[1] PIZZAGALLI M D, BENSIMON A, SUPERTI-FURGA G. A guide to plasma membrane solute carrier proteins [J]. FEBS J, 2021, 288(9): 2784-835.
[2] THOMAS C, TAMPE R. Structural and Mechanistic Principles of ABC Transporters [J]. Annu Rev Biochem, 2020, 89: 605-36.
[3] SCHALLER L, LAUSCHKE V M. The genetic landscape of the human solute carrier (SLC) transporter superfamily [J]. Hum Genet, 2019, 138(11-12): 1359-77.
[4] PEDERSEN P L. Transport ATPases: structure, motors, mechanism and medicine: a brief overview [J]. J Bioenerg Biomembr, 2005, 37(6): 349-57.
[5] JEGLA T J, ZMASEK C M, BATALOV S, NAYAK S K. Evolution of the human ion channel set [J]. Comb Chem High Throughput Screen, 2009, 12(1): 2-23.
[6] BRETAG A H. Muscle chloride channels [J]. Physiol Rev, 1987, 67(2): 618-724.
[7] ALTAMURA C, DESAPHY J F, CONTE D, et al. Skeletal muscle ClC-1 chloride channels in health and diseases [J]. Pflugers Arch, 2020, 472(7): 961-75.
[8] DOYON N, VINAY L, PRESCOTT S A, DE KONINCK Y. Chloride Regulation: A Dynamic Equilibrium Crucial for Synaptic Inhibition [J]. Neuron, 2016, 89(6): 1157-72.
[9] WATANABE M, FUKUDA A. Development and regulation of chloride homeostasis in the central nervous system [J]. Front Cell Neurosci, 2015, 9: 371.
[10] VERKMAN A S, GALIETTA L J. Chloride channels as drug targets [J]. Nat Rev Drug Discov, 2009, 8(2): 153-71.
[11] JENTSCH T J, STEINMEYER K, SCHWARZ G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes [J]. Nature, 1990, 348(6301): 510-4.
[12] LIU F, ZHANG Z, CSANADY L, et al. Molecular Structure of the Human CFTR Ion Channel [J]. Cell, 2017, 169(1): 85-95 e8.
[13] ZHANG Z, LIU F, CHEN J. Molecular structure of the ATP-bound, phosphorylated human CFTR [J]. Proc Natl Acad Sci U S A, 2018, 115(50): 12757-62.
[14] LIU F, ZHANG Z, LEVIT A, et al. Structural identification of a hotspot on CFTR for potentiation [J]. Science, 2019, 364(6446): 1184-8.
[15] ALEKSANDROV A A, ALEKSANDROV L A, RIORDAN J R. CFTR (ABCC7) is a hydrolyzable-ligand-gated channel [J]. Pflugers Arch, 2007, 453(5): 693-702.
[16] GRENNINGLOH G, RIENITZ A, SCHMITT B, et al. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors [J]. Nature, 1987, 328(6127): 215-20.
[17] SCHOFIELD P R, DARLISON M G, FUJITA N, et al. Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family [J]. Nature, 1987, 328(6127): 221-7.
[18] OWJI A P, ZHAO Q, JI C, et al. Structural and functional characterization of the bestrophin-2 anion channel [J]. Nat Struct Mol Biol, 2020, 27(4): 382-91.
[19] SUN H, TSUNENARI T, YAU K W, NATHANS J. The vitelliform macular dystrophy protein defines a new family of chloride channels [J]. Proc Natl Acad Sci U S A, 2002, 99(6): 4008-13.
[20] HARTZELL H C, QU Z, YU K, et al. Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies [J]. Physiol Rev, 2008, 88(2): 639-72.
[21] CAPUTO A, CACI E, FERRERA L, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity [J]. Science, 2008, 322(5901): 590-4.
[22] DANG S, FENG S, TIEN J, et al. Cryo-EM structures of the TMEM16A calcium-activated chloride channel [J]. Nature, 2017, 552(7685): 426-9.
[23] VOSS F K, ULLRICH F, MUNCH J, et al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC [J]. Science, 2014, 344(6184): 634-8.
[24] NAKAMURA R, NUMATA T, KASUYA G, et al. Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation [J]. Commun Biol, 2020, 3(1): 240.
[25] ARGENZIO E, MOOLENAAR W H. Emerging biological roles of Cl- intracellular channel proteins [J]. J Cell Sci, 2016, 129(22): 4165-74.
[26] BOTHE M K, MUNDHENK L, KAUP M, et al. The murine goblet cell protein mCLCA3 is a zinc-dependent metalloprotease with autoproteolytic activity [J]. Mol Cells, 2011, 32(6): 535-41.
[27] GIBSON A, LEWIS A P, AFFLECK K, et al. hCLCA1 and mCLCA3 are secreted non-integral membrane proteins and therefore are not ion channels [J]. J Biol Chem, 2005, 280(29): 27205-12.
[28] CHEN I, PANT S, WU Q, et al. Glutamate transporters have a chloride channel with two hydrophobic gates [J]. Nature, 2021, 591(7849): 327-31.
[29] JENTSCH T J, PUSCH M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease [J]. Physiol Rev, 2018, 98(3): 1493-590.
[30] DUTZLER R, CAMPBELL E B, CADENE M, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity [J]. Nature, 2002, 415(6869): 287-94.
[31] DUTZLER R, CAMPBELL E B, MACKINNON R. Gating the selectivity filter in ClC chloride channels [J]. Science, 2003, 300(5616): 108-12.
[32] CHADDA R, KRISHNAMANI V, MERSCH K, et al. The dimerization equilibrium of a ClC Cl(-)/H(+) antiporter in lipid bilayers [J]. Elife, 2016, 5.
[33] FORREST L R. Structural Symmetry in Membrane Proteins [J]. Annu Rev Biophys, 2015, 44: 311-37.
[34] FENG L, CAMPBELL E B, HSIUNG Y, MACKINNON R. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle [J]. Science, 2010, 330(6004): 635-41.
[35] WELLHAUSER L, KUO H H, STRATFORD F L, et al. Nucleotides bind to the C-terminus of ClC-5 [J]. Biochem J, 2006, 398(2): 289-94.
[36] BECK C L, FAHLKE C, GEORGE A L, JR. Molecular basis for decreased muscle chloride conductance in the myotonic goat [J]. Proc Natl Acad Sci U S A, 1996, 93(20): 11248-52.
[37] BURGUNDER J M, HUIFANG S, BEGUIN P, et al. Novel chloride channel mutations leading to mild myotonia among Chinese [J]. Neuromuscul Disord, 2008, 18(8): 633-40.
[38] PARK E, CAMPBELL E B, MACKINNON R. Structure of a CLC chloride ion channel by cryo-electron microscopy [J]. Nature, 2017, 541(7638): 500-5.
[39] RYCHKOV G Y, PUSCH M, ROBERTS M L, et al. Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions [J]. J Gen Physiol, 1998, 111(5): 653-65.
[40] CLARK S, JORDT S E, JENTSCH T J, MATHIE A. Characterization of the hyperpolarization-activated chloride current in dissociated rat sympathetic neurons [J]. J Physiol, 1998, 506 ( Pt 3): 665-78.
[41] DUFFIELD M D, RYCHKOV G Y, BRETAG A H, ROBERTS M L. Zinc inhibits human ClC-1 muscle chloride channel by interacting with its common gating mechanism [J]. J Physiol, 2005, 568(Pt 1): 5-12.
[42] LIN Y W, LIN C W, CHEN T Y. Elimination of the slow gating of ClC-0 chloride channel by a point mutation [J]. J Gen Physiol, 1999, 114(1): 1-12.
[43] ZUNIGA L, NIEMEYER M I, VARELA D, et al. The voltage-dependent ClC-2 chloride channel has a dual gating mechanism [J]. J Physiol, 2004, 555(Pt 3): 671-82.
[44] FOX G Q, RICHARDSON G P. The developmental morphology of Torpedo marmorata: electric organ--myogenic phase [J]. J Comp Neurol, 1978, 179(3): 677-97.
[45] STEINMEYER K, ORTLAND C, JENTSCH T J. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel [J]. Nature, 1991, 354(6351): 301-4.
[46] STEINMEYER K, KLOCKE R, ORTLAND C, et al. Inactivation of muscle chloride channel by transposon insertion in myotonic mice [J]. Nature, 1991, 354(6351): 304-8.
[47] KOCH M C, STEINMEYER K, LORENZ C, et al. The skeletal muscle chloride channel in dominant and recessive human myotonia [J]. Science, 1992, 257(5071): 797-800.
[48] RYCHKOV G Y, PUSCH M, ASTILL D S, et al. Concentration and pH dependence of skeletal muscle chloride channel ClC-1 [J]. J Physiol, 1996, 497 ( Pt 2): 423-35.
[49] TSENG P Y, BENNETTS B, CHEN T Y. Cytoplasmic ATP inhibition of CLC-1 is enhanced by low pH [J]. J Gen Physiol, 2007, 130(2): 217-21.
[50] ZHANG X D, TSENG P Y, CHEN T Y. ATP inhibition of CLC-1 is controlled by oxidation and reduction [J]. J Gen Physiol, 2008, 132(4): 421-8.
[51] ROSENBOHM A, RUDEL R, FAHLKE C. Regulation of the human skeletal muscle chloride channel hClC-1 by protein kinase C [J]. J Physiol, 1999, 514 ( Pt 3): 677-85.
[52] DELUCA A, TRICARICO D, WAGNER R, et al. Opposite Effects of Enantiomers of Clofibric Acid-Derivative on Rat Skeletal-Muscle Chloride Conductance - Antagonism Studies and Theoretical Modeling of 2 Different Receptor-Site Interactions [J]. J Pharmacol Exp Ther, 1992, 260(1): 364-8.
[53] CAMERINO D C, DELUCA A, TRICARICO D, et al. Effect of Newly Synthesized Rigid Clofibric Acid-Derivatives on Chloride Channel Conductance of Rat Skeletal-Muscle [J]. Brit J Pharmacol, 1994, 111: P242-P.
[54] AROMATARIS E C, ASTILL D S, RYCHKOV G Y, et al. Modulation of the gating of CIC-1 by S-(-) 2-(4-chlorophenoxy) propionic acid [J]. Br J Pharmacol, 1999, 126(6): 1375-82.
[55] PARK E, MACKINNON R. Structure of the CLC-1 chloride channel from Homo sapiens [J]. Elife, 2018, 7.
[56] WANG K, PREISLER S S, ZHANG L, et al. Structure of the human ClC-1 chloride channel [J]. PLoS Biol, 2019, 17(4): e3000218.
[57] KIEFERLE S, FONG P, BENS M, et al. Two highly homologous members of the ClC chloride channel family in both rat and human kidney [J]. Proc Natl Acad Sci U S A, 1994, 91(15): 6943-7.
[58] ESTEVEZ R, BOETTGER T, STEIN V, et al. Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion [J]. Nature, 2001, 414(6863): 558-61.
[59] MATSUMURA Y, UCHIDA S, KONDO Y, et al. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel [J]. Nat Genet, 1999, 21(1): 95-8.
[60] GRILL A, SCHIESSL I M, GESS B, et al. Salt-losing nephropathy in mice with a null mutation of the Clcnk2 gene [J]. Acta Physiol (Oxf), 2016, 218(3): 198-211.
[61] SIMON D B, BINDRA R S, MANSFIELD T A, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III [J]. Nat Genet, 1997, 17(2): 171-8.
[62] BIRKENHAGER R, OTTO E, SCHURMANN M J, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure [J]. Nat Genet, 2001, 29(3): 310-4.
[63] RICKHEIT G, MAIER H, STRENZKE N, et al. Endocochlear potential depends on Cl- channels: mechanism underlying deafness in Bartter syndrome IV [J]. EMBO J, 2008, 27(21): 2907-17.
[64] MATULEF K, HOWERY A E, TAN L, et al. Discovery of potent CLC chloride channel inhibitors [J]. ACS Chem Biol, 2008, 3(7): 419-28.
[65] LIANTONIO A, IMBRICI P, CAMERINO G M, et al. Kidney CLC-K chloride channels inhibitors: structure-based studies and efficacy in hypertension and associated CLC-K polymorphisms [J]. J Hypertens, 2016, 34(5): 981-92.
[66] KOSTER A K, WOOD C A P, THOMAS-TRAN R, et al. A selective class of inhibitors for the CLC-Ka chloride ion channel [J]. Proc Natl Acad Sci U S A, 2018, 115(21): E4900-E9.
[67] STOBRAWA S M, BREIDERHOFF T, TAKAMORI S, et al. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus [J]. Neuron, 2001, 29(1): 185-96.
[68] PALMER E E, STUHLMANN T, WEINERT S, et al. De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females [J]. Mol Psychiatry, 2018, 23(2): 222-30.
[69] WEINERT S, GIMBER N, DEUSCHEL D, et al. Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration [J]. EMBO J, 2020, 39(9): e103358.
[70] STEINMEYER K, SCHWAPPACH B, BENS M, et al. Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease [J]. J Biol Chem, 1995, 270(52): 31172-7.
[71] ZDEBIK A A, ZIFARELLI G, BERGSDORF E Y, et al. Determinants of anion-proton coupling in mammalian endosomal CLC proteins [J]. J Biol Chem, 2008, 283(7): 4219-27.
[72] MEYER S, SAVARESI S, FORSTER I C, DUTZLER R. Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5 [J]. Nat Struct Mol Biol, 2007, 14(1): 60-7.
[73] GRIESCHAT M, GUZMAN R E, LANGSCHWAGER K, et al. Metabolic energy sensing by mammalian CLC anion/proton exchangers [J]. EMBO Rep, 2020, 21(6): e47872.
[74] MANSOUR-HENDILI L, BLANCHARD A, LE POTTIER N, et al. Mutation Update of the CLCN5 Gene Responsible for Dent Disease 1 [J]. Hum Mutat, 2015, 36(8): 743-52.
[75] NOVARINO G, WEINERT S, RICKHEIT G, JENTSCH T J. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis [J]. Science, 2010, 328(5984): 1398-401.
[76] POET M, KORNAK U, SCHWEIZER M, et al. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6 [J]. Proc Natl Acad Sci U S A, 2006, 103(37): 13854-9.
[77] ZIFARELLI G, PUSCH M, FONG P. Altered voltage-dependence of slowly activating chloride-proton antiport by late endosomal ClC-6 explains distinct neurological disorders [J]. J Physiol, 2022, 600(9): 2147-64.
[78] POLOVITSKAYA M M, BARBINI C, MARTINELLI D, et al. A Recurrent Gain-of-Function Mutation in CLCN6, Encoding the ClC-6 Cl(-)/H(+)-Exchanger, Causes Early-Onset Neurodegeneration [J]. Am J Hum Genet, 2020, 107(6): 1062-77.
[79] KORNAK U, KASPER D, BOSL M R, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man [J]. Cell, 2001, 104(2): 205-15.
[80] CHALHOUB N, BENACHENHOU N, RAJAPUROHITAM V, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human [J]. Nat Med, 2003, 9(4): 399-406.
[81] WU J Z, ZEZIULIA M, KWON W, et al. ClC-7 drives intraphagosomal chloride accumulation to support hydrolase activity and phagosome resolution [J]. J Cell Biol, 2023, 222(6).
[82] SCHRECKER M, KOROBENKO J, HITE R K. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1 [J]. Elife, 2020, 9.
[83] ZHANG S, LIU Y, ZHANG B, et al. Molecular insights into the human CLC-7/Ostm1 transporter [J]. Sci Adv, 2020, 6(33): eabb4747.
[84] ENZ R, ROSS B J, CUTTING G R. Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina [J]. J Neurosci, 1999, 19(22): 9841-7.
[85] LAN W Z, ABBAS H, LAM H D, et al. Contribution of a time-dependent and hyperpolarization-activated chloride conductance to currents of resting and hypotonically shocked rat hepatocytes [J]. Am J Physiol Gastrointest Liver Physiol, 2005, 288(2): G221-9.
[86] NEHRKE K, ARREOLA J, NGUYEN H V, et al. Loss of hyperpolarization-activated Cl(-) current in salivary acinar cells from Clcn2 knockout mice [J]. J Biol Chem, 2002, 277(26): 23604-11.
[87] BOUYER G, EGEE S, THOMAS S L. Toward a unifying model of malaria-induced channel activity [J]. Proc Natl Acad Sci U S A, 2007, 104(26): 11044-9.
[88] CATALAN M, CORNEJO I, FIGUEROA C D, et al. ClC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization [J]. Am J Physiol Gastrointest Liver Physiol, 2002, 283(4): G1004-13.
[89] SANCHEZ-RODRIGUEZ J E, DE SANTIAGO-CASTILLO J A, CONTRERAS-VITE J A, et al. Sequential interaction of chloride and proton ions with the fast gate steer the voltage-dependent gating in ClC-2 chloride channels [J]. J Physiol, 2012, 590(17): 4239-53.
[90] SANCHEZ-RODRIGUEZ J E, DE SANTIAGO-CASTILLO J A, ARREOLA J. Permeant anions contribute to voltage dependence of ClC-2 chloride channel by interacting with the protopore gate [J]. J Physiol, 2010, 588(Pt 14): 2545-56.
[91] DE JESUS-PEREZ J J, CASTRO-CHONG A, SHIEH R C, et al. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy [J]. J Gen Physiol, 2016, 147(1): 25-37.
[92] ARREOLA J, BEGENISICH T, MELVIN J E. Conformation-dependent regulation of inward rectifier chloride channel gating by extracellular protons [J]. J Physiol, 2002, 541(Pt 1): 103-12.
[93] JORDT S E, JENTSCH T J. Molecular dissection of gating in the ClC-2 chloride channel [J]. EMBO J, 1997, 16(7): 1582-92.
[94] CAPDEVILA-NORTES X, JEWORUTZKI E, ELORZA-VIDAL X, et al. Structural determinants of interaction, trafficking and function in the ClC-2/MLC1 subunit GlialCAM involved in leukodystrophy [J]. J Physiol, 2015, 593(18): 4165-80.
[95] HOEGG-BEILER M B, SIRISI S, OROZCO I J, et al. Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction [J]. Nat Commun, 2014, 5: 3475.
[96] JEWORUTZKI E, LAGOSTENA L, ELORZA-VIDAL X, et al. GlialCAM, a CLC-2 Cl(-) channel subunit, activates the slow gate of CLC chloride channels [J]. Biophys J, 2014, 107(5): 1105-16.
[97] BOSL M R, STEIN V, HUBNER C, et al. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption [J]. EMBO J, 2001, 20(6): 1289-99.
[98] CORTEZ M A, LI C, WHITEHEAD S N, et al. Disruption of ClC-2 expression is associated with progressive neurodegeneration in aging mice [J]. Neuroscience, 2010, 167(1): 154-62.
[99] EDWARDS M M, MARIN DE EVSIKOVA C, COLLIN G B, et al. Photoreceptor degeneration, azoospermia, leukoencephalopathy, and abnormal RPE cell function in mice expressing an early stop mutation in CLCN2 [J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 3264-72.
[100] DEPIENNE C, BUGIANI M, DUPUITS C, et al. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study [J]. Lancet Neurol, 2013, 12(7): 659-68.
[101] GIORGIO E, VAULA G, BENNA P, et al. A novel homozygous change of CLCN2 (p.His590Pro) is associated with a subclinical form of leukoencephalopathy with ataxia (LKPAT) [J]. J Neurol Neurosurg Psychiatry, 2017, 88(10): 894-6.
[102] FERNANDES-ROSA F L, DANIIL G, OROZCO I J, et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism [J]. Nat Genet, 2018, 50(3): 355-61.
[103] PUSCH M, LIANTONIO A, BERTORELLO L, et al. Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives [J]. Mol Pharmacol, 2000, 58(3): 498-507.
[104] KOSTER A K, REESE A L, KURYSHEV Y, et al. Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel [J]. Proc Natl Acad Sci U S A, 2020, 117(51): 32711-21.
[105] THOMPSON C H, OLIVETTI P R, FULLER M D, et al. Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels [J]. J Biol Chem, 2009, 284(38): 26051-62.
[106] ALAM A, LOCHER K P. Structure and Mechanism of Human ABC Transporters [J]. Annu Rev Biophys, 2023, 52: 275-300.
[107] NIELSEN M J, RASMUSSEN M R, ANDERSEN C B, et al. Vitamin B12 transport from food to the body's cells--a sophisticated, multistep pathway [J]. Nat Rev Gastroenterol Hepatol, 2012, 9(6): 345-54.
[108] ZHANG Z, LIU F, CHEN J. Conformational Changes of CFTR upon Phosphorylation and ATP Binding [J]. Cell, 2017, 170(3): 483-91 e8.
[109] CHENG S H, GREGORY R J, MARSHALL J, et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis [J]. Cell, 1990, 63(4): 827-34.
[110] JIA S, TAYLOR-COUSAR J L. Cystic Fibrosis Modulator Therapies [J]. Annu Rev Med, 2023, 74: 413-26.
[111] DAS S, JAYARATNE R, BARRETT K E. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea [J]. Cell Mol Gastroenterol Hepatol, 2018, 6(1): 33-45.
[112] VERKMAN A S, LUKACS G L, GALIETTA L J. CFTR chloride channel drug discovery--inhibitors as antidiarrheals and activators for therapy of cystic fibrosis [J]. Curr Pharm Des, 2006, 12(18): 2235-47.
[113] SONAWANE N D, MUANPRASAT C, NAGATANI R, JR., et al. In vivo pharmacology and antidiarrheal efficacy of a thiazolidinone CFTR inhibitor in rodents [J]. J Pharm Sci, 2005, 94(1): 134-43.
[114] VERKMAN A S, SYNDER D, TRADTRANTIP L, et al. CFTR inhibitors [J]. Curr Pharm Des, 2013, 19(19): 3529-41.
[115] MA T, THIAGARAJAH J R, YANG H, et al. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion [J]. J Clin Invest, 2002, 110(11): 1651-8.
[116] DUAN Y, LI G, XU M, et al. CFTR is a negative regulator of gammadelta T cell IFN-gamma production and antitumor immunity [J]. Cell Mol Immunol, 2021, 18(8): 1934-44.
[117] LIU M, LIN Z, WANG Y, et al. High cystic fibrosis transmembrane conductance regulator expression in childhood B-cell acute lymphoblastic leukemia acts as a potential therapeutic target [J]. Transl Cancer Res, 2022, 11(3): 436-43.
[118] ZHANG Z, CHEN J. Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator [J]. Cell, 2016, 167(6): 1586-97 e9.
[119] FIEDORCZUK K, CHEN J. Mechanism of CFTR correction by type I folding correctors [J]. Cell, 2022, 185(1): 158-68 e11.
[120] FIEDORCZUK K, CHEN J. Molecular structures reveal synergistic rescue of Delta508 CFTR by Trikafta modulators [J]. Science, 2022, 378(6617): 284-90.
[121] PAMPALONI N P, LOTTNER M, GIUGLIANO M, et al. Single-layer graphene modulates neuronal communication and augments membrane ion currents [J]. Nat Nanotechnol, 2018, 13(8): 755-64.
[122] ZHONG S, NAVARATNAM D, SANTOS-SACCHI J. A genetically-encoded YFP sensor with enhanced chloride sensitivity, photostability and reduced ph interference demonstrates augmented transmembrane chloride movement by gerbil prestin (SLC26a5) [J]. PLoS One, 2014, 9(6): e99095.
[123] HE M, YE W, WANG W J, et al. Cytoplasmic Cl(-) couples membrane remodeling to epithelial morphogenesis [J]. Proc Natl Acad Sci U S A, 2017, 114(52): E11161-E9.
[124] SAHA S, PRAKASH V, HALDER S, et al. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells [J]. Nat Nanotechnol, 2015, 10(7): 645-51.
[125] LIN S, KE M, ZHANG Y, et al. Structure of a mammalian sperm cation channel complex [J]. Nature, 2021, 595(7869): 746-50.
[126] HE Y, NING T, XIE T, et al. Large-scale production of functional human serum albumin from transgenic rice seeds [J]. Proc Natl Acad Sci U S A, 2011, 108(47): 19078-83.
[127] CHOY B C, CATER R J, MANCIA F, PRYOR E E, JR. A 10-year meta-analysis of membrane protein structural biology: Detergents, membrane mimetics, and structure determination techniques [J]. Biochim Biophys Acta Biomembr, 2021, 1863(3): 183533.
[128] YOU X, ZHANG X, CHENG J, et al. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex [J]. Nature, 2023, 616(7955): 199-206.
[129] YAO X, FAN X, YAN N. Cryo-EM analysis of a membrane protein embedded in the liposome [J]. Proc Natl Acad Sci U S A, 2020, 117(31): 18497-503.
[130] LEE H J, LEE H S, YOUN T, et al. Impact of novel detergents on membrane protein studies [J]. Chem-Us, 2022, 8(4): 980-1013.
[131] LE BON C, MICHON B, POPOT J L, ZOONENS M. Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy [J]. Q Rev Biophys, 2021, 54: e6.
[132] XU Y, DANG S. Recent Technical Advances in Sample Preparation for Single-Particle Cryo-EM [J]. Front Mol Biosci, 2022, 9: 892459.
[133] SCHERES S H. RELION: implementation of a Bayesian approach to cryo-EM structure determination [J]. J Struct Biol, 2012, 180(3): 519-30.
[134] PUNJANI A, RUBINSTEIN J L, FLEET D J, BRUBAKER M A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination [J]. Nat Methods, 2017, 14(3): 290-6.
[135] PUNJANI A, ZHANG H, FLEET D J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction [J]. Nat Methods, 2020, 17(12): 1214-21.
[136] OAK A A, CHU T, YOTTASAN P, et al. Lubiprostone is non-selective activator of cAMP-gated ion channels and Clc-2 has a minor role in its prosecretory effect in intestinal epithelial cells [J]. Mol Pharmacol, 2022, 102(2): 106-15.
[137] MA T, WANG L, CHAI A, et al. Cryo-EM structures of ClC-2 chloride channel reveal the blocking mechanism of its specific inhibitor AK-42 [J]. Nat Commun, 2023, 14(1): 3424.
[138] SCHOLL U I, STOLTING G, SCHEWE J, et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II [J]. Nat Genet, 2018, 50(3): 349-54.
[139] ASHRAFI M R, AMANAT M, GARSHASBI M, et al. An update on clinical, pathological, diagnostic, and therapeutic perspectives of childhood leukodystrophies [J]. Expert Rev Neurother, 2020, 20(1): 65-84.
[140] GOPPNER C, SORIA A H, HOEGG-BEILER M B, JENTSCH T J. Cellular basis of ClC-2 Cl(-) channel-related brain and testis pathologies [J]. J Biol Chem, 2021, 296: 100074.
[141] GAITAN-PENAS H, APAJA P M, ARNEDO T, et al. Leukoencephalopathy-causing CLCN2 mutations are associated with impaired Cl(-) channel function and trafficking [J]. J Physiol, 2017, 595(22): 6993-7008.
[142] FU S J, HU M C, HSIAO C T, et al. Regulation of ClC-2 Chloride Channel Proteostasis by Molecular Chaperones: Correction of Leukodystrophy-Associated Defect [J]. Int J Mol Sci, 2021, 22(11).
[143] IMBRICI P, TRICARICO D, MANGIATORDI G F, et al. Pharmacovigilance database search discloses ClC-K channels as a novel target of the AT(1) receptor blockers valsartan and olmesartan [J]. Br J Pharmacol, 2017, 174(13): 1972-83.
[144] MILLER C. ClC chloride channels viewed through a transporter lens [J]. Nature, 2006, 440(7083): 484-9.
[145] LEISLE L, LAM K, DEHGHANI-GHAHNAVIYEH S, et al. Backbone amides are determinants of Cl(-) selectivity in CLC ion channels [J]. Nat Commun, 2022, 13(1): 7508.
[146] MILLER C. Q-cubed mutant cues clues to CLC antiport mechanism [J]. J Gen Physiol, 2021, 153(4).
[147] DE JESUS-PEREZ J J, MENDEZ-MALDONADO G A, LOPEZ-ROMERO A E, et al. Electro-steric opening of the CLC-2 chloride channel gate [J]. Sci Rep, 2021, 11(1): 13127.
[148] FAHLKE C, FISCHER M. Physiology and pathophysiology of ClC-K/barttin channels [J]. Front Physiol, 2010, 1: 155.
[149] BENNETTS B, RYCHKOV G Y, NG H L, et al. Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels [J]. J Biol Chem, 2005, 280(37): 32452-8.
[150] YAMADA T, KRZEMINSKI M, BOZOKY Z, et al. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel [J]. Biophys J, 2016, 111(9): 1876-86.
[151] STOLTING G, TEODORESCU G, BEGEMANN B, et al. Regulation of ClC-2 gating by intracellular ATP [J]. Pflugers Arch, 2013, 465(10): 1423-37.
[152] ZHANG B, ZHANG S, POLOVITSKAYA M M, et al. Molecular basis of ClC-6 function and its impairment in human disease [J]. Sci Adv, 2023, 9(41): eadg4479.
[153] LEISLE L, LUDWIG C F, WAGNER F A, et al. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity [J]. EMBO J, 2011, 30(11): 2140-52.
[154] XU M, NEELANDS T, POWERS A S, et al. CryoEM structures of the human CLC-2 voltage gated chloride channel reveal a ball and chain gating mechanism [J]. bioRxiv, 2023.
[155] GRUNDER S, THIEMANN A, PUSCH M, JENTSCH T J. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume [J]. Nature, 1992, 360(6406): 759-62.
[156] YANG Z, ZHANG X, YE S, et al. Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids [J]. Nat Commun, 2023, 14(1): 4879.
[157] YOUNG P G, LEVRING J, FIEDORCZUK K, et al. Structural basis for CFTR inhibition by CFTR(inh)-172 [J]. Proc Natl Acad Sci U S A, 2024, 121(10): e2316675121.
[158] LEVRING J, CHEN J. Structural identification of a selectivity filter in CFTR [J]. Proc Natl Acad Sci U S A, 2024, 121(9): e2316673121.
修改评论