[1] INGHAM P W, MCMAHON A P. Hedgehog signaling in animal development: paradigms and principles[J]. Genes Dev, 2001, 15(23): 3059-3087.
[2] PETROV K, WIERBOWSKI B M, SALIC A. Sending and receiving hedgehog signals[J]. Annu Rev Cell Dev Biol, 2017, 33: 145-168.
[3] HILL P, WANG B, RUTHER U. The molecular basis of Pallister Hall associated polydactyly[J]. Hum Mol Genet, 2007, 16(17): 2089-2096.
[4] GENG X, OLIVER G. Pathogenesis of holoprosencephaly[J]. J Clin Invest, 2009, 119(6): 1403-1413.
[5] JIANG J, HUI C C. Hedgehog signaling in development and cancer[J]. Dev Cell, 2008, 15(6): 801-812.
[6] PAK E, SEGAL R A. Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy[J]. Dev Cell, 2016, 38(4): 333-344.
[7] BARAKAT M T, HUMKE E W, SCOTT M P. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer[J]. Trends Mol Med, 2010, 16(8): 337-348.
[8] PORTER J A, YOUNG K E, BEACHY P A. Cholesterol modification of hedgehog signaling proteins in animal development[J]. Science, 1996, 274(5285): 255-259.
[9] PEPINSKY R B, ZENG C, WEN D, et al. Identification of a palmitic acid-modified form of human Sonic hedgehog[J]. J Biol Chem, 1998, 273(22): 14037-14045.
[10] CHAMOUN Z, MANN R K, NELLEN D, et al. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal[J]. Science, 2001, 293(5537): 2080-2084.
[11] BURKE R, NELLEN D, BELLOTTO M, et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells[J]. Cell, 1999, 99(7): 803-815.
[12] MA Y, ERKNER A, GONG R, et al. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched[J]. Cell, 2002, 111(1): 63-75.
[13] TAIPALE J, COOPER M K, MAITI T, et al. Patched acts catalytically to suppress the activity of Smoothened[J]. Nature, 2002, 418(6900): 892-897.
[14] COHEN D J. Targeting the hedgehog pathway: role in cancer and clinical implications of its inhibition[J]. Hematol Oncol Clin North Am, 2012, 26(3): 565-588, viii.
[15] FAN C W, TULADHAR R, LUM L. Signaling: making a leaner Hedgehog[J]. Nat Chem Biol, 2013, 9(4): 217-218.
[16] QI X, LI X. Mechanistic insights into the generation and transduction of hedgehog signaling[J]. Trends Biochem Sci, 2020, 45(5): 397-410.
[17] NUSSLEIN-VOLHARD C, WIESCHAUS E. Mutations affecting segment number and polarity in Drosophila[J]. Nature, 1980, 287(5785): 795-801.
[18] LEE J J, VON KESSLER D P, PARKS S, et al. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog[J]. Cell, 1992, 71(1): 33-50.
[19] INOUE Y, NIWA N, MITO T, et al. Expression patterns of hedgehog, wingless, and decapentaplegic during gut formation of Gryllus bimaculatus (cricket)[J]. Mech Dev, 2002, 110(1-2): 245-248.
[20] KUWABARA P E, LEE M H, SCHEDL T, et al. A C. elegans patched gene, ptc-1, functions in germ-line cytokinesis[J]. Genes Dev, 2000, 14(15): 1933-1944.
[21] VARJOSALO M, TAIPALE J. Hedgehog: functions and mechanisms[J]. Genes Dev, 2008, 22(18): 2454-2472.
[22] ECHELARD Y, EPSTEIN D J, ST-JACQUES B, et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity[J]. Cell, 1993, 75(7): 1417-1430.
[23] KRAUSS S, CONCORDET J P, INGHAM P W. A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos[J]. Cell, 1993, 75(7): 1431-1444.
[24] RIDDLE R D, JOHNSON R L, LAUFER E, et al. Sonic hedgehog mediates the polarizing activity of the ZPA[J]. Cell, 1993, 75(7): 1401-1416.
[25] ROELINK H, AUGSBURGER A, HEEMSKERK J, et al. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord[J]. Cell, 1994, 76(4): 761-775.
[26] MARIGO V, ROBERTS D J, LEE S M, et al. Cloning, expression, and chromosomal location of SHH and IHH: two human homologues of the Drosophila segment polarity gene hedgehog[J]. Genomics, 1995, 28(1): 44-51.
[27] EKKER S C, UNGAR A R, GREENSTEIN P, et al. Patterning activities of vertebrate hedgehog proteins in the developing eye and brain[J]. Curr Biol, 1995, 5(8): 944-955.
[28] CURRIE P D, INGHAM P W. Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish[J]. Nature, 1996, 382(6590): 452-455.
[29] MCMAHON A P, INGHAM P W, TABIN C J. Developmental roles and clinical significance of hedgehog signaling[J]. Curr Top Dev Biol, 2003, 53: 1-114.
[30] BITGOOD M J, SHEN L, MCMAHON A P. Sertoli cell signaling by Desert hedgehog regulates the male germline[J]. Curr Biol, 1996, 6(3): 298-304.
[31] COLNOT C, DE LA FUENTE L, HUANG S, et al. Indian hedgehog synchronizes skeletal angiogenesis and perichondrial maturation with cartilage development[J]. Development, 2005, 132(5): 1057-1067.
[32] HELLEMANS J, COUCKE P J, GIEDION A, et al. Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone-shaped epiphyses in hands and hips[J]. Am J Hum Genet, 2003, 72(4): 1040-1046.
[33] PAGAN-WESTPHAL S M, TABIN C J. The transfer of left-right positional information during chick embryogenesis[J]. Cell, 1998, 93(1): 25-35.
[34] CHIANG C, LITINGTUNG Y, LEE E, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function[J]. Nature, 1996, 383(6599): 407-413.
[35] ZHANG Y, KALDERON D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary[J]. Nature, 2001, 410(6828): 599-604.
[36] BUGLINO J A, RESH M D. Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog[J]. J Biol Chem, 2008, 283(32): 22076-22088.
[37] CHEN M H, LI Y J, KAWAKAMI T, et al. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates[J]. Genes Dev, 2004, 18(6): 641-659.
[38] CREANGA A, GLENN T D, MANN R K, et al. Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form[J]. Genes Dev, 2012, 26(12): 1312-1325.
[39] MANN R K, BEACHY P A. Cholesterol modification of proteins[J]. Biochim Biophys Acta, 2000, 1529(1-3): 188-202.
[40] JIANG Y, BENZ T L, LONG S B. Substrate and product complexes reveal mechanisms of Hedgehog acylation by HHAT[J]. Science, 2021, 372(6547): 1215-1219.
[41] HALL T M, PORTER J A, YOUNG K E, et al. Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins[J]. Cell, 1997, 91(1): 85-97.
[42] CHEN X, TUKACHINSKY H, HUANG C H, et al. Processing and turnover of the Hedgehog protein in the endoplasmic reticulum[J]. J Cell Biol, 2011, 192(5): 825-838.
[43] WILKINSON B, GILBERT H F. Protein disulfide isomerase[J]. Biochim Biophys Acta, 2004, 1699(1-2): 35-44.
[44] PUROHIT R, PENG D S, VIELMAS E, et al. Dual roles of the sterol recognition region in Hedgehog protein modification[J]. Commun Biol, 2020, 3(1): 250.
[45] MAFI A, PUROHIT R, VIELMAS E, et al. Hedgehog proteins create a dynamic cholesterol interface[J]. PLoS One, 2021, 16(2): e0246814.
[46] TANG X, CHEN R, MESIAS V S D, et al. A SURF4-to-proteoglycan relay mechanism that mediates the sorting and secretion of a tagged variant of sonic hedgehog[J]. Proc Natl Acad Sci U S A, 2022, 119(11): e2113991119.
[47] GALLET A, RODRIGUEZ R, RUEL L, et al. Cholesterol modification of hedgehog is required for trafficking and movement, revealing an asymmetric cellular response to hedgehog[J]. Dev Cell, 2003, 4(2): 191-204.
[48] GUERRERO I, CHIANG C. A conserved mechanism of Hedgehog gradient formation by lipid modifications[J]. Trends Cell Biol, 2007, 17(1): 1-5.
[49] LI Y, ZHANG H, LITINGTUNG Y, et al. Cholesterol modification restricts the spread of Shh gradient in the limb bud[J]. Proc Natl Acad Sci U S A, 2006, 103(17): 6548-6553.
[50] DESSAUD E, MCMAHON A P, BRISCOE J. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network[J]. Development, 2008, 135(15): 2489-2503.
[51] TICKLE C, TOWERS M. Sonic hedgehog signaling in limb development[J]. Front Cell Dev Biol, 2017, 5: 14.
[52] HARFE B D, SCHERZ P J, NISSIM S, et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities[J]. Cell, 2004, 118(4): 517-528.
[53] HALL E T, CLEVERDON E R, OGDEN S K. Dispatching Sonic Hedgehog: molecular mechanisms controlling deployment[J]. Trends Cell Biol, 2019, 29(5): 385-395.
[54] COULTER M E, DOROBANTU C M, LODEWIJK G A, et al. The ESCRT-III protein CHMP1A mediates secretion of Sonic Hedgehog on a distinctive subtype of extracellular vesicles[J]. Cell Rep, 2018, 24(4): 973-986 e978.
[55] GRADILLA A C, GONZALEZ E, SEIJO I, et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion[J]. Nat Commun, 2014, 5: 5649.
[56] MATUSEK T, WENDLER F, POLES S, et al. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog[J]. Nature, 2014, 516(7529): 99-103.
[57] GALLET A, RUEL L, STACCINI-LAVENANT L, et al. Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia[J]. Development, 2006, 133(3): 407-418.
[58] ZENG X, GOETZ J A, SUBER L M, et al. A freely diffusible form of Sonic hedgehog mediates long-range signalling[J]. Nature, 2001, 411(6838): 716-720.
[59] VYAS N, GOSWAMI D, MANONMANI A, et al. Nanoscale organization of hedgehog is essential for long-range signaling[J]. Cell, 2008, 133(7): 1214-1227.
[60] PANAKOVA D, SPRONG H, MAROIS E, et al. Lipoprotein particles are required for Hedgehog and Wingless signalling[J]. Nature, 2005, 435(7038): 58-65.
[61] PALM W, SWIERCZYNSKA M M, KUMARI V, et al. Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals[J]. PLoS Biol, 2013, 11(3): e1001505.
[62] CALLEJO A, BILIONI A, MOLLICA E, et al. Dispatched mediates Hedgehog basolateral release to form the long-range morphogenetic gradient in the Drosophila wing disk epithelium[J]. Proc Natl Acad Sci U S A, 2011, 108(31): 12591-12598.
[63] SANDERS T A, LLAGOSTERA E, BARNA M. Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning[J]. Nature, 2013, 497(7451): 628-632.
[64] GONZALEZ-MENDEZ L, SEIJO-BARANDIARAN I, GUERRERO I. Cytoneme-mediated cell-cell contacts for Hedgehog reception[J]. Elife, 2017, 6.
[65] BODEEN W J, MARADA S, TRUONG A, et al. A fixation method to preserve cultured cell cytonemes facilitates mechanistic interrogation of morphogen transport[J]. Development, 2017, 144(19): 3612-3624.
[66] ROY S, HUANG H, LIU S, et al. Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein[J]. Science, 2014, 343(6173): 1244624.
[67] D'ANGELO G, MATUSEK T, PIZETTE S, et al. Endocytosis of Hedgehog through dispatched regulates long-range signaling[J]. Dev Cell, 2015, 32(3): 290-303.
[68] YANG T, ESPENSHADE P J, WRIGHT M E, et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER[J]. Cell, 2002, 110(4): 489-500.
[69] BROWN M S, RADHAKRISHNAN A, GOLDSTEIN J L. Retrospective on cholesterol homeostasis: the central role of Scap[J]. Annu Rev Biochem, 2018, 87: 783-807.
[70] VYAS N, WALVEKAR A, TATE D, et al. Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties[J]. Sci Rep, 2014, 4: 7357.
[71] ETHERIDGE L A, CRAWFORD T Q, ZHANG S, et al. Evidence for a role of vertebrate Disp1 in long-range Shh signaling[J]. Development, 2010, 137(1): 133-140.
[72] QI X, SCHMIEGE P, COUTAVAS E, et al. Structures of human Patched and its complex with native palmitoylated sonic hedgehog[J]. Nature, 2018, 560(7716): 128-132.
[73] STEWART D P, MARADA S, BODEEN W J, et al. Cleavage activates dispatched for Sonic Hedgehog ligand release[J]. Elife, 2018, 7.
[74] SKODA A M, SIMOVIC D, KARIN V, et al. The role of the Hedgehog signaling pathway in cancer: A comprehensive review[J]. Bosn J Basic Med Sci, 2018, 18(1): 8-20.
[75] COHEN M M, JR. Hedgehog signaling update[J]. Am J Med Genet A, 2010, 152A(8): 1875-1914.
[76] KAUVAR E F, MUENKE M. Holoprosencephaly: recommendations for diagnosis and management[J]. Curr Opin Pediatr, 2010, 22(6): 687-695.
[77] MOUDEN C, DUBOURG C, CARRE W, et al. Complex mode of inheritance in holoprosencephaly revealed by whole exome sequencing[J]. Clin Genet, 2016, 89(6): 659-668.
[78] YAMAGUCHI A, NAKASHIMA R, SAKURAI K. Structural basis of RND-type multidrug exporters[J]. Front Microbiol, 2015, 6: 327.
[79] KUWABARA P E, LABOUESSE M. The sterol-sensing domain: multiple families, a unique role?[J]. Trends Genet, 2002, 18(4): 193-201.
[80] CANNAC F, QI C, FALSCHLUNGER J, et al. Cryo-EM structure of the Hedgehog release protein Dispatched[J]. Sci Adv, 2020, 6(16): eaay7928.
[81] CHEN H, LIU Y, LI X. Structure of human Dispatched-1 provides insights into Hedgehog ligand biogenesis[J]. Life Sci Alliance, 2020, 3(8).
[82] LUO Y, WAN G, ZHOU X, et al. Architecture of Dispatched, a transmembrane protein responsible for Hedgehog release[J]. Front Mol Biosci, 2021, 8: 701826.
[83] WANG Q, ASARNOW D E, DING K, et al. Dispatched uses Na(+) flux to power release of lipid-modified Hedgehog[J]. Nature, 2021, 599(7884): 320-324.
[84] PETROV K, WIERBOWSKI B M, LIU J, et al. Distinct cation gradients power cholesterol transport at different key points in the Hedgehog signaling pathway[J]. Dev Cell, 2020, 55(3): 314-327 e317.
[85] TUKACHINSKY H, KUZMICKAS R P, JAO C Y, et al. Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand[J]. Cell Rep, 2012, 2(2): 308-320.
[86] WIERBOWSKI B M, PETROV K, ARAVENA L, et al. Hedgehog pathway activation requires coreceptor-catalyzed, lipid-dependent relay of the Sonic Hedgehog ligand[J]. Dev Cell, 2020, 55(4): 450-467 e458.
[87] GRIMMOND S, LARDER R, VAN HATEREN N, et al. Cloning, mapping, and expression analysis of a gene encoding a novel mammalian EGF-related protein (SCUBE1)[J]. Genomics, 2000, 70(1): 74-81.
[88] YANG R B, NG C K, WASSERMAN S M, et al. Identification of a novel family of cell-surface proteins expressed in human vascular endothelium[J]. J Biol Chem, 2002, 277(48): 46364-46373.
[89] TSAI M T, CHENG C J, LIN Y C, et al. Isolation and characterization of a secreted, cell-surface glycoprotein SCUBE2 from humans[J]. Biochem J, 2009, 422(1): 119-128.
[90] WU B T, SU Y H, TSAI M T, et al. A novel secreted, cell-surface glycoprotein containing multiple epidermal growth factor-like repeats and one CUB domain is highly expressed in primary osteoblasts and bones[J]. J Biol Chem, 2004, 279(36): 37485-37490.
[91] LIN Y C, SAHOO B K, GAU S S, et al. The biology of SCUBE[J]. J Biomed Sci, 2023, 30(1): 33.
[92] CHENG C J, LIN Y C, TSAI M T, et al. SCUBE2 suppresses breast tumor cell proliferation and confers a favorable prognosis in invasive breast cancer[J]. Cancer Res, 2009, 69(8): 3634-3641.
[93] LIN Y C, CHAO T Y, YEH C T, et al. Endothelial SCUBE2 interacts with VEGFR2 and regulates VEGF-induced angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2017, 37(1): 144-155.
[94] VAN EEDEN F J, GRANATO M, SCHACH U, et al. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio[J]. Development, 1996, 123: 153-164.
[95] HOLLWAY G E, MAULE J, GAUTIER P, et al. Scube2 mediates Hedgehog signalling in the zebrafish embryo[J]. Dev Biol, 2006, 294(1): 104-118.
[96] GRIMMOND S, LARDER R, VAN HATEREN N, et al. Expression of a novel mammalian epidermal growth factor-related gene during mouse neural development[J]. Mech Dev, 2001, 102(1-2): 209-211.
[97] GLISE B, MILLER C A, CROZATIER M, et al. Shifted, the Drosophila ortholog of Wnt inhibitory factor-1, controls the distribution and movement of Hedgehog[J]. Dev Cell, 2005, 8(2): 255-266.
[98] DAVIS C G. The many faces of epidermal growth factor repeats[J]. New Biol, 1990, 2(5): 410-419.
[99] PRIETO J H, SAMPOLI BENITEZ B A, MELACINI G, et al. Dynamics of the fragment of thrombomodulin containing the fourth and fifth epidermal growth factor-like domains correlate with function[J]. Biochemistry, 2005, 44(4): 1225-1233.
[100] LUCA V C, KIM B C, GE C, et al. Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity[J]. Science, 2017, 355(6331): 1320-1324.
[101] LO SURDO P, BOTTOMLEY M J, CALZETTA A, et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH[J]. EMBO Rep, 2011, 12(12): 1300-1305.
[102] STACEY M, CHANG G W, DAVIES J Q, et al. The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans[J]. Blood, 2003, 102(8): 2916-2924.
[103] PERIZ J, GILL A C, KNOTT V, et al. Calcium binding activity of the epidermal growth factor-like domains of the apicomplexan microneme protein EtMIC4[J]. Mol Biochem Parasitol, 2005, 143(2): 192-199.
[104] TU C F, YAN Y T, WU S Y, et al. Domain and functional analysis of a novel platelet-endothelial cell surface protein, SCUBE1[J]. J Biol Chem, 2008, 283(18): 12478-12488.
[105] LIN Y C, NICETA M, MUTO V, et al. SCUBE3 loss-of-function causes a recognizable recessive developmental disorder due to defective bone morphogenetic protein signaling[J]. Am J Hum Genet, 2021, 108(1): 115-133.
[106] TU C F, TSAO K C, LEE S J, et al. SCUBE3 (signal peptide-CUB-EGF domain-containing protein 3) modulates fibroblast growth factor signaling during fast muscle development[J]. J Biol Chem, 2014, 289(27): 18928-18942.
[107] MELLQUIST J L, KASTURI L, SPITALNIK S L, et al. The amino acid following an Asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency[J]. Biochemistry, 1998, 37(19): 6833-6837.
[108] LIAO W J, TSAO K C, YANG R B. Electrostatics and N-glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signalling[J]. Biochem J, 2016, 473(5): 661-672.
[109] BORK P, BECKMANN G. The CUB domain. A widespread module in developmentally regulated proteins[J]. J Mol Biol, 1993, 231(2): 539-545.
[110] GABORIAUD C, GREGORY-PAURON L, TEILLET F, et al. Structure and properties of the Ca(2+)-binding CUB domain, a widespread ligand-recognition unit involved in major biological functions[J]. Biochem J, 2011, 439(2): 185-193.
[111] GABORIAUD C, TEILLET F, GREGORY L A, et al. Assembly of C1 and the MBL- and ficolin-MASP complexes: structural insights[J]. Immunobiology, 2007, 212(4-5): 279-288.
[112] ANDERSEN C B, MADSEN M, STORM T, et al. Structural basis for receptor recognition of vitamin-B(12)-intrinsic factor complexes[J]. Nature, 2010, 464(7287): 445-448.
[113] GREGORY L A, THIELENS N M, ARLAUD G J, et al. X-ray structure of the Ca2+-binding interaction domain of C1s. Insights into the assembly of the C1 complex of complement[J]. J Biol Chem, 2003, 278(34): 32157-32164.
[114] BALLY I, ROSSI V, LUNARDI T, et al. Identification of the C1q-binding sites of human C1r and C1s: a refined three-dimensional model of the C1 complex of complement[J]. J Biol Chem, 2009, 284(29): 19340-19348.
[115] SAHOO B K, LIN Y C, TU C F, et al. Signal peptide-CUB-EGF-like repeat-containing protein 1-promoted FLT3 signaling is critical for the initiation and maintenance of MLL-rearranged acute leukemia[J]. Haematologica, 2023, 108(5): 1284-1299.
[116] LIN Y C, ROFFLER S R, YAN Y T, et al. Disruption of Scube2 impairs endochondral bone formation[J]. J Bone Miner Res, 2015, 30(7): 1255-1267.
[117] LIN Y C, CHEN C C, CHENG C J, et al. Domain and functional analysis of a novel breast tumor suppressor protein, SCUBE2[J]. J Biol Chem, 2011, 286(30): 27039-27047.
[118] LIAO W J, LIN H, CHENG C F, et al. SCUBE1-enhanced bone morphogenetic protein signaling protects against renal ischemia-reperfusion injury[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(2): 329-338.
[119] LIN Y C, LEE Y C, LI L H, et al. Tumor suppressor SCUBE2 inhibits breast-cancer cell migration and invasion through the reversal of epithelial-mesenchymal transition[J]. J Cell Sci, 2014, 127(Pt 1): 85-100.
[120] LIN X. Functions of heparan sulfate proteoglycans in cell signaling during development[J]. Development, 2004, 131(24): 6009-6021.
[121] BELLAICHE Y, THE I, PERRIMON N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion[J]. Nature, 1998, 394(6688): 85-88.
[122] TAKEI Y, OZAWA Y, SATO M, et al. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans[J]. Development, 2004, 131(1): 73-82.
[123] HAN C, BELENKAYA T Y, WANG B, et al. Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynamin-independent process[J]. Development, 2004, 131(3): 601-611.
[124] LIN X, WEI G, SHI Z, et al. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice[J]. Dev Biol, 2000, 224(2): 299-311.
[125] RUBIN J B, CHOI Y, SEGAL R A. Cerebellar proteoglycans regulate sonic hedgehog responses during development[J]. Development, 2002, 129(9): 2223-2232.
[126] WHALEN D M, MALINAUSKAS T, GILBERT R J, et al. Structural insights into proteoglycan-shaped Hedgehog signaling[J]. Proc Natl Acad Sci U S A, 2013, 110(41): 16420-16425.
[127] CHUANG P T, MCMAHON A P. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein[J]. Nature, 1999, 397(6720): 617-621.
[128] KWONG L, BIJLSMA M F, ROELINK H. Shh-mediated degradation of Hhip allows cell autonomous and non-cell autonomous Shh signalling[J]. Nat Commun, 2014, 5: 4849.
[129] AGRAWAL V, KIM D Y, KWON Y G. Hhip regulates tumor-stroma-mediated upregulation of tumor angiogenesis[J]. Exp Mol Med, 2017, 49(1): e289.
[130] GRIFFITHS S C, SCHWAB R A, EL OMARI K, et al. Hedgehog-interacting protein is a multimodal antagonist of Hedgehog signalling[J]. Nat Commun, 2021, 12(1): 7171.
[131] HOLTZ A M, GRIFFITHS S C, DAVIS S J, et al. Secreted HHIP1 interacts with heparan sulfate and regulates Hedgehog ligand localization and function[J]. J Cell Biol, 2015, 209(5): 739-757.
[132] BISHOP B, ARICESCU A R, HARLOS K, et al. Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP[J]. Nat Struct Mol Biol, 2009, 16(7): 698-703.
[133] JAKOBS P, SCHULZ P, ORTMANN C, et al. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells[J]. Sci Rep, 2016, 6: 26435.
[134] JAKOBS P, SCHULZ P, SCHURMANN S, et al. Ca(2+) coordination controls sonic hedgehog structure and its Scube2-regulated release[J]. J Cell Sci, 2017, 130(19): 3261-3271.
[135] OHLIG S, FARSHI P, PICKHINKE U, et al. Sonic hedgehog shedding results in functional activation of the solubilized protein[J]. Dev Cell, 2011, 20(6): 764-774.
[136] TENZEN T, ALLEN B L, COLE F, et al. The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice[J]. Dev Cell, 2006, 10(5): 647-656.
[137] ALLEN B L, TENZEN T, MCMAHON A P. The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development[J]. Genes Dev, 2007, 21(10): 1244-1257.
[138] YAO S, LUM L, BEACHY P. The ihog cell-surface proteins bind Hedgehog and mediate pathway activation[J]. Cell, 2006, 125(2): 343-357.
[139] MCLELLAN J S, YAO S, ZHENG X, et al. Structure of a heparin-dependent complex of Hedgehog and Ihog[J]. Proc Natl Acad Sci U S A, 2006, 103(46): 17208-17213.
[140] MCLELLAN J S, ZHENG X, HAUK G, et al. The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla[J]. Nature, 2008, 455(7215): 979-983.
[141] ZHANG Y, BEACHY P A. Cellular and molecular mechanisms of Hedgehog signalling[J]. Nat Rev Mol Cell Biol, 2023.
[142] ZHENG X, MANN R K, SEVER N, et al. Genetic and biochemical definition of the Hedgehog receptor[J]. Genes Dev, 2010, 24(1): 57-71.
[143] IZZI L, LEVESQUE M, MORIN S, et al. Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation[J]. Dev Cell, 2011, 20(6): 788-801.
[144] ROSTI K, GOLDMAN A, KAJANDER T. Solution structure and biophysical characterization of the multifaceted signalling effector protein growth arrest specific-1[J]. BMC Biochem, 2015, 16: 8.
[145] HUANG P, WIERBOWSKI B M, LIAN T, et al. Structural basis for catalyzed assembly of the Sonic hedgehog-Patched1 signaling complex[J]. Dev Cell, 2022.
[146] QI X, SCHMIEGE P, COUTAVAS E, et al. Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex[J]. Science, 2018, 362(6410).
[147] INGHAM P W. Hedgehog signaling[M]. Cell signaling pathways in development. 2022: 1-58.
[148] STONE D M, HYNES M, ARMANINI M, et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog[J]. Nature, 1996, 384(6605): 129-134.
[149] DENEF N, NEUBUSER D, PEREZ L, et al. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened[J]. Cell, 2000, 102(4): 521-531.
[150] CORBIT K C, AANSTAD P, SINGLA V, et al. Vertebrate Smoothened functions at the primary cilium[J]. Nature, 2005, 437(7061): 1018-1021.
[151] HUANGFU D, ANDERSON K V. Cilia and Hedgehog responsiveness in the mouse[J]. Proc Natl Acad Sci U S A, 2005, 102(32): 11325-11330.
[152] ROHATGI R, MILENKOVIC L, SCOTT M P. Patched1 regulates hedgehog signaling at the primary cilium[J]. Science, 2007, 317(5836): 372-376.
[153] LI X Z, NIKAIDO H. Efflux-mediated drug resistance in bacteria: an update[J]. Drugs, 2009, 69(12): 1555-1623.
[154] SU C C, LI M, GU R, et al. Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway[J]. J Bacteriol, 2006, 188(20): 7290-7296.
[155] LOPEZ M E, SCOTT M P. Genetic dissection of a cell-autonomous neurodegenerative disorder: lessons learned from mouse models of Niemann-Pick disease type C[J]. Dis Model Mech, 2013, 6(5): 1089-1100.
[156] MICHAUX G, GANSMULLER A, HINDELANG C, et al. CHE-14, a protein with a sterol-sensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells[J]. Curr Biol, 2000, 10(18): 1098-1107.
[157] CHEN J K, TAIPALE J, COOPER M K, et al. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened[J]. Genes Dev, 2002, 16(21): 2743-2748.
[158] CORCORAN R B, SCOTT M P. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells[J]. Proc Natl Acad Sci U S A, 2006, 103(22): 8408-8413.
[159] MYERS B R, SEVER N, CHONG Y C, et al. Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response[J]. Dev Cell, 2013, 26(4): 346-357.
[160] HUANG P, NEDELCU D, WATANABE M, et al. Cellular cholesterol directly activates Smoothened in Hedgehog signaling[J]. Cell, 2016, 166(5): 1176-1187 e1114.
[161] GONG X, QIAN H, CAO P, et al. Structural basis for the recognition of Sonic Hedgehog by human Patched1[J]. Science, 2018, 361(6402).
[162] KUMAR N, SU C C, CHOU T H, et al. Crystal structures of the burkholderia multivorans hopanoid transporter HpnN[J]. Proc Natl Acad Sci U S A, 2017, 114(25): 6557-6562.
[163] ZHANG Y, BULKLEY D P, XIN Y, et al. Structural basis for cholesterol transport-like activity of the Hedgehog receptor Patched[J]. Cell, 2018, 175(5): 1352-1364 e1314.
[164] TUKACHINSKY H, PETROV K, WATANABE M, et al. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog[J]. Proc Natl Acad Sci U S A, 2016, 113(40): E5866-E5875.
[165] KONITSIOTIS A D, CHANG S C, JOVANOVIC B, et al. Attenuation of hedgehog acyltransferase-catalyzed sonic Hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells[J]. PLoS One, 2014, 9(3): e89899.
[166] PETROVA E, RIOS-ESTEVES J, OUERFELLI O, et al. Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling[J]. Nat Chem Biol, 2013, 9(4): 247-249.
[167] GOETZ J A, SINGH S, SUBER L M, et al. A highly conserved amino-terminal region of sonic hedgehog is required for the formation of its freely diffusible multimeric form[J]. J Biol Chem, 2006, 281(7): 4087-4093.
[168] QIAN H, CAO P, HU M, et al. Inhibition of tetrameric Patched1 by Sonic Hedgehog through an asymmetric paradigm[J]. Nat Commun, 2019, 10(1): 2320.
[169] ZHANG Y, LU W J, BULKLEY D P, et al. Hedgehog pathway activation through nanobody-mediated conformational blockade of the Patched sterol conduit[J]. Proc Natl Acad Sci U S A, 2020, 117(46): 28838-28846.
[170] KINNEBREW M, IVERSON E J, PATEL B B, et al. Cholesterol accessibility at the ciliary membrane controls hedgehog signaling[J]. Elife, 2019, 8.
[171] LIU S L, SHENG R, JUNG J H, et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol[J]. Nat Chem Biol, 2017, 13(3): 268-274.
[172] DESHPANDE I, LIANG J, HEDEEN D, et al. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity[J]. Nature, 2019, 571(7764): 284-288.
[173] KINNEBREW M, LUCHETTI G, SIRCAR R, et al. Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes[J]. Elife, 2021, 10.
[174] MYERS B R, NEAHRING L, ZHANG Y, et al. Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium[J]. Proc Natl Acad Sci U S A, 2017, 114(52): E11141-E11150.
[175] RADHAKRISHNAN A, ROHATGI R, SIEBOLD C. Cholesterol access in cellular membranes controls Hedgehog signaling[J]. Nat Chem Biol, 2020, 16(12): 1303-1313.
[176] BYRNE E F X, SIRCAR R, MILLER P S, et al. Structural basis of Smoothened regulation by its extracellular domains[J]. Nature, 2016, 535(7613): 517-522.
[177] NEDELCU D, LIU J, XU Y, et al. Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling[J]. Nat Chem Biol, 2013, 9(9): 557-564.
[178] LUCHETTI G, SIRCAR R, KONG J H, et al. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling[J]. Elife, 2016, 5.
[179] XIAO X, TANG J J, PENG C, et al. Cholesterol modification of Smoothened is required for Hedgehog signaling[J]. Mol Cell, 2017, 66(1): 154-162 e110.
[180] HU A, ZHANG J Z, WANG J, et al. Cholesterylation of Smoothened is a calcium-accelerated autoreaction involving an intramolecular ester intermediate[J]. Cell Res, 2022, 32(3): 288-301.
[181] HUANG P, ZHENG S, WIERBOWSKI B M, et al. Structural basis of Smoothened activation in Hedgehog signaling[J]. Cell, 2018, 174(2): 312-324 e316.
[182] QI X, LIU H, THOMPSON B, et al. Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric G(i)[J]. Nature, 2019, 571(7764): 279-283.
[183] YAUCH R L, DIJKGRAAF G J, ALICKE B, et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma[J]. Science, 2009, 326(5952): 572-574.
[184] NACHTERGAELE S, WHALEN D M, MYDOCK L K, et al. Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling[J]. Elife, 2013, 2: e01340.
[185] DUNAEVA M, MICHELSON P, KOGERMAN P, et al. Characterization of the physical interaction of Gli proteins with SUFU proteins[J]. J Biol Chem, 2003, 278(7): 5116-5122.
[186] SVARD J, HEBY-HENRICSON K, PERSSON-LEK M, et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway[J]. Dev Cell, 2006, 10(2): 187-197.
[187] JIA J, TONG C, WANG B, et al. Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I[J]. Nature, 2004, 432(7020): 1045-1050.
[188] LI S, LI S, HAN Y, et al. Regulation of Smoothened phosphorylation and high-level Hedgehog signaling activity by a plasma membrane associated kinase[J]. PLoS Biol, 2016, 14(6): e1002481.
[189] CHEN Y, SASAI N, MA G, et al. Sonic Hedgehog dependent phosphorylation by CK1alpha and GRK2 is required for ciliary accumulation and activation of smoothened[J]. PLoS Biol, 2011, 9(6): e1001083.
[190] LI S, MA G, WANG B, et al. Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation[J]. Sci Signal, 2014, 7(332): ra62.
[191] HAN Y, WANG B, CHO Y S, et al. Phosphorylation of Ci/Gli by fused family kinases promotes Hedgehog signaling[J]. Dev Cell, 2019, 50(5): 610-626 e614.
[192] LI S, CHEN Y, SHI Q, et al. Hedgehog-regulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila[J]. PLoS Biol, 2012, 10(1): e1001239.
[193] LI S, LI S, WANG B, et al. Hedgehog reciprocally controls trafficking of Smo and Ptc through the Smurf family of E3 ubiquitin ligases[J]. Sci Signal, 2018, 11(516).
[194] SGRO G G, COSTA T R D. Cryo-EM grid preparation of membrane protein samples for single particle analysis[J]. Front Mol Biosci, 2018, 5: 74.
[195] QI C, DI MININ G, VERCELLINO I, et al. Structural basis of sterol recognition by human hedgehog receptor PTCH1[J]. Sci Adv, 2019, 5(9): eaaw6490.
[196] FAN X, WANG J, ZHANG X, et al. Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution[J]. Nat Commun, 2019, 10(1): 2386.
[197] WU X, RAPOPORT T A. Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies)[J]. Proc Natl Acad Sci U S A, 2021, 118(41).
修改评论