[1] N. SHAHRUBUDIN, T. C. LEE, R. RAMLAN. An Overview on 3D Printing Technology: Technological, Materials, and Applications[J]. Procedia Manufacturing,2019,35(C): 1286-1296.
[2] CHEN YUAN, FU KUNKUN, JIANG BINGNONG. Modelling localised progressive failure of composite sandwich panels under in-plane compression[J]. Thin-Walled Structures,2023,184: 110552-110564.
[3] ARIT DAS, ALEXANDRA E. C. MARNOT, JACOB J. FALLON et al. Material Extrusion-Based Additive Manufacturing with Blends of Polypropylene and Hydrocarbon Resins[J]. ACS Applied Polymer Materials, 2019, 2(2): 911-921.
[4] LU YU ZHOU, JIANZHONG FU, YONG HE. A Review of 3D Printing Technologies for Soft Polymer Materials[J]. Advanced Functional Materials,2020,30(28): 2000187-2000225.
[5] CHEN YUAN, MAI YIU-WING, YE LIN. Perspectives for multiphase mechanical metamaterials[J]. Materials Science & Engineering R,2023,153: 100725-100742.
[6] D.T PHAM, R.S GAULT. A comparison of rapid prototyping technologies[J]. International Journal of Machine Tools and Manufacture,1998,38(10): 1257-1287.
[7] DIANA POPESCU, AURELIAN ZAPCIU, CATALIN AMZA et al. FDM process parameters influence over the mechanical properties of polymer specimens: A review[J]. Polymer Testing,2018,69: 157-166.
[8] NIRMALYA BACHHAR, ANIKET GUDADHE, ANIL KUMAR et al. 3D printing of semicrystalline polypropylene: towards eliminating warpage of printed objects[J]. Bulletin of Materials Science: Published by the Indian Academy of Sciences,2020,43(1): 171-179.
[9] VALENTINA MAZZANTI, LORENZO MALAGUTTI, FRANCESCO MOLLICA. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties[J]. Polymers,2019,11(7): 1094-1116.
[10] CANO-VICENT ALBA, TAMBUWALA MURTAZA M, HASSAN SK. SARIF et al. Fused deposition modelling: Current status, methodology, applications and future prospects[J]. Additive Manufacturing,2021,47: 102378-102397.
[11] ENRIQUE CUAN URQUIZO, EDUARDO BAROCIO, VIRIDIANA TEJADA ORTIGOZA et al. Characterization of the Mechanical Properties of FFF Structures and Materials: A Review on the Experimental, Computational and Theoretical Approaches[J]. Materials,2019,12(6): 895-820.
[12] KRISTIAWAN RUBEN BAYU, IMADUDDIN FITRIAN, ARIAWAN DODY et al. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters[J]. Open Engineering,2021,11(1): 639-649.
[13] YONG PENG, YIYUN WU, KUI WANG et al. Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibers via fused filament fabrication[J]. Composite Structures,2018,207: 232-239.
[14] I. JOHN SOLOMON, P. SEVVEL, J. GUNASEKARAN. A review on the various processing parameters in FDM[J]. Materials Today: Proceedings,2020,37(2):509-514.
[15] TUAN D. NGO, ALIREZA KASHANI, GABRIELE IMBALZANO et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B,2018,143: 172-196.
[16] A. SIEGMANN, A. BUCHMAN, S. KENIG. Residual stresses in polymers I: The effect of thermal history[J]. Polymer Engineering & Science,1982,22(1): 40-47.
[17] W. F. ZOETELIEF, L. F. A. DOUVEN, A. J. INGEN HOUSZ. Residual thermal stresses in injection molded products[J]. Polymer Engineering & Science,1996,36(14): 1886-1896.
[18] ANTONY SAMY ANTO, GOLBANG ATEFEH, HARKIN-JONES EILEEN et al. Prediction of part distortion in Fused Deposition Modelling (FDM) of semi-crystalline polymers via COMSOL: Effect of printing conditions[J]. CIRP Journal of Manufacturing Science and Technology,2021,33: 443-453.
[19] ANTONIO ARMILLOTTA, MATTIA BELLOTTI, MARCO CAVALLARO. Warpage of FDM parts: Experimental tests and analytic model[J]. Robotics and Computer Integrated Manufacturing,2018,50: 140-152.
[20] EMILY R. FITZHARRIS, NARUMI WATANABE, DAVID W. ROSEN et al. Effects of material properties on warpage in fused deposition modeling parts[J]. The International Journal of Advanced Manufacturing Technology,2018,95(5-8): 2059-2070.
[21] JIE LENG, XUANBO GU, RUI HONG et al. Tailored crystalline structure and enhanced impact strength of isotactic polypropylene/high-density polyethylene blend by controlling the printing speed of fused filament fabrication[J]. Journal of Materials Science,2020,55(28): 14058-14073.
[22] VINCENZO BUSICO, ROBERTA CIPULLO. Microstructure of polypropylene[J]. Progress in Polymer Science,2001,26(3): 443-533.
[23] HISHAM A. MADDAH. Polypropylene as a Promising Plastic: A Review[J]. American Journal of Polymer Science,2016,6(1): 1-11.
[24] 朱亚明. β成核剂改性无规共聚聚丙烯/等规聚丙烯共混物的性能研究[D].华南理工大学,2012.
[25] WOLFGANG DIETZ. Effect of cooling on crystallization and microstructure of polypropylene[J]. Polymer Engineering & Science,2016,56(11): 1291-1302.
[26] JANUSZ GREBOWICZ, S.‐F. LAU, BERNHARD WUNDERLICH. The thermal properties of polypropylene[J]. Journal of Polymer Science: Polymer Symposia,1984,71(1): 19-37.
[27] QUAZI TH SHUBHRA, AKMM ALAM, MA QUAIYYUM. Mechanical properties of polypropylene composites A review[J]. Journal of Thermoplastic Composite Materials,2013,26(3): 362-391.
[28] 张伟娇. 成核剂改性无规共聚聚丙烯的结晶行为及性能研究[D].浙江大学,2020.
[29] 程亨伦. β成核剂与纳米二氧化硅协同增韧改性聚丙烯的制备及性能[D].浙江大学,2021.
[30] NICOLE E. ZANDER, MARGARET GILLAN, ZACHARY BURCKHARD et al. Recycled polypropylene blends as novel 3D printing materials[J]. Additive Manufacturing,2018,25: 122-130.
[31] O.S. CARNEIRO, A.F. SILVA, R. GOMES. Fused deposition modelling with polypropylene[J]. Materials & Design,2015,83: 768-776.
[32] SAVU IONEL DANUT, SAVU SORIN VASILE, SIMION DALIA et al. PP in 3D Printing - Technical and Economic Aspects[J]. Materiale Plastice,2019,56(4): 931-936.
[33] MARTIN SPOERK, CLEMENS HOLZER, JOAMIN GONZALEZ‐GUTIERREZ. Material extrusion‐based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage[J]. Journal of Applied Polymer Science,2020,137(12): 48545-48561.
[34] MINDE JIN, REINER GIESA, CHRISTIAN NEUBER et al. Filament Materials Screening for FDM 3D Printing by Means of Injection‐Molded Short Rods[J]. Macromolecular Materials and Engineering,2018,303(12): 1800507-1800514.
[35] ZDENEK MENCIK. Crystal structure of isotactic polypropylene[J]. Journal of Macromolecular Science, Part B,1972,6(1): 101-115.
[36] Claudio De Rosa, Paolo Corradini. Crystal structure of syndiotactic polypropylene[J]. Macromolecules,1993,26(21): 5711-5718.
[37] SANDRA PETERSMANN, PETRA SPOERK-ERDELY, MICHAEL FEUCHTER et al. Process-induced morphological features in material extrusion-based additive manufacturing of polypropylene[J]. Additive Manufacturing,2020,35: 101384-101400.
[38] RAHUL CHATTERJEE, MD TOUHID SK, Jagannath Chanda et al. How open‐stage melt crystallization affects tensile and shrinkage properties of 3D printed polypropylene[J]. Polymer Engineering & Science,2023,63(9): 2985-2998.
[39] BERTOLINO M., BATTEGAZZORE D., ARRIGO R. et al. Designing 3D printable polypropylene: Material and process optimisation through rheology[J]. Additive Manufacturing,2021,40: 101944-101953.
[40] POLLINE MWAMBE, MUTUA JAMES M., MBUYA THOMAS OCHUKU et al. Recipe Development and Mechanical Characterization of Carbon Fibre Reinforced Recycled Polypropylene 3D Printing Filament[J]. Open Journal of Composite Materials,2021,11(03): 47-61.
[41] WANG KUI, ZHANG ZEJUN, CAI RUIJUN et al. Improving the mechanical properties of 3D printed recycled polypropylene‐based composites through adjusting printing temperature[J]. Journal of Applied Polymer Science,2023,140(13): 53658-53673.
[42] BINGNONG J, YUAN C, LIN Y et al. Residual stress and warpage of additively manufactured SCF/PLA composite parts[J]. Advanced Manufacturing: Polymer & Composites Science, 2023, 9 (1): 1-11.
[43] FRIEDRICH BÄHR, ENGELBERT WESTKÄMPER. Correlations between Influencing Parameters and Quality Properties of Components Produced by Fused Deposition Modeling[J]. Procedia CIRP,2018,72: 1214-1219.
[44] LI SHIXIAN, WANG KUI, ZHU WANYING et al. Contributions of interfaces on the mechanical behavior of 3D printed continuous fiber reinforced composites[J]. Construction and Building Materials,2022,340: 127842-127851.
[45] YONG PENG,YIYUN WU,SHIXIAN LI ET AL. Tailorable rigidity and energy-absorption capability of 3D printed continuous carbon fiber reinforced polyamide composites[J]. Composites Science and Technology,2020,199: 108337-108346.
[46] SAMY ANTO ANTONY, GOLBANG ATEFEH, HARKIN-JONES EILEEN et al. Finite element analysis of residual stress and warpage in a 3D printed semi-crystalline polymer: Effect of ambient temperature and nozzle speed[J]. Journal of Manufacturing Processes,2021,70: 389-399.
[47] 程鹏. 无机物填充聚丙烯复合材料自增强机理及实验研究[D].北京化工大学,2020.
[48] 易顺民. 马来酸酐/二乙烯基苯共接枝改性对聚丙烯木塑的增韧作用[D].东北林业大学,2020.
[49] SINGH POOJA, KATIYAR PARUL, SINGH HARINDER. Impact of compatibilization on polypropylene (PP) and acrylonitrile butadiene styrene (ABS) blend: A review[J]. Materials Today: Proceedings,2023,78(P1): 189-197.
[50] KUBADE PRAVIN, TAMBE PANKAJ, SHARMA AMBUJ et al. Acid treated halloysite nanotubes reinforced PP/ABS blends and its composites: Influence on mechanical and thermal properties[J]. Materials Today: Proceedings,2022,56(P3): 1376-1382.
[51] MARYAM HASANPOUR, M. MEHRABI MAZIDI, MIR KARIM RAZAVI AGHJEH. The effect of rubber functionality on the phase morphology, mechanical performance and toughening mechanisms of highly toughened PP/PA6/EPDM ternary blends[J]. Polymer Testing,2019,79(C): 106018-106034.
[52] BASEM F. YOUSEF, ABDEL-HAMID I. MOURAD, ALI HILAL-ALNAQBI. Prediction of the Mechanical Properties of PE/PP Blends Using Artificial Neural Networks[J]. Procedia Engineering,2011,10(C): 2713-2718.
[53] H. PALZA, R. VERGARA, P. ZAPATA. Composites of polypropylene melt blended with synthesized silica nanoparticles[J]. Composites Science and Technology,2011,71(4): 535-540.
[54] Y.S. THIO, A.S. ARGON, R.E. COHEN et al. Toughening of isotactic polypropylene with CaCO3 particles[J]. Polymer,2002,43(13): 3661-3674.
[55] 孟明锐,窦强.PP/庚二酸表面处理云母复合材料的力学性能和结晶行为[J].中国塑料,2007(08):24-28.
[56] 马长宝.改性滑石粉填充聚丙烯的研究[J].广州化工,2011,39(04):92-94.
[57] TANKS JONATHON, TAMURA KENJI, NAITO KIMIYOSHI et al. Glycol lignin/MAH-g-PP blends and composites with exceptional mechanical properties for automotive applications[J]. Composites Science and Technology,2023,238: 110030-110038.
[58] 郭俊强,李倩,罗志等.聚丙烯β成核剂的研究进展[J].高分子通报,2022,No.279(07):11-21.
[59] VON HANS JOACHIM LEUGERING. Einfluß der kristallstruktur und der überstruktur auf einige eigenschaften von polypropylen[J]. Macromolecular Chemistry and Physics,1967,109(1): 204-216.
[60] J. GARBARCZYK, D. PAUKSZTA. Influence of additives on the structure and properties of polymers[J]. Colloid and Polymer Science,1985,263(12).
[61] 史观一,张景云.β晶型聚丙烯的研究[J].科学通报,1981(12):731-733.
[62] VARGA J, MUDRA I, EHRENSTEIN G W. Highly active thermally stable β-nucleating agents for isotactic polypropylene[J]. Journal of Applied Polymer Science, 1999, 74(10): 2357-2368
[63] 赵文林. 四氢苯酐的羧酸金属盐作为聚丙烯β晶型成核剂的应用[P]. 广东省:CN102181092B,2013-01-16.
[64] NAOKI IKEDA, MASAFUMI YOSHIMURA, KAZUAKI MIZOGUCHI et al. Crystalline polypropylene resin composition and amide compounds[P]. :US6235823,2001-05-22.
[65] JAROSLAV ŠČUDLA, MIROSLAV RAAB, KLAUS-JOCHEN EICHHORN et al. Formation and transformation of hierarchical structure of β-nucleated polypropylene characterized by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy[J]. Polymer,2003,44(16): 4655-4664.
[66] 张志刚.β晶型成核剂在聚丙烯中的应用[J].河北化工,2008(08):19-20+24.
[67] 王文治,胡红旗,冯嘉春,等.PP晶型及稀土类PP晶型改性剂[J].塑料,2004(02):29-34.
[68] 冯嘉春,陈鸣才. 聚丙烯β晶型成核剂及其应用[P]. 广东省:CN1114651C,2003-07-16.
[69] 肖利群,晏伟,别明智,等.β成核剂/无机粒子/PP复合材料的结晶行为与力学性能研究[J].塑料科技,2007(08):50-53.
[70] 冯钠,吕虹霏,钱玉英,等.稀土类β晶型成核剂对聚丙烯性能的影响[J].现代塑料加工应用,2010,22(05):33-36.
[71] 秦亚伟,冯嘉春,郭绍辉,等.稀土β晶型成核剂对聚丙烯性能的影响[J].化工新型材料,2007(06):56-58+76.
[72] 丁会利,王虎,王婧,等.稀土β成核剂改性纳米CaCO_3/PP复合材料的研究[J].化工新型材料,2009,37(11):51-54.
[73] 丁会利,肖山,王虎,等.稀土β成核剂含量对PPR性能与结晶行为的影响[J].高分子材料科学与工程,2011,27(03):51-54.
[74] 许家萁,韩凯,张继川.3D打印用聚丙烯复合材料的制备及性能研究[J].橡胶工业,2017,64(07):414-417.
[75] ZANDER NICOLE E, PARK JAY H, BOELTER ZACHARY R et al. Recycled Cellulose Polypropylene Composite Feedstocks for Material Extrusion Additive Manufacturing. [J]. ACS omega,2019,4(9): 13879-13888.
[76] 车璇. 基于3D打印聚丙烯复合材料的研究[D].华南理工大学,2020.
[77] D. L. BECK, A. A. HILTZ, J. R. KNOX. Glass transitions in polypropylene[J]. Polymer Engineering & Science,1963,3(4): 279-285.
[78] S. M. OHLBERG, SUE S. FENSTERMAKER. The determination of the glass transition temperature of polyethylene by x‐ray diffraction[J]. Journal of Polymer Science,1958,32(125): 514-516.
[79] WU XUDONG, TANG SHAOKAI, SONG GUANGHUI et al. High-temperature resistant polypropylene films enhanced by atomic layer deposition[J]. Nano Express,2021,2(1): 10025-10033.
[80] J. WANG, M. GAHLEITNER, D. GLOGER et al. β-Nucleation of isotactic polypropylene: Chain structure effects on the effectiveness of two different nucleating agents. [J]. Express Polymer Letters,2020,14(5):491-502.
[81] ZISHOU ZHANG, CHUNGUANG WANG, ZHUGEN YANG et al. Crystallization behavior and melting characteristics of PP nucleated by a novel supported β-nucleating agent[J]. Polymer,2008,49(23): 5137-5145.
修改评论