中文版 | English
题名

面向选区激光熔化薄壁悬垂结构的自适应工艺优化研究

其他题名
A STUDY OF ADAPTIVE PROCESS OPTIMIZATION FOR SELECTIVE LASER MELTING OF THIN-WALLED OVERHANGING STRUCTURES
姓名
姓名拼音
TIAN Yupei
学号
12232643
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
熊异
导师单位
系统设计与智能制造学院
论文答辩日期
2024-05-09
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,通过选区激光熔化(Selective Laser Melting,SLM)技术制造Ti6Al4V合金部件在航空航天、军事和医疗领域的应用越来越多。SLM技术的高自由度和几何精度为薄壁悬垂零件的制造开辟了新的途径。然而,由于薄壁悬垂结构的悬空特性,使得在SLM过程中悬垂边缘位于粉末支撑区域,从而导致了较高的表面粗糙度以及较低的纳米硬度,严重阻碍了该技术的发展。本课题利用SLM技术制造薄壁悬垂样件,深入探究了工艺参数以及悬垂角对薄壁悬垂结构表面形貌、物相组成、微观组织和致密度的影响;揭示了工艺参数、悬垂角与表面粗糙度、纳米硬度间的映射关系;建立了工艺自适应优化方法,以同时优化悬垂结构上、下斜面的粗糙度和纳米硬度。

针对悬垂斜面粗糙度较差的问题,系统研究了工艺参数和悬垂角对悬垂结构上、下斜面表面形貌的影响。结果表明,悬垂结构上、下斜面的表面形貌存在显著差异且上斜面粗糙度通常低于下斜面。下斜面粗糙度随悬垂角减小、激光功率增加而增大,随扫描速度的增加呈现先增加后减小的趋势。而上斜面粗糙度则几乎不受悬垂角影响,与线能量密度呈正相关趋势。随后,使用双调和样条插值(V4)法生成响应面模型,旨在同时改善上、下斜面的粗糙度,优化方法可使上、下斜面的粗糙度同时降低约50%。

针对悬垂结构纳米硬度较低的问题,分别研究了悬垂角和激光功率对物相组成、微观组织和致密度的影响。结果表明,较小的悬垂角会提高Al和V在α΄-Ti基体中的固溶度,且会使柱状晶β相不再沿构建方向生长成直条状而是形成不规则形状,致密度也会由于飞溅、球化现象的加剧而减小。激光功率增加导致了更高的温度梯度和更快的冷却速率,从而降低了成核潜力,致使形成粗壮的β柱状晶并细化了α΄晶粒,致密度也由于孔隙增多而显著下降。因此导致纳米硬度随悬垂角的减小和激光功率的增大而减小。

本课题揭示了工艺参数、悬垂角与性能之间的关系,并且为优化薄壁悬垂零件的粗糙度和硬度提供了重要指导。研究结果对于推动选区激光熔化技术在轻质化悬垂零件制造领域的应用和发展具有重要意义。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] ZHOU Y, NING F. Build orientation effect on geometric performance of curved-surface 316l stainless steel parts fabricated by selective laser melting[J]. Journal of Manufacturing Science and Engineering, 2020, 142(12)
[2] 刘婷婷, 章林. 选区激光熔化金属增材制造实验质量控制[J]. 实验技术与管理, 2022(009): 039.
[3] BOURELL D L. Perspectives on additive manufacturing[J]. Annual Review of Materials Research, 2016, 46
[4] CHEN Q, GUILLEMOT G, GANDIN C-A, et al. Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials[J]. Additive Manufacturing, 2017, 16: 124-137.
[5] CUI C, HU B, ZHAO L, et al. Titanium alloy production technology, market prospects and industry development[J]. Materials & Design, 2011, 32(3): 1684-1691.
[6] SINGH P, PUNGOTRA H, KALSI N S. On the characteristics of titanium alloys for the aircraft applications[J]. Materials Today: Proceedings, 2017, 4(8): 8971-8982.
[7] LIU S, SHIN Y C. Additive manufacturing of Ti6Al4V alloy: A review[J]. Materials & Design, 2019, 164: 107552.
[8] 董鹏, 陈济轮. 国外选区激光熔化成形技术在航空航天领域应用现状[J]. 航天制造技术, 2014(1): 1-5.
[9] SANAEI N, FATEMI A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review[J]. Progress in Materials Science, 2021, 117: 100724.
[10] YANG T, LIU T, LIAO W, et al. Effect of processing parameters on overhanging surface roughness during laser powder bed fusion of AlSi10Mg[J]. Journal of Manufacturing Processes, 2021, 61: 440-453.
[11] VANDENBROUCKE B, KRUTH J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 2007, 13(4): 196-203.
[12] WANG D, MAI S, XIAO D, et al. Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM[J]. The International Journal of Advanced Manufacturing Technology, 2015, 86(1-4): 781-792.
[13] WANG D, YANG Y, YI Z, et al. Research on the fabricating quality optimization of the overhanging surface in SLM process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 65(9-12): 1471-1484.
[14] WANG D, YANG Y, ZHANG M, et al. Study on SLM fabrication of precision metal parts with overhanging structures; proceedings of the 2013 IEEE International Symposium on Assembly and Manufacturing (ISAM), F, 2013 [C]. IEEE.
[15] SHUAI L, QINGHONG J, SAI G, et al. Effect of spattering on formation mechanisms of metal matrix composites in laser powder bed fusion[J]. Journal of Materials Processing Technology, 2022, 304: 117533.
[16] LE T-N, LO Y-L. Effects of sulfur concentration and Marangoni convection on melt-pool formation in transition mode of selective laser melting process[J]. Materials & Design, 2019, 179: 107866.
[17] BORDATCHEV E V, HAFIZ A M, TUTUNEA-FATAN O R. Performance of laser polishing in finishing of metallic surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73: 35-52.
[18] YASA E, DECKERS J, KRUTH J P. The investigation of the influence of laser re‐melting on density, surface quality and microstructure of selective laser melting parts[J]. Rapid Prototyping Journal, 2011, 17(5): 312-327.
[19] ALRBAEY K, WIMPENNY D, TOSI R, et al. On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study[J]. Journal of Materials Engineering and Performance, 2014, 23: 2139-2148.
[20] YADROITSEV I, BERTRAND P, SMUROV I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253(19): 8064-8069.
[21] GRECO S, GUTZEIT K, HOTZ H, et al. Selective laser melting (SLM) of AISI 316L—impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108: 1551-1562.
[22] MANSOURI M, FALLAH M M, KAZEROONI A. The influence of hatch distance on the surface roughness, microhardness, residual stress, and density of inconel 625 specimens in the laser powder bed fusion process[J]. Advances in Materials and Processing Technologies, 2024: 1-15.
[23] SADEGHI M S, MOHSENI M, ETEFAGH A H, et al. The effect of process parameters and scanning strategies on surface roughness of stainless steel 316L SLM parts[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237(6): 2510-2519.
[24] HEIN T Z, BABAYTSEV A V, RIPETSKIY A V. Effect of build atmosphere on the surface roughness of alsi10mg samples produced by selective laser melting[J]. Nanoscience and Technology: An International Journal, 2022, 13(1): 1-9.
[25] JHABVALA J, BOILLAT E, ANTIGNAC T, et al. On the effect of scanning strategies in the selective laser melting process[J]. Virtual and Physical Prototyping, 2010, 5(2): 99-109.
[26] 边培莹, 徐可为, 尹恩怀, 等. 扫描路径对选区激光熔化热力演变的影响[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0914001.
[27] 杨永强, 卢建斌, 王迪, 等. 316L 不锈钢选区激光熔化成型非水平悬垂面研究[J]. 材料科学与工艺, 2011, 19(6): 94-99.
[28] FENG S, KAMAT A M, SABOONI S, et al. Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions[J]. Virtual and Physical Prototyping, 2021, 16(sup1): S66-S84.
[29] LE K Q, WONG C H, CHUA K, et al. Discontinuity of overhanging melt track in selective laser melting process[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120284.
[30] BABU J J, MEHRPOUYA M, PIJPER T C, et al. An experimental study of downfacing surfaces in selective laser melting[J]. Advanced Engineering Materials, 2022, 24(8): 2101562.
[31] WANG H, WANG L, CUI R, et al. Differences in microstructure and nano-hardness of selective laser melted Inconel 718 single tracks under various melting modes of molten pool[J]. Journal of Materials Research and Technology, 2020, 9(5): 10401-10410.
[32] ABOULKHAIR N T, STEPHENS A, MASKERY I, et al. Mechanical properties of selective laser melted AlSi10Mg: nano, micro, and macro properties; proceedings of the 2015 International Solid Freeform Fabrication Symposium, F, 2015 [C]. University of Texas at Austin.
[33] MURR L E, QUINONES S A, GAYTAN S M, et al. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(1): 20-32.
[34] QIU C, KINDI M A, ALADAWI A S, et al. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel[J]. Scientific Reports, 2018, 8(1): 7785.
[35] 吴圣川, 任鑫焱, 康国政, 等. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81-114.
[36] 方旻翰. 增材制造Ti6Al4V合金及其复合材料组织与性能调控机制[D]. 2022.
[37] DOGU M N, MCCARTHY E, MCCANN R, et al. Digitisation of metal AM for part microstructure and property control[J]. International Journal of Material Forming, 2022, 15(3): 30.
[38] QIN P, CHEN L, LIU Y, et al. Corrosion and passivation behavior of laser powder bed fusion produced Ti-6Al-4V in static/dynamic NaCl solutions with different concentrations[J]. Corrosion Science, 2021, 191: 109728.
[39] AHMED T, RACK H J. Phase transformations during cooling in α+β titanium alloys[J]. Materials Science and Engineering: A, 1998, 243(1): 206-211.
[40] YANG J, YU H, YIN J, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J]. Materials & Design, 2016, 108: 308-318.
[41] FANG M, HU F, HAN Y, et al. Controllable mechanical anisotropy of selective laser melted Ti6Al4V: A new perspective into the effect of grain orientations and primary grain structure[J]. Materials Science and Engineering: A, 2021, 827: 142031.
[42] ZHAO R, CHEN C, WANG W, et al. On the role of volumetric energy density in the microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V alloy[J]. Additive Manufacturing, 2022, 51: 102605.
[43] 王小龙, 肖志瑜, 张国庆, 等. 倾斜角度对激光选区熔化成形Ti6Al4V合金的影响[J]. 粉末冶金材料科学与工程, 2016, 21(03): 376-382.
[44] LIU S, GUO H. Influence of hot isostatic pressing (HIP) on mechanical properties of magnesium alloy produced by selective laser melting (SLM)[J]. Materials Letters, 2020, 265: 127463.
[45] LI P, WARNER D H, PEGUES J W, et al. Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V[J]. International Journal of Fatigue, 2019, 120: 342-352.
[46] LAVERY N P, CHERRY J, MEHMOOD S, et al. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion[J]. Materials Science and Engineering: A, 2017, 693: 186-213.
[47] RöTTGER A, GEENEN K, WINDMANN M, et al. Comparison of microstructure and mechanical properties of 316L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material[J]. Materials Science and Engineering: A, 2016, 678: 365-376.
[48] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V[J]. Acta Materialia, 2010, 58(9): 3303-3312.
[49] LIU H, CAI G, XIN Y. Effect of processing parameters on the quality of overhanging round hole structure in AlSi10Mg selective laser melting[J]. Materials Today Communications, 2023, 37: 107464.
[50] LEE H, LIM C H J, LOW M J, et al. Lasers in additive manufacturing: A review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4: 307-322.
[51] MOEINFAR K, KHODABAKHSHI F, KASHANI-BOZORG S, et al. A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys[J]. Journal of Materials Research and Technology, 2022, 16: 1029-1068.
[52] SHEN Y F, GU D D, PAN Y F. Balling process in selective laser sintering 316 stainless steel powder[J]. Key Engineering Materials, 2006, 315-316: 357-360.
[53] RAI R, ELMER J W, PALMER T A, et al. Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium[J]. Journal of Physics D: Applied Physics, 2007, 40(18): 5753-5766.
[54] PAL S, LOJEN G, KOKOL V, et al. Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the Selective Laser Melting technique[J]. Journal of Manufacturing Processes, 2018, 35: 538-546.
[55] BRAUER D S, HILTON J F, MARSHALL G W, et al. Nano-and micromechanical properties of dentine: Investigation of differences with tooth side[J]. Journal of Biomechanics, 2011, 44(8): 1626-1629.
[56] BROITMAN E. Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview[J]. Tribology Letters, 2017, 65(1): 23.
[57] JOVES G J, INOUE G, SADR A, et al. Nanoindentation hardness of intertubular dentin in sound, demineralized and natural caries-affected dentin[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32: 39-45.
[58] METELKOVA J, VANMUNSTER L, HAITJEMA H, et al. Texture of inclined up-facing surfaces in laser powder bed fusion of metals[J]. Additive Manufacturing, 2021, 42
[59] TAHERI ANDANI M, DEHGHANI R, KARAMOOZ-RAVARI M R, et al. A study on the effect of energy input on spatter particles creation during selective laser melting process[J]. Additive Manufacturing, 2018, 20: 33-43.
[60] KARIMI J, ANTONOV M, KOLLO L, et al. Role of laser remelting and heat treatment in mechanical and tribological properties of selective laser melted Ti6Al4V alloy[J]. Journal of Alloys and Compounds, 2022, 897: 163207.
[61] SNYDER J C, THOLE K A. Understanding laser powder bed fusion surface roughness[J]. Journal of Manufacturing Science and Engineering, 2020, 142(7)
[62] COX B, GHAYOOR M, PASEBANI S, et al. Tracking of Marangoni driven motion during laser powder bed fusion[J]. Powder Technology, 2023, 425: 118610.
[63] SONG B, YU T, JIANG X, et al. Evolution and convection mechanism of the melt pool formed by V-groove laser cladding[J]. Optics & Laser Technology, 2021, 144: 107443.
[64] H.J. NIU I T H C. Liquid phase sintering of M3/2 high speed steel by selective laser sintering[J]. Scripta Materialia, 1998, 39(1): 67-72.
[65] DILIP J J S, ZHANG S, TENG C, et al. Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting[J]. Progress in Additive Manufacturing, 2017, 2(3): 157-167.
[66] AHMED T, RACK H. Phase transformations during cooling in α+ β titanium alloys[J]. Materials Science and Engineering: A, 1998, 243(1-2): 206-211.
[67] ZHAO X, LI S, ZHANG M, et al. Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting[J]. Materials & Design, 2016, 95: 21-31.
[68] QIU C, ADKINS N J, ATTALLAH M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V[J]. Materials Science and Engineering: A, 2013, 578: 230-239.
[69] KWASNIAK P, GARBACZ H, KURZYDLOWSKI K. Solid solution strengthening of hexagonal titanium alloys: Restoring forces and stacking faults calculated from first principles[J]. Acta Materialia, 2016, 102: 304-314.
[70] SONG B, DONG S, ZHANG B, et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J]. Materials & Design, 2012, 35: 120-125.
[71] XU W, BRANDT M, SUN S, et al. Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85: 74-84.
[72] 郑卜祥, 宋永伦, 席峰, 等. 对接焊铝合金板材残余应力的X射线测试[J]. 机械工程学报, 2009, 45(3): 7.

所在学位评定分委会
材料与化工
国内图书分类号
TG665
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778753
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
田雨沛. 面向选区激光熔化薄壁悬垂结构的自适应工艺优化研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232643-田雨沛-系统设计与智能(8631KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[田雨沛]的文章
百度学术
百度学术中相似的文章
[田雨沛]的文章
必应学术
必应学术中相似的文章
[田雨沛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。