中文版 | English
题名

基于树枝状微流控芯片的分子诊断平台

其他题名
MOLECULAR DIAGNOSTIC PLATFORM BASED ON DENDRITIC MICROFLUIDIC CHIP
姓名
姓名拼音
LUO Xueqing
学号
12132639
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
王斗
导师单位
生物医学工程系
论文答辩日期
2024-05-10
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

病原体的快速准确诊断对于公共卫生具有至关重要的意义,传统诊断方法,如酶联免疫吸附实验(Enzyme-linked Immunosorbent Assay, ELISA)和聚合酶链式反应(Polymerase Chain Reaction, PCR),虽然被广泛应用,但它们存在诸如检测时间长、需要复杂设备等局限性,难以满足快速和现场检测的需求。近年来,微流控技术因其微小尺寸和高度集成化的特点,为快速、高效、灵敏度高的病原体检测提供了新的技术平台。

本研究将重组酶聚合酶扩增(Recombinase Polymerase Amplification, RPA)技术、T7转录技术以及成簇规律间隔短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR)技术结合,研发了一种可用于乙型肝炎病毒(Hepatitis B Virus, HBV)核酸检测的方法。RPA技术使得核酸能在恒温条件下迅速扩增,结合T7转录可以将扩增产物转录成RNA,并被CRISPR/Cas13a技术进一步识别从而进行信号放大。与商用RPA荧光检测试剂盒相比,RPA-T7-Cas13a检测技术的终点荧光信号值可达到商用RPA检测试剂盒的10倍,具有更高的检测灵敏度。

在此基础上,本研究创新性地设计开发了一种基于树枝状结构的离心式微流控数字化检测芯片,采用离心驱动机制,降低了对注射泵等外部液体驱动控制设备的依赖。该平台利用树枝状微阵列结构缩小了反应单元体积,增加了样本反应单元数量。该检测平台能够在30 min内完成HBV病毒的核酸检测,检测灵敏度达到1 aM,并且能够在多种病原体混合物中准确检测到目标病原体,特异性良好。与高内涵成像系统结合还可以对HBV病毒核酸进行高效的定量分析。同现有的商业数字化微流控检测仪器相比,本研究开发的微流控检测平台无需复杂的芯片结构设计和样本液滴化处理过程,仅通过离心即可快速完成检测单元的分散,为病原体数字化检测的发展提供了新的思路和工具。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] ZAMAN F A, AGGARWAL S, PAL R, et al. Exploratory study on the operational issues faced in collection, transportation, and laboratory testing related to COVID‑19 in remote areas of selected EAG states of north east and east India[J]. Journal of Family Medicine and Primary Care, 2021, 10(3):1443-1452.
[2] DORON S, HOROWITZ G. Medical appropriateness and economics of nucleic acid amplification testing for infectious diseases[J]. Clinical Biochemistry, 2023, 117: 48–52.
[3] HAN X X, LI J M, CHEN Y, et al. SARS-CoV-2 nucleic acid testing is China’s key pillar of COVID-19 containment[J]. Lancet, 2022, 399(10336): 1690–1691.
[4] SIDRANSKY D. Nucleic acid-based methods for the detection of cancer[J]. Science, 1997, 278(5340): 1054–1059.
[5] SHOOK L M, HAYGOOD D, QUINN C T. Clinical utility of the addition of molecular genetic testing to newborn screening for sickle cell anemia[J]. Frontiers in Medicine, 2021, 8: 734305.
[6] BASS D, CHRISTISON K W, STENTIFORD G D, et al. Environmental DNA/RNA for pathogen and parasite detection, surveillance, and ecology[J]. Trends in Parasitology, 2023, 39(4): 285–304.
[7] STÅHLBERG A, KRZYZANOWSKI P M, JACKSON J B, et al. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing[J]. Nucleic Acids Research, 2016, 44(11): e105.
[8] SAJEER PARAMABTH M, VARMA M. Demystifying PCR tests, challenges, alternatives, and future: a quick review focusing on COVID and fungal infections[J]. Biochemistry and Molecular Biology Education, 2023, 51(6): 719–728.
[9] CAMPION E M, LOUGHRAN S T. Gene expression analysis by reverse transcription quantitative PCR[J]. Methods in Molecular Biology, 2021, 2283: 61–74.
[10] LAFRENTZ B R, GARCÍA J C, SHELLEY J P. Multiplex PCR for genotyping Flavobacterium columnare[J]. Journal of Fish Diseases, 2019, 42(11): 1531–1542.
[11] NYARUABA R, MWALIKO C, DOBNIK D, et al. Digital PCR applications in the SARS-CoV-2/COVID-19 era: a roadmap for future outbreaks[J]. Clinical Microbiology Reviews, 2022, 35(3): e0016821.
[12] BHAT S, EMSLIE K R. Digital polymerase chain reaction for characterisation of DNA reference materials[J]. Biomolecular Detection and Quantification, 2016, 10: 47–49.
[13] LI H Y, BAI R L, ZHAO Z Y, et al. Application of droplet digital PCR to detect the pathogens of infectious diseases[J]. Bioscience Reports, 2018, 38(6): BSR20181170.
[14] LI Y, MA M J, XU X J, et al. Value of digital PCR in the early diagnosis of sepsis: a systematic review and meta-analysis[J]. Journal of Critical Care, 2022, 72: 154138.
[15] HARDINGE P, MURRAY J A H. Reduced false positives and improved reporting of loop-mediated isothermal amplification using quenched fluorescent primers[J]. Scientific Reports, 2019, 9(1): 7400.
[16] ZHANG X Z, LOWE S B, GOODING J J. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP)[J]. Biosensors & Bioelectronics, 2014, 61: 491–499.
[17] MORI Y, NOTOMI T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases[J]. Journal of Infection and Chemotherapy, 2009, 15(2): 62–69.
[18] ZENG Y M, LIU M L, XIA Y, et al. Uracil-DNA-glycosylase-assisted loop-mediated isothermal amplification for detection of bacteria from urine samples with reduced contamination[J]. The Analyst, 2020, 145(21): 7048–7055.
[19] MOHSEN M G, KOOL E T. The discovery of rolling circle amplification and rolling circle transcription[J]. Accounts of Chemical Research, 2016, 49(11): 2540–2550.
[20] SOARES R R G, MADABOOSI N, NILSSON M. Rolling circle amplification in integrated microsystems: an uncut gem toward massively multiplexed pathogen diagnostics and genotyping[J]. Accounts of Chemical Research, 2021, 54(21): 3979–3990.
[21] KUMARI R, LIM J W, SULLIVAN M R, et al. A novel rolling circle amplification-based detection of SARS-CoV-2 with multi-region padlock hybridization[J]. Diagnostics, 2022, 12(9): 2252.
[22] PIEPENBURG O, WILLIAMS C H, STEMPLE D L, et al. DNA detection using recombination proteins[J]. PLoS Biology, 2006, 4(7): e204.
[23] DAHER R K, STEWART G, BOISSINOT M, et al. Recombinase polymerase amplification for diagnostic applications[J]. Clinical Chemistry, 2016, 62(7): 947–958.
[24] CRANNELL Z A, ROHRMAN B, RICHARDS-KORTUM R. Quantification of HIV-1 DNA using real-time recombinase polymerase amplification[J]. Analytical Chemistry, 2014, 86(12): 5615–5619.
[25] ROHRMAN B, RICHARDS-KORTUM R. Inhibition of recombinase polymerase amplification by background DNA: a lateral flow-based method for enriching target DNA[J]. Analytical Chemistry, 2015, 87(3): 1963–1967.
[26] MESQUITA S G, LUGLI E B, MATERA G, et al. Development of real-time and lateral flow recombinase polymerase amplification assays for rapid detection of Schistosoma mansoni[J]. Frontiers in Microbiology, 2022, 13: 1043596.
[27] SHEN F, DAVYDOVA E K, DU W, et al. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on slip chip[J]. Analytical Chemistry, 2011, 83(9): 3533–3540.
[28] YIN J X, ZOU Z Y, HU Z M, et al. A “sample-in-multiplex-digital-answer-out” chip for fast detection of pathogens[J]. Lab on a Chip, 2020, 20(5): 979–986.
[29] CASADEI L, SARCHET P, DE FARIA F C C, et al. In situ hybridization to detect DNA amplification in extracellular vesicles[J]. Journal of Extracellular Vesicles, 2022, 11(9): e12251.
[30] CUI J, YU T T, LV R, et al. Longitudinal genetically detectable minimal residual disease by fluorescence in situ hybridization confers a poor prognosis in myeloma[J]. Therapeutic Advances in Medical Oncology, 2024, 16: 17588359231221340.
[31] TANG S, HALBERG M C, FLOYD K C, et al. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and southern blot hybridization[J]. Methods in Molecular Biology, 2012, 837: 259–279.
[32] TAKABATAKE R, KANEKO M, YANAGIDA M, et al. Detection of 30 bp DNA fragments with a sensitive modified southern blot analysis[J]. Bioscience, Biotechnology, and Biochemistry, 2020, 84(12): 2405–2414.
[33] HAMAD A F, JEONG H Y, HAN J H, et al. Detection of cytosolic tRNA in mammal by northern blot analysis[J]. Bangladesh Journal of Pharmacology, 2017, 12(3): 243–250.
[34] KETKAR S, BURRAGE L C, LEE B. RNA sequencing as a diagnostic tool[J]. JAMA, 2023, 329(1): 85–86.
[35] BOOTH P P M, LAMB D T, ANDERSON J P, et al. Capillary electrophoresis western blot using inkjet transfer to membrane[J]. Journal of Chromatography. A, 2022, 1679: 463389.
[36] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007,315(5819):1709-17122.
[37] SHARMA A, BOELENS J-J, CANCIO M, et al. CRISPR-Cas9 editing of the HBG1 and HBG2 promoters to treat sickle cell disease[J]. The New England Journal of Medicine, 2023, 389(9): 820–832.
[38] ZHANG F, WEN Y, GUO X. CRISPR/Cas9 for genome editing: progress, implications and challenges[J]. Human Molecular Genetics, 2014, 23(R1): R40-46.
[39] TYCKO J, MYER V E, HSU P D. Methods for optimizing CRISPR-Cas9 genome editing specificity[J]. Molecular Cell, 2016, 63(3): 355–370.
[40] NING L, XI J H, ZI Y, et al. Prospects and challenges of CRISPR/Cas9 gene-editing technology in cancer research[J]. Clinical Genetics, 2023, 104(6): 613–624.
[41] ALVES-BEZERRA M, FUREY N, JOHNSON C G, et al. Using CRISPR/Cas9 to model human liver disease.[J]. JHEP Reports : Innovation in Hepatology, 2019, 1(5): 392–402.
[42] ZLOTORYNSKI E. Genome engineering: NHEJ and CRISPR-Cas9 improve gene therapy[J]. Nature Reviews. Molecular Cell Biology, 2016, 18(1): 4.
[43] FRANGOUL H, ALTSHULER D, CAPPELLINI M D, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia[J]. The New England Journal of Medicine, 2021, 384(3): 252–260.
[44] MAKAROVA K S, WOLF Y I, KOONIN E V. Classification and nomenclature of CRISPR-Cas systems: where from here?[J]. The CRISPR Journal, 2018, 1(5): 325–336.
[45] KIM D, KIM J, HUR J K, et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells[J]. Nature Biotechnology, 2016, 34(8): 863–868.
[46] BOTHMER A, PHADKE T, BARRERA L A, et al. Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus[J]. Nature Communications, 2017, 8: 13905.
[47] HUANG T, ZHANG R, LI J M. CRISPR-Cas-based techniques for pathogen detection: retrospect, recent advances, and future perspectives[J]. Journal of Advanced Research, 2023, 50: 69–82.
[48] CHEN J S, MA E, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436–439.
[49] LEUNG R K-K, CHENG Q-X, WU Z-L, et al. CRISPR-Cas12-based nucleic acids detection systems[J]. Methods, 2022, 203: 276–281.
[50] YANG Y H, WANG D D, LÜ P, et al. Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system[J]. Molecular Biology Reports, 2023, 50(4): 3723–3738.
[51] LIU L, LI X Y, WANG J Y, et al. Two distant catalytic sites are responsible for C2c2 RNase activities[J]. Cell, 2017, 168(1–2): 121-134.
[52] ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573.
[53] LIU L, LI X Y, MA J, et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a[J]. Cell, 2017, 170(4): 714-726.
[54] GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336): 438–442.
[55] MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387): 444–448.
[56] FOZOUNI P, SON S, DÍAZ DE LEÓN DERBY M, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy[J]. Cell, 2021, 184(2): 323-333.
[57] ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811): 277–282.
[58] ROTHBERG J M, HINZ W, REARICK T M, et al. An integrated semiconductor device enabling non-optical genome sequencing[J]. Nature, 2011,475(7356):348-352
[59] DANIELS R S, HARVEY R, ERMETAL B, et al. A sanger sequencing protocol for SARS-CoV-2 S-gene[J]. Influenza and Other Respiratory Viruses, 2021, 15(6): 707–710.
[60] RODRIGUEZ R, KRISHNAN Y. The chemistry of next-generation sequencing[J]. Nature Biotechnology, 2023, 41(12): 1709–1715.
[61] BILICHAK A, GOLUBOV A, KOVALCHUK I. Small RNA library preparation and illumina sequencing in plants[J]. Methods in Molecular Biology, 2017, 1456: 189–196.
[62] KNAPP D J H F, MCGOVERN R A, POON A F Y, et al. “Deep” sequencing accuracy and reproducibility using Roche/454 technology for inferring co-receptor usage in HIV-1[J]. PloS One, 2014, 9(6): e99508.
[63] SCHNIDRIG D, GAROFOLI A, BENJAK A, et al. PipeIT2: a tumor-only somatic variant calling workflow for molecular diagnostic Ion Torrent sequencing data[J]. Genomics, 2023, 115(2): 110587.
[64] CHEN J F, CHENG J F, CHEN X F, et al. Whole-genome long-read TAPS deciphers DNA methylation patterns at base resolution using PacBio SMRT sequencing technology[J]. Nucleic Acids Research, 2022, 50(18): e104.
[65] WANG Y H, ZHAO Y, BOLLAS A, et al. Nanopore sequencing technology, bioinformatics and applications[J]. Nature Biotechnology, 2021, 39(11): 1348–1365.
[66] FLINT A, REAUME S, HARLOW J, et al. Genomic analysis of human noroviruses using combined Illumina-Nanopore data[J]. Virus Evolution, 2021, 7(2): veab079.
[67] WICK R R, JUDD L M, HOLT K E. Assembling the perfect bacterial genome using Oxford Nanopore and Illumina sequencing[J]. PLoS Computational Biology, 2023, 19(3): e1010905.
[68] ZHANG J Y, ZHAO F Q. Reconstruction of circular RNAs using Illumina and Nanopore RNA-seq datasets[J]. Methods, 2021, 196: 17–22.
[69] CHA T, KIM H H, KEUM J, et al. Gut microbiome profiling of neonates using Nanopore MinION and Illumina MISeq sequencing[J]. Frontiers in Microbiology, 2023, 14: 1148466.
[70] GONZÁLEZ-RECIO O, GUTIÉRREZ-RIVAS M, PEIRÓ-PASTOR R, et al. Sequencing of SARS-CoV-2 genome using different nanopore chemistries[J]. Applied Microbiology and Biotechnology, 2021, 105(8): 3225–3234.
[71] ZHANG P, ZHOU X, HE M, et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip[J]. Nature Biomedical Engineering, 2019, 3(6): 438-451.
[72] ZHU Y, FANG Q. Analytical detection techniques for droplet microfluidics—A review[J]. Analytica Chimica Acta, 2013, 787: 24-35.
[73] ZHOU Z Z, WANG J, LI G H, et al. Wireless USB-like electrochemical platform for individual electrochemical sensing in microdroplets[J]. Analytica Chimica Acta, 2022, 1197: 339526.
[74] FAN Z X, FENG X, ZHANG W F, et al. Rapid detection of high-risk HPV16 and HPV18 based on microchip electrophoresis[J]. Journal of Pharmaceutical Analysis, 2020, 10(4): 329-333.
[75] YANG J, XIAO X H, XIA L, et al. Microfluidic Magnetic analyte delivery technique for separation, enrichment, and fluorescence detection of ultratrace biomarkers[J]. Analytical Chemistry, 2021, 93(23): 8273-8280.
[76] LI Z, XU X J, WANG D, et al. Recent advancements in nucleic acid detection with microfluidic chip for molecular diagnostics[J]. Trends in Analytical Chemistry : TRAC, 2023, 158: 116871.
[77] GUO Q R, ZHANG L L, LIU J F, et al. Multifunctional microfluidic chip for cancer diagnosis and treatment[J]. Nanotheranostics, 2021, 5(1): 73–89.
[78] LUO Y, WANG S C, FENG Z W, et al. Integrated microfluidic DNA storage platform with automated sample handling and physical data partitioning[J]. Analytical Chemistry, 2022, 94(38): 13153–13162.
[79] YIN J X, ZOU Z Y, YIN F F, et al. A self-priming digital polymerase chain reaction chip for multiplex genetic analysis[J]. ACS Nano, 2020, 14(8): 10385–10393.
[80] SHEN H Y, LI Q L, SONG W Q, et al. Microfluidic on-chip valve and pump for applications in immunoassays[J]. Lab on a Chip, 2023, 23(2): 341–348.
[81] ZHANG L, TIAN F, LIU C, et al. Hand-powered centrifugal microfluidic platform inspired by the spinning top for sample-to-answer diagnostics of nucleic acids[J]. Lab on a Chip, 2018, 18(4): 610–619.
[82] CHEN Y, ZONG N, YE F D, et al. Dual-CRISPR/Cas12a-assisted RT-RAA for ultrasensitive SARS-CoV-2 detection on automated centrifugal microfluidics[J]. Analytical Chemistry, 2022, 94(27): 9603–9609.
[83] ZONG N, GAO Y, CHEN Y, et al. Automated centrifugal microfluidic chip integrating pretreatment and molecular diagnosis for hepatitis B virus genotyping from whole blood[J]. Analytical Chemistry, 2022, 94(12): 5196-5203.
[84] CHEN Y, MEI Y X, JIANG X Y. Universal and high-fidelity DNA single nucleotide polymorphism detection based on a CRISPR/Cas12a biochip[J]. Chemical Science, 2021, 12(12): 4455–4462.
[85] LUTZ S, WEBER P, FOCKE M, et al. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA)[J]. Lab on a Chip, 2010, 10(7): 887–893.
[86] ZAI Y F, MIN C, WANG Z L, et al. A sample-to-answer, quantitative real-time PCR system with low-cost, gravity-driven microfluidic cartridge for rapid detection of SARS-CoV-2, influenza A/B, and human papillomavirus 16/18[J]. Lab on a Chip, 2022, 22(18): 3436–3452.
[87] YUAN H J, WAN C, WANG X, et al. Programmable gravity self-driven microfluidic chip for point-of-care multiplied immunoassays[J]. Small, 2023: e2310206.
[88] GERVAIS L, DELAMARCHE E. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates[J]. Lab on a Chip, 2009, 9(23): 3330–3337.
[89] AZIZIAN P, CASALS-TERRÉ J, GUERRERO-SANVICENTE E, et al. Coupling capillary-driven microfluidics with lateral flow immunoassay for signal enhancement[J]. Biosensors, 2023, 13(8).
[90] YELLESWARAPU V, BUSER J R, HABER M, et al. Mobile platform for rapid sub-picogram-per-milliliter, multiplexed, digital droplet detection of proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 4489–4495.
[91] ABDULLAH O, FALL A, FORMAN M, et al. Respiratory adenovirus quantification with a droplet digital polymerase chain reaction (ddPCR) assay[J]. Microbiology Spectrum, 2023, 11(3): e0026923.
[92] SUO T, LIU X J, FENG J P, et al. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens[J]. Emerging Microbes & Infections, 2020, 9(1): 1259–1268.
[93] NIU C Q, XU Y C, ZHANG C, et al. Ultrasensitive single fluorescence-labeled probe-mediated single universal primer−multiplex−droplet digital polymerase chain reaction for high-throughput genetically modified organism screening[J]. Analytical Chemistry, 2018, 90: 5586-5593.
[94] DRANDI D, FERRANTE M, BORRIERO M, et al. MYD88 L265P mutation detection by ddPCR: recommendations for screening and minimal residual disease monitoring : ddPCR for highly sensitive detection of MYD88 L265P mutation[J]. Methods in Molecular Biology, 2023, 2621: 57–72.
[95] MA C, SUN Y M, HUANG Y H, et al. On-chip nucleic acid purification followed by ddPCR for SARS-CoV-2 detection[J]. Biosensors, 2023, 13(5), 517.
[96] HSIEH S-A, SHAMSAEI D, EITZMANN D R, et al. Digital droplet loop-mediated isothermal amplification featuring a molecular beacon assay, 3D printed droplet generation, and smartphone imaging for sequence-specific DNA detection[J]. Analytical Chemistry, 2022, 94(34): 11949–11956.
[97] TIAN T, SHU B W, JIANG Y Z, et al. An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics[J]. ACS Nano, 2021, 15(1): 1167–1178.
[98] YUE H H, SHU B W, TIAN T, et al. Droplet Cas12a assay enables DNA quantification from unamplified samples at the single-molecule level[J]. Nano Letters, 2021, 21(11): 4643–4653.
[99] CLARK I C, MUDVARI P, THAPLOO S, et al. HIV silencing and cell survival signatures in infected t cell reservoirs[J]. Nature, 2023, 614(7947): 318–325.
[100] REBOUD J, XU G, GARRETT A, et al. Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(11): 4834–4842.
[101] RODRIGUEZ N M, WONG W S, LIU L, et al. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples[J]. Lab on a Chip, 2016, 16(4): 753–763.
[102] CHEN Y P, SUN J S, XIANYU Y L, et al. A dual-readout chemiluminescent-gold lateral flow test for multiplex and ultrasensitive detection of disease biomarkers in real samples[J]. Nanoscale, 2016, 8(33): 15205–15212.
[103] YANG Z G, XU G L, REBOUD J, et al. Monitoring genetic population biomarkers for wastewater-based epidemiology[J]. Analytical Chemistry, 2017, 89(18): 9941–9945.
[104] DING Y Z, LI J N, XIAO W W, et al. Microfluidic-enabled print-to-screen platform for high-throughput screening of combinatorial chemotherapy[J]. Analytical Chemistry, 2015, 87(20): 10166–10171.
[105] HUANG Y, CHEN S M, HUANG W, et al. Visualized test of environmental water pollution and meat freshness: design of AU NCs-CDs-test paper/PVA film for ratiometric fluorescent sensing of sulfide[J]. Food Chemistry, 2024, 432: 137292.
[106] DENG J Q, YANG M Z, WU J, et al. A self-contained chemiluminescent lateral flow assay for point-of-care testing[J]. Analytical Chemistry, 2018, 90(15): 9132–9137.
[107] MOGERA U, GUO H, NAMKOONG M, et al. Wearable plasmonic paper-based microfluidics for continuous sweat analysis[J]. Science Advances, 2022, 8(12): eabn1736.
[108] GAO Q, ZHU H W, DONG L Q, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma[J]. Cell, 2019, 179(5): 1240.
[109] LIAW Y F. Clinical utility of HBV surface antigen quantification in HBV e antigen-negative chronic HBV infection[J]. Nature Reviews. Gastroenterology & Hepatology, 2019, 16(10): 631–641.
[110] FU M X, SIMMONDS P, ANDREANI J, et al. Ultrasensitive PCR system for HBV DNA detection: risk stratification for occult hepatitis B virus infection in English blood donors[J]. Journal of Medical Virology, 2023, 95(10): e29144.
[111] LIMOTHAI U, CHUAYPEN N, POOVORAWAN K, et al. Reverse transcriptase droplet digital PCR vs reverse transcriptase quantitative real-time PCR for serum HBV RNA quantification[J]. Journal of Medical Virology, 2020, 92(12): 3365–3372.
[112] TIAN Y, FAN Z H, XU L, et al. CRISPR/Cas13a-assisted rapid and portable HBV DNA detection for low-level viremia patients[J]. Emerging Microbes & Infections, 2023, 12(1): e2177088.
[113] IMBRIANO A, TRICASE A, MACCHIA E, et al. Self-powered logically operated fluorescent detection of hepatitis B virus (HBV)[J]. Analytica Chimica Acta, 2023, 1252:341037.
[114] CHEN Y, MEI Y X, ZHAO X H, et al. Reagents-loaded, automated assay that integrates recombinase-aided amplification and Cas12a nucleic acid detection for a point-of-care test[J]. Analytical Chemistry, 2020, 92(21): 14846–14852.
[115] STRINGER O W, ANDREWS J M, GREETHAM H L, et al. TwistAmp® liquid: a versatile amplification method to replace PCR[J]. Nature Methods, 2018, 15(5): 395.
[116] ESCADAFAL C, FAYE O, SALL A A, et al. Rapid molecular assays for the detection of yellow fever virus in low-resource settings[J]. PLoS Neglected Tropical Diseases, 2014, 8(3): e2730.
[117] BEHRMANN O, BACHMANN I, SPIEGEL M, et al. Rapid detection of SARS-CoV-2 by low volume real-time single tube reverse transcription recombinase polymerase amplification using an exo probe with an internally linked quencher (Exo-IQ)[J]. Clinical Chemistry, 2020, 66(8): 1047–1054.
[118] LI L X, LI S Y, WU N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation[J]. ACS Synthetic Biology, 2019, 8(10): 2228–2237.
[119] WANG B, WANG R, WANG D Q, et al. Cas12aVDet: a CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection[J]. Analytical Chemistry, 2019, 91(19): 12156–12161.
[120] DING X, YIN K, LI Z Y, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay[J]. Nature Communications, 2020, 11(1): 4711.
[121] LI Y Y, MANSOUR H, WANG T, et al. Naked-eye detection of grapevine red-blotch viral infection using a plasmonic CRISPR Cas12a assay[J]. Analytical Chemistry, 2019, 91(18): 11510–11513.
[122] 何玉红.乙型肝炎病毒DNA定量、分型检测与血清学检测的相关性分析[J].延安大学学报(医学科学版), 2017, 15(03): 70-72.
[123] 熊格,李艳,乔斌.乙型肝炎患者两种常见模式HBV-DNA与肝功能检测结果的分析[J].职业与健康, 2015, 31(20): 2762-2764.

所在学位评定分委会
生物学
国内图书分类号
R440
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778752
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
罗雪晴. 基于树枝状微流控芯片的分子诊断平台[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132639-罗雪晴-生物医学工程系(4980KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[罗雪晴]的文章
百度学术
百度学术中相似的文章
[罗雪晴]的文章
必应学术
必应学术中相似的文章
[罗雪晴]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。