[1] ZHOU Y, NING F. Build orientation effect on geometric performance of curved-surface 316l stainless steel parts fabricated by selective laser melting[J]. Journal of Manufacturing Science and Engineering, 2020, 142(12)
[2] 刘婷婷, 章林. 选区激光熔化金属增材制造实验质量控制[J]. 实验技术与管理, 2022(009): 039.
[3] BOURELL D L. Perspectives on additive manufacturing[J]. Annual Review of Materials Research, 2016, 46
[4] CHEN Q, GUILLEMOT G, GANDIN C-A, et al. Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials[J]. Additive Manufacturing, 2017, 16: 124-137.
[5] CUI C, HU B, ZHAO L, et al. Titanium alloy production technology, market prospects and industry development[J]. Materials & Design, 2011, 32(3): 1684-1691.
[6] SINGH P, PUNGOTRA H, KALSI N S. On the characteristics of titanium alloys for the aircraft applications[J]. Materials Today: Proceedings, 2017, 4(8): 8971-8982.
[7] LIU S, SHIN Y C. Additive manufacturing of Ti6Al4V alloy: A review[J]. Materials & Design, 2019, 164: 107552.
[8] 董鹏, 陈济轮. 国外选区激光熔化成形技术在航空航天领域应用现状[J]. 航天制造技术, 2014(1): 1-5.
[9] SANAEI N, FATEMI A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review[J]. Progress in Materials Science, 2021, 117: 100724.
[10] YANG T, LIU T, LIAO W, et al. Effect of processing parameters on overhanging surface roughness during laser powder bed fusion of AlSi10Mg[J]. Journal of Manufacturing Processes, 2021, 61: 440-453.
[11] VANDENBROUCKE B, KRUTH J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 2007, 13(4): 196-203.
[12] WANG D, MAI S, XIAO D, et al. Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM[J]. The International Journal of Advanced Manufacturing Technology, 2015, 86(1-4): 781-792.
[13] WANG D, YANG Y, YI Z, et al. Research on the fabricating quality optimization of the overhanging surface in SLM process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 65(9-12): 1471-1484.
[14] WANG D, YANG Y, ZHANG M, et al. Study on SLM fabrication of precision metal parts with overhanging structures; proceedings of the 2013 IEEE International Symposium on Assembly and Manufacturing (ISAM), F, 2013 [C]. IEEE.
[15] SHUAI L, QINGHONG J, SAI G, et al. Effect of spattering on formation mechanisms of metal matrix composites in laser powder bed fusion[J]. Journal of Materials Processing Technology, 2022, 304: 117533.
[16] LE T-N, LO Y-L. Effects of sulfur concentration and Marangoni convection on melt-pool formation in transition mode of selective laser melting process[J]. Materials & Design, 2019, 179: 107866.
[17] BORDATCHEV E V, HAFIZ A M, TUTUNEA-FATAN O R. Performance of laser polishing in finishing of metallic surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73: 35-52.
[18] YASA E, DECKERS J, KRUTH J P. The investigation of the influence of laser re‐melting on density, surface quality and microstructure of selective laser melting parts[J]. Rapid Prototyping Journal, 2011, 17(5): 312-327.
[19] ALRBAEY K, WIMPENNY D, TOSI R, et al. On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study[J]. Journal of Materials Engineering and Performance, 2014, 23: 2139-2148.
[20] YADROITSEV I, BERTRAND P, SMUROV I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253(19): 8064-8069.
[21] GRECO S, GUTZEIT K, HOTZ H, et al. Selective laser melting (SLM) of AISI 316L—impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108: 1551-1562.
[22] MANSOURI M, FALLAH M M, KAZEROONI A. The influence of hatch distance on the surface roughness, microhardness, residual stress, and density of inconel 625 specimens in the laser powder bed fusion process[J]. Advances in Materials and Processing Technologies, 2024: 1-15.
[23] SADEGHI M S, MOHSENI M, ETEFAGH A H, et al. The effect of process parameters and scanning strategies on surface roughness of stainless steel 316L SLM parts[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237(6): 2510-2519.
[24] HEIN T Z, BABAYTSEV A V, RIPETSKIY A V. Effect of build atmosphere on the surface roughness of alsi10mg samples produced by selective laser melting[J]. Nanoscience and Technology: An International Journal, 2022, 13(1): 1-9.
[25] JHABVALA J, BOILLAT E, ANTIGNAC T, et al. On the effect of scanning strategies in the selective laser melting process[J]. Virtual and Physical Prototyping, 2010, 5(2): 99-109.
[26] 边培莹, 徐可为, 尹恩怀, 等. 扫描路径对选区激光熔化热力演变的影响[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0914001.
[27] 杨永强, 卢建斌, 王迪, 等. 316L 不锈钢选区激光熔化成型非水平悬垂面研究[J]. 材料科学与工艺, 2011, 19(6): 94-99.
[28] FENG S, KAMAT A M, SABOONI S, et al. Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions[J]. Virtual and Physical Prototyping, 2021, 16(sup1): S66-S84.
[29] LE K Q, WONG C H, CHUA K, et al. Discontinuity of overhanging melt track in selective laser melting process[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120284.
[30] BABU J J, MEHRPOUYA M, PIJPER T C, et al. An experimental study of downfacing surfaces in selective laser melting[J]. Advanced Engineering Materials, 2022, 24(8): 2101562.
[31] WANG H, WANG L, CUI R, et al. Differences in microstructure and nano-hardness of selective laser melted Inconel 718 single tracks under various melting modes of molten pool[J]. Journal of Materials Research and Technology, 2020, 9(5): 10401-10410.
[32] ABOULKHAIR N T, STEPHENS A, MASKERY I, et al. Mechanical properties of selective laser melted AlSi10Mg: nano, micro, and macro properties; proceedings of the 2015 International Solid Freeform Fabrication Symposium, F, 2015 [C]. University of Texas at Austin.
[33] MURR L E, QUINONES S A, GAYTAN S M, et al. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(1): 20-32.
[34] QIU C, KINDI M A, ALADAWI A S, et al. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel[J]. Scientific Reports, 2018, 8(1): 7785.
[35] 吴圣川, 任鑫焱, 康国政, 等. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81-114.
[36] 方旻翰. 增材制造Ti6Al4V合金及其复合材料组织与性能调控机制[D]. 2022.
[37] DOGU M N, MCCARTHY E, MCCANN R, et al. Digitisation of metal AM for part microstructure and property control[J]. International Journal of Material Forming, 2022, 15(3): 30.
[38] QIN P, CHEN L, LIU Y, et al. Corrosion and passivation behavior of laser powder bed fusion produced Ti-6Al-4V in static/dynamic NaCl solutions with different concentrations[J]. Corrosion Science, 2021, 191: 109728.
[39] AHMED T, RACK H J. Phase transformations during cooling in α+β titanium alloys[J]. Materials Science and Engineering: A, 1998, 243(1): 206-211.
[40] YANG J, YU H, YIN J, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J]. Materials & Design, 2016, 108: 308-318.
[41] FANG M, HU F, HAN Y, et al. Controllable mechanical anisotropy of selective laser melted Ti6Al4V: A new perspective into the effect of grain orientations and primary grain structure[J]. Materials Science and Engineering: A, 2021, 827: 142031.
[42] ZHAO R, CHEN C, WANG W, et al. On the role of volumetric energy density in the microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V alloy[J]. Additive Manufacturing, 2022, 51: 102605.
[43] 王小龙, 肖志瑜, 张国庆, 等. 倾斜角度对激光选区熔化成形Ti6Al4V合金的影响[J]. 粉末冶金材料科学与工程, 2016, 21(03): 376-382.
[44] LIU S, GUO H. Influence of hot isostatic pressing (HIP) on mechanical properties of magnesium alloy produced by selective laser melting (SLM)[J]. Materials Letters, 2020, 265: 127463.
[45] LI P, WARNER D H, PEGUES J W, et al. Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V[J]. International Journal of Fatigue, 2019, 120: 342-352.
[46] LAVERY N P, CHERRY J, MEHMOOD S, et al. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion[J]. Materials Science and Engineering: A, 2017, 693: 186-213.
[47] RöTTGER A, GEENEN K, WINDMANN M, et al. Comparison of microstructure and mechanical properties of 316L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material[J]. Materials Science and Engineering: A, 2016, 678: 365-376.
[48] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V[J]. Acta Materialia, 2010, 58(9): 3303-3312.
[49] LIU H, CAI G, XIN Y. Effect of processing parameters on the quality of overhanging round hole structure in AlSi10Mg selective laser melting[J]. Materials Today Communications, 2023, 37: 107464.
[50] LEE H, LIM C H J, LOW M J, et al. Lasers in additive manufacturing: A review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4: 307-322.
[51] MOEINFAR K, KHODABAKHSHI F, KASHANI-BOZORG S, et al. A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys[J]. Journal of Materials Research and Technology, 2022, 16: 1029-1068.
[52] SHEN Y F, GU D D, PAN Y F. Balling process in selective laser sintering 316 stainless steel powder[J]. Key Engineering Materials, 2006, 315-316: 357-360.
[53] RAI R, ELMER J W, PALMER T A, et al. Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium[J]. Journal of Physics D: Applied Physics, 2007, 40(18): 5753-5766.
[54] PAL S, LOJEN G, KOKOL V, et al. Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the Selective Laser Melting technique[J]. Journal of Manufacturing Processes, 2018, 35: 538-546.
[55] BRAUER D S, HILTON J F, MARSHALL G W, et al. Nano-and micromechanical properties of dentine: Investigation of differences with tooth side[J]. Journal of Biomechanics, 2011, 44(8): 1626-1629.
[56] BROITMAN E. Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview[J]. Tribology Letters, 2017, 65(1): 23.
[57] JOVES G J, INOUE G, SADR A, et al. Nanoindentation hardness of intertubular dentin in sound, demineralized and natural caries-affected dentin[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32: 39-45.
[58] METELKOVA J, VANMUNSTER L, HAITJEMA H, et al. Texture of inclined up-facing surfaces in laser powder bed fusion of metals[J]. Additive Manufacturing, 2021, 42
[59] TAHERI ANDANI M, DEHGHANI R, KARAMOOZ-RAVARI M R, et al. A study on the effect of energy input on spatter particles creation during selective laser melting process[J]. Additive Manufacturing, 2018, 20: 33-43.
[60] KARIMI J, ANTONOV M, KOLLO L, et al. Role of laser remelting and heat treatment in mechanical and tribological properties of selective laser melted Ti6Al4V alloy[J]. Journal of Alloys and Compounds, 2022, 897: 163207.
[61] SNYDER J C, THOLE K A. Understanding laser powder bed fusion surface roughness[J]. Journal of Manufacturing Science and Engineering, 2020, 142(7)
[62] COX B, GHAYOOR M, PASEBANI S, et al. Tracking of Marangoni driven motion during laser powder bed fusion[J]. Powder Technology, 2023, 425: 118610.
[63] SONG B, YU T, JIANG X, et al. Evolution and convection mechanism of the melt pool formed by V-groove laser cladding[J]. Optics & Laser Technology, 2021, 144: 107443.
[64] H.J. NIU I T H C. Liquid phase sintering of M3/2 high speed steel by selective laser sintering[J]. Scripta Materialia, 1998, 39(1): 67-72.
[65] DILIP J J S, ZHANG S, TENG C, et al. Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting[J]. Progress in Additive Manufacturing, 2017, 2(3): 157-167.
[66] AHMED T, RACK H. Phase transformations during cooling in α+ β titanium alloys[J]. Materials Science and Engineering: A, 1998, 243(1-2): 206-211.
[67] ZHAO X, LI S, ZHANG M, et al. Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting[J]. Materials & Design, 2016, 95: 21-31.
[68] QIU C, ADKINS N J, ATTALLAH M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V[J]. Materials Science and Engineering: A, 2013, 578: 230-239.
[69] KWASNIAK P, GARBACZ H, KURZYDLOWSKI K. Solid solution strengthening of hexagonal titanium alloys: Restoring forces and stacking faults calculated from first principles[J]. Acta Materialia, 2016, 102: 304-314.
[70] SONG B, DONG S, ZHANG B, et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J]. Materials & Design, 2012, 35: 120-125.
[71] XU W, BRANDT M, SUN S, et al. Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85: 74-84.
[72] 郑卜祥, 宋永伦, 席峰, 等. 对接焊铝合金板材残余应力的X射线测试[J]. 机械工程学报, 2009, 45(3): 7.
修改评论