the enhancement of Savonius Bach-type rotor performance by studying the optimum stator configuration [J]. Ocean Engineering, 2020, 217: 107954.
[71] NASR K. Computational fluid dynamics investigations over conventional and modified Savonius wind turbines [J]. Heliyon, 2023, 9(6).
[72] MOFFAT R J. Describing the uncertainties in experimental results [J]. Experimental thermal and fluid science, 1988, 1(1): 3-17.
修改评论