中文版 | English
题名

人源氯离子通道ClC-2和CFTR的结构生物学研究

其他题名
STRUCTURAL STUDIES OF HUMAN CHLORIDE CHANNELS ClC-2 AND CFTR
姓名
姓名拼音
WANG Lei
学号
11930845
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
闫凯歌
导师单位
化学生物学系
论文答辩日期
2024-04
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

细胞膜对于维持细胞正常生理功能是必不可少的,细胞膜上的转运蛋白和离子通道蛋白对于吸收营养物质,排出代谢废物等有害物质,以及维持细胞内外离子和水的平衡非常重要。氯离子是生物体内含量最丰富的阴离子,不仅中和钠、钾、钙等阳离子的正电荷,维持细胞整体电中性,还参与调节细胞的渗透压、表皮组织的粘液分泌、维持肌肉组织和神经组织的可兴奋性。细胞内外氯离子浓度的动态平衡,是氯离子通道蛋白和氯离子转运蛋白等共同调控的结果。
人体主要的氯离子通道包括囊性纤维化相关膜蛋白ABCC7(CFTR)、电压门控氯离子通道ClC蛋白家族、GABA和glycine配体门控氯离子通道等。研究表明,这些氯离子通道的功能异常会引起多种遗传疾病。本课题选取了CFTR氯离子通道蛋白和ClC蛋白家族的几个成员作为研究对象,通过生物化学和结构生物学等手段,研究调节剂的作用机理,为研发靶向这些人源氯离子通道的药物提供分子层面的理论基础。经过多次尝试和优化冷冻电镜样品制备条件,本课题最终获得中等分辨率CFTR氯离子通道结构和高分辨率ClC-2氯离子通道结构。
ClC-2是在人体各组织器官里广泛表达的一种电压门控的氯离子通道。其功能减退的遗传突变会引起视网膜退化、雄性不育、大脑白质病变等症状;其功能增强型突变能够导致醛固酮增多等内分泌紊乱症状,与高血压有关联。目前已知有两个特异性的ClC-2抑制剂:来源于蝎子毒素的GaTx2小肽和人工合成的小分子化合物AK-42;但还没有报道过特异性ClC-2激活剂。
本研究表达纯化了全长人源ClC-2 蛋白,经过多次优化冷冻电镜制样条件和数据处理过程,获得了ClC-2氯离子通道同源二聚体在apo状态与结合高效抑制剂AK-42状态的冷冻电镜结构,整体分辨率均为约4.3 Å,跨膜区分辨率为约3.5 Å。首先对apo状态ClC-2蛋白的氯离子运输路径的半径、门控机制以及氯离子结合位点等性质进行了分析:该ClC-2结构里,门控谷氨酸侧链占据离子通道的中间氯离子结合位点,快门控处于关闭状态,与离子选择性有关的保守丝氨酸和酪氨酸在离子通道半径狭窄处发挥作用。我们进一步探究了AK-42抑制ClC-2活性的机理:AK-42结合在通道的外侧氯离子结合位点上方,直接堵塞了氯离子跨膜运输路径。随后,分析了ClC-2和抑制剂的相互作用:AK-42可以和ClC-2蛋白的三个氨基酸形成氢键,和一个氨基酸有阳离子-π相互作用,此外还和多个氨基酸有疏水相互作用。此外,本课题通过分子动力学模拟进行能量分解研究,定量分析了每个氨基酸对结合AK-42的能量贡献。参与结合AK-42的氨基酸位点,在其他人源ClC家族蛋白对应的氨基酸序列上至少有5个差异,这也解释了AK-42能够特异性抑制ClC-2,而不影响其他人源ClC蛋白活性。最后,通过构建结合位点突变体,并使用膜片钳进行电生理实验,分析了突变对AK-42抑制ClC-2效果的影响,细胞水平的电生理实验支持了结构生物学的分析结论。综上所述,本研究为理解人源ClC-2氯离子通道的门控特点,以及与AK-42抑制剂作用机理奠定了基础,有助于研发靶向人源ClC-2氯离子通道的药物。
此外,还表达纯化了CFTR氯离子通道蛋白,计划获得它与抑制剂CFTRinh-172的复合物结构,已获得约6 Å分辨率密度图,两个NBD结构分开,12次跨膜螺旋形成的两个TMD结构呈V字形向内开口,通道呈关闭状态,两个TMD之间有4处密度差异,揭示了潜在的抑制剂结合位点。
综上所述,虽然ClC-2和CFTR这两个氯离子通道在门控机制方面有所不同,但都会受到ATP浓度影响,而且它们在氯离子选择性滤器上有较高相似性;同时ClC-2蛋白的特异性抑制剂AK-42和CFTR蛋白特异性抑制剂CFTRinh-172都通过直接堵塞氯离子运输路径来发挥作用。这两个蛋白的结构生物学研究,有助于深化我们对于氯离子通道的理解,对于依赖结构的药物设计与优化具有启发意义。

其他摘要

The cell membranes are essential for cells to maintain normal physiological functions. The transporters and channels on the membrane are crucial to absorb nutrients, export cellular toxic metabolic wastes and keep the balance of ions and water. As the most plentiful anion in organisms, chloride is counterion for sodium, potassium and calcium cations, it not only keeps the cellular electroneutrality, but also ensures the osmotic balance of cells, transepithelial transport and excitability of muscle and nervous tissues. The thermodynamic equilibrium of cellular chloride concentration is affected by factors such as chloride channels and transporters.
Human chloride channels mainly include cystic fibrosis related membrane protein ABCC7(CFTR), voltage regulated chloride channels ClC and (GABA or glycine) ligand gated channels. The malfunctions of chloride channels can cause many genetic disorders. In order to solve the structures of chloride channels in complex with their modulators, and investigate the mechanisms of channel modulators for drug discovery, the CFTR chloride channel and several ClC members have been selected as study subjects. After many trials and optimizations of cryo-EM grids preparation, we have ultimately gotten medium-resolution CFTR cryo-EM density and high-resolution ClC-2 structures. 
The human ClC-2 is a widely expressed voltage gated chloride channel. Its loss-of-function mutations can lead to retina degeneration, azoospermia and leukodystrophy. In contrast, elevated aldosterone and higher blood pressure are associated with ClC-2 gain-of-function variations. There are no ClC-2 specific activators till now, while it has two reported specific inhibitors: GaTx2 peptide from scorpion venom and synthetic small compound AK-42.
In this study, we have expressed and purified full-length human ClC-2 protein. After the optimization of the cryo-EM grids preparations and data processing, we have solved high resolution structures of ClC-2 homodimer in apo and AK-42 inhibitor binding states, the overall resolution is 4.3 Å, while the resolution of transmembrane domain is 3.5 Å. Firstly, the radius, gating mechanism and chloride binding site of ClC-2 channel have been analyzed: the gating glutamate has occupied the central chloride binding site in our ClC-2 structures, the selectivity filter formed by conserved serine and tyrosine residue has located in the narrowest place of chloride channel. Next, the mechanism of AK-42 inhibition on ClC-2 have been analyzed: the AK-42 inhibitor has located above the extra chloride binding site and directly blocked the chloride channel. Then, we have studied the interactions between ClC-2 and AK-42: the inhibitor can form hydrogen bonds with 3 amino acids of proteins, cation-π interaction with one amino acid, and hydrophobic interactions with several amino acids. Then the molecular dynamics simulation has been used to do energy decomposition study of AK-42 binding amino acids. These amino acids have at least 5 differences in other human ClC family proteins, which also explains the specific inhibition of AK-42 on ClC-2, with no obvious influence on other human ClC protein. Finally, we have utilized the patch clamp technique to do cellular level validations for interactions between AK-42 and (wildtype or mutant) ClC-2, the electrophysiological experiments have supported our structural biology conclusions. In summary, this work will increase the understanding of human ClC-2 chloride channel gating and inhibition by AK-42, which may be helpful on the development of ClC-2 targeting drugs.
In addition, in order to solve the structure of CFTR and CFTRinh-172, I have purified the CFTR protein, and gotten 6 Å resolution map. The two NBDs were separated, the two TMDs formed by the 12 transmembrane helices opened inward in a V-shape, and the channel was closed. There were 4 suspected inhibitor binding sites between the two TMDs.
 In summary, although the two chloride channels ClC-2 and CFTR are different in gating mechanisms, they are regulated by ATP, and they have high similarities in selective filters. Both ClC-2 inhibitor AK-42 and CFTR inhibitor CFTRinh-172 act by directly blocking the chloride transport pathway. The structural study of these two proteins will increase our understanding of chloride channels and provide insights for structure-based drug design and optimization.

 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] PIZZAGALLI M D, BENSIMON A, SUPERTI-FURGA G. A guide to plasma membrane solute carrier proteins [J]. FEBS J, 2021, 288(9): 2784-835.
[2] THOMAS C, TAMPE R. Structural and Mechanistic Principles of ABC Transporters [J]. Annu Rev Biochem, 2020, 89: 605-36.
[3] SCHALLER L, LAUSCHKE V M. The genetic landscape of the human solute carrier (SLC) transporter superfamily [J]. Hum Genet, 2019, 138(11-12): 1359-77.
[4] PEDERSEN P L. Transport ATPases: structure, motors, mechanism and medicine: a brief overview [J]. J Bioenerg Biomembr, 2005, 37(6): 349-57.
[5] JEGLA T J, ZMASEK C M, BATALOV S, NAYAK S K. Evolution of the human ion channel set [J]. Comb Chem High Throughput Screen, 2009, 12(1): 2-23.
[6] BRETAG A H. Muscle chloride channels [J]. Physiol Rev, 1987, 67(2): 618-724.
[7] ALTAMURA C, DESAPHY J F, CONTE D, et al. Skeletal muscle ClC-1 chloride channels in health and diseases [J]. Pflugers Arch, 2020, 472(7): 961-75.
[8] DOYON N, VINAY L, PRESCOTT S A, DE KONINCK Y. Chloride Regulation: A Dynamic Equilibrium Crucial for Synaptic Inhibition [J]. Neuron, 2016, 89(6): 1157-72.
[9] WATANABE M, FUKUDA A. Development and regulation of chloride homeostasis in the central nervous system [J]. Front Cell Neurosci, 2015, 9: 371.
[10] VERKMAN A S, GALIETTA L J. Chloride channels as drug targets [J]. Nat Rev Drug Discov, 2009, 8(2): 153-71.
[11] JENTSCH T J, STEINMEYER K, SCHWARZ G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes [J]. Nature, 1990, 348(6301): 510-4.
[12] LIU F, ZHANG Z, CSANADY L, et al. Molecular Structure of the Human CFTR Ion Channel [J]. Cell, 2017, 169(1): 85-95 e8.
[13] ZHANG Z, LIU F, CHEN J. Molecular structure of the ATP-bound, phosphorylated human CFTR [J]. Proc Natl Acad Sci U S A, 2018, 115(50): 12757-62.
[14] LIU F, ZHANG Z, LEVIT A, et al. Structural identification of a hotspot on CFTR for potentiation [J]. Science, 2019, 364(6446): 1184-8.
[15] ALEKSANDROV A A, ALEKSANDROV L A, RIORDAN J R. CFTR (ABCC7) is a hydrolyzable-ligand-gated channel [J]. Pflugers Arch, 2007, 453(5): 693-702.
[16] GRENNINGLOH G, RIENITZ A, SCHMITT B, et al. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors [J]. Nature, 1987, 328(6127): 215-20.
[17] SCHOFIELD P R, DARLISON M G, FUJITA N, et al. Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family [J]. Nature, 1987, 328(6127): 221-7.
[18] OWJI A P, ZHAO Q, JI C, et al. Structural and functional characterization of the bestrophin-2 anion channel [J]. Nat Struct Mol Biol, 2020, 27(4): 382-91.
[19] SUN H, TSUNENARI T, YAU K W, NATHANS J. The vitelliform macular dystrophy protein defines a new family of chloride channels [J]. Proc Natl Acad Sci U S A, 2002, 99(6): 4008-13.
[20] HARTZELL H C, QU Z, YU K, et al. Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies [J]. Physiol Rev, 2008, 88(2): 639-72.
[21] CAPUTO A, CACI E, FERRERA L, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity [J]. Science, 2008, 322(5901): 590-4.
[22] DANG S, FENG S, TIEN J, et al. Cryo-EM structures of the TMEM16A calcium-activated chloride channel [J]. Nature, 2017, 552(7685): 426-9.
[23] VOSS F K, ULLRICH F, MUNCH J, et al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC [J]. Science, 2014, 344(6184): 634-8.
[24] NAKAMURA R, NUMATA T, KASUYA G, et al. Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation [J]. Commun Biol, 2020, 3(1): 240.
[25] ARGENZIO E, MOOLENAAR W H. Emerging biological roles of Cl- intracellular channel proteins [J]. J Cell Sci, 2016, 129(22): 4165-74.
[26] BOTHE M K, MUNDHENK L, KAUP M, et al. The murine goblet cell protein mCLCA3 is a zinc-dependent metalloprotease with autoproteolytic activity [J]. Mol Cells, 2011, 32(6): 535-41.
[27] GIBSON A, LEWIS A P, AFFLECK K, et al. hCLCA1 and mCLCA3 are secreted non-integral membrane proteins and therefore are not ion channels [J]. J Biol Chem, 2005, 280(29): 27205-12.
[28] CHEN I, PANT S, WU Q, et al. Glutamate transporters have a chloride channel with two hydrophobic gates [J]. Nature, 2021, 591(7849): 327-31.
[29] JENTSCH T J, PUSCH M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease [J]. Physiol Rev, 2018, 98(3): 1493-590.
[30] DUTZLER R, CAMPBELL E B, CADENE M, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity [J]. Nature, 2002, 415(6869): 287-94.
[31] DUTZLER R, CAMPBELL E B, MACKINNON R. Gating the selectivity filter in ClC chloride channels [J]. Science, 2003, 300(5616): 108-12.
[32] CHADDA R, KRISHNAMANI V, MERSCH K, et al. The dimerization equilibrium of a ClC Cl(-)/H(+) antiporter in lipid bilayers [J]. Elife, 2016, 5.
[33] FORREST L R. Structural Symmetry in Membrane Proteins [J]. Annu Rev Biophys, 2015, 44: 311-37.
[34] FENG L, CAMPBELL E B, HSIUNG Y, MACKINNON R. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle [J]. Science, 2010, 330(6004): 635-41.
[35] WELLHAUSER L, KUO H H, STRATFORD F L, et al. Nucleotides bind to the C-terminus of ClC-5 [J]. Biochem J, 2006, 398(2): 289-94.
[36] BECK C L, FAHLKE C, GEORGE A L, JR. Molecular basis for decreased muscle chloride conductance in the myotonic goat [J]. Proc Natl Acad Sci U S A, 1996, 93(20): 11248-52.
[37] BURGUNDER J M, HUIFANG S, BEGUIN P, et al. Novel chloride channel mutations leading to mild myotonia among Chinese [J]. Neuromuscul Disord, 2008, 18(8): 633-40.
[38] PARK E, CAMPBELL E B, MACKINNON R. Structure of a CLC chloride ion channel by cryo-electron microscopy [J]. Nature, 2017, 541(7638): 500-5.
[39] RYCHKOV G Y, PUSCH M, ROBERTS M L, et al. Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions [J]. J Gen Physiol, 1998, 111(5): 653-65.
[40] CLARK S, JORDT S E, JENTSCH T J, MATHIE A. Characterization of the hyperpolarization-activated chloride current in dissociated rat sympathetic neurons [J]. J Physiol, 1998, 506 ( Pt 3): 665-78.
[41] DUFFIELD M D, RYCHKOV G Y, BRETAG A H, ROBERTS M L. Zinc inhibits human ClC-1 muscle chloride channel by interacting with its common gating mechanism [J]. J Physiol, 2005, 568(Pt 1): 5-12.
[42] LIN Y W, LIN C W, CHEN T Y. Elimination of the slow gating of ClC-0 chloride channel by a point mutation [J]. J Gen Physiol, 1999, 114(1): 1-12.
[43] ZUNIGA L, NIEMEYER M I, VARELA D, et al. The voltage-dependent ClC-2 chloride channel has a dual gating mechanism [J]. J Physiol, 2004, 555(Pt 3): 671-82.
[44] FOX G Q, RICHARDSON G P. The developmental morphology of Torpedo marmorata: electric organ--myogenic phase [J]. J Comp Neurol, 1978, 179(3): 677-97.
[45] STEINMEYER K, ORTLAND C, JENTSCH T J. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel [J]. Nature, 1991, 354(6351): 301-4.
[46] STEINMEYER K, KLOCKE R, ORTLAND C, et al. Inactivation of muscle chloride channel by transposon insertion in myotonic mice [J]. Nature, 1991, 354(6351): 304-8.
[47] KOCH M C, STEINMEYER K, LORENZ C, et al. The skeletal muscle chloride channel in dominant and recessive human myotonia [J]. Science, 1992, 257(5071): 797-800.
[48] RYCHKOV G Y, PUSCH M, ASTILL D S, et al. Concentration and pH dependence of skeletal muscle chloride channel ClC-1 [J]. J Physiol, 1996, 497 ( Pt 2): 423-35.
[49] TSENG P Y, BENNETTS B, CHEN T Y. Cytoplasmic ATP inhibition of CLC-1 is enhanced by low pH [J]. J Gen Physiol, 2007, 130(2): 217-21.
[50] ZHANG X D, TSENG P Y, CHEN T Y. ATP inhibition of CLC-1 is controlled by oxidation and reduction [J]. J Gen Physiol, 2008, 132(4): 421-8.
[51] ROSENBOHM A, RUDEL R, FAHLKE C. Regulation of the human skeletal muscle chloride channel hClC-1 by protein kinase C [J]. J Physiol, 1999, 514 ( Pt 3): 677-85.
[52] DELUCA A, TRICARICO D, WAGNER R, et al. Opposite Effects of Enantiomers of Clofibric Acid-Derivative on Rat Skeletal-Muscle Chloride Conductance - Antagonism Studies and Theoretical Modeling of 2 Different Receptor-Site Interactions [J]. J Pharmacol Exp Ther, 1992, 260(1): 364-8.
[53] CAMERINO D C, DELUCA A, TRICARICO D, et al. Effect of Newly Synthesized Rigid Clofibric Acid-Derivatives on Chloride Channel Conductance of Rat Skeletal-Muscle [J]. Brit J Pharmacol, 1994, 111: P242-P.
[54] AROMATARIS E C, ASTILL D S, RYCHKOV G Y, et al. Modulation of the gating of CIC-1 by S-(-) 2-(4-chlorophenoxy) propionic acid [J]. Br J Pharmacol, 1999, 126(6): 1375-82.
[55] PARK E, MACKINNON R. Structure of the CLC-1 chloride channel from Homo sapiens [J]. Elife, 2018, 7.
[56] WANG K, PREISLER S S, ZHANG L, et al. Structure of the human ClC-1 chloride channel [J]. PLoS Biol, 2019, 17(4): e3000218.
[57] KIEFERLE S, FONG P, BENS M, et al. Two highly homologous members of the ClC chloride channel family in both rat and human kidney [J]. Proc Natl Acad Sci U S A, 1994, 91(15): 6943-7.
[58] ESTEVEZ R, BOETTGER T, STEIN V, et al. Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion [J]. Nature, 2001, 414(6863): 558-61.
[59] MATSUMURA Y, UCHIDA S, KONDO Y, et al. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel [J]. Nat Genet, 1999, 21(1): 95-8.
[60] GRILL A, SCHIESSL I M, GESS B, et al. Salt-losing nephropathy in mice with a null mutation of the Clcnk2 gene [J]. Acta Physiol (Oxf), 2016, 218(3): 198-211.
[61] SIMON D B, BINDRA R S, MANSFIELD T A, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III [J]. Nat Genet, 1997, 17(2): 171-8.
[62] BIRKENHAGER R, OTTO E, SCHURMANN M J, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure [J]. Nat Genet, 2001, 29(3): 310-4.
[63] RICKHEIT G, MAIER H, STRENZKE N, et al. Endocochlear potential depends on Cl- channels: mechanism underlying deafness in Bartter syndrome IV [J]. EMBO J, 2008, 27(21): 2907-17.
[64] MATULEF K, HOWERY A E, TAN L, et al. Discovery of potent CLC chloride channel inhibitors [J]. ACS Chem Biol, 2008, 3(7): 419-28.
[65] LIANTONIO A, IMBRICI P, CAMERINO G M, et al. Kidney CLC-K chloride channels inhibitors: structure-based studies and efficacy in hypertension and associated CLC-K polymorphisms [J]. J Hypertens, 2016, 34(5): 981-92.
[66] KOSTER A K, WOOD C A P, THOMAS-TRAN R, et al. A selective class of inhibitors for the CLC-Ka chloride ion channel [J]. Proc Natl Acad Sci U S A, 2018, 115(21): E4900-E9.
[67] STOBRAWA S M, BREIDERHOFF T, TAKAMORI S, et al. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus [J]. Neuron, 2001, 29(1): 185-96.
[68] PALMER E E, STUHLMANN T, WEINERT S, et al. De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females [J]. Mol Psychiatry, 2018, 23(2): 222-30.
[69] WEINERT S, GIMBER N, DEUSCHEL D, et al. Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration [J]. EMBO J, 2020, 39(9): e103358.
[70] STEINMEYER K, SCHWAPPACH B, BENS M, et al. Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease [J]. J Biol Chem, 1995, 270(52): 31172-7.
[71] ZDEBIK A A, ZIFARELLI G, BERGSDORF E Y, et al. Determinants of anion-proton coupling in mammalian endosomal CLC proteins [J]. J Biol Chem, 2008, 283(7): 4219-27.
[72] MEYER S, SAVARESI S, FORSTER I C, DUTZLER R. Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5 [J]. Nat Struct Mol Biol, 2007, 14(1): 60-7.
[73] GRIESCHAT M, GUZMAN R E, LANGSCHWAGER K, et al. Metabolic energy sensing by mammalian CLC anion/proton exchangers [J]. EMBO Rep, 2020, 21(6): e47872.
[74] MANSOUR-HENDILI L, BLANCHARD A, LE POTTIER N, et al. Mutation Update of the CLCN5 Gene Responsible for Dent Disease 1 [J]. Hum Mutat, 2015, 36(8): 743-52.
[75] NOVARINO G, WEINERT S, RICKHEIT G, JENTSCH T J. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis [J]. Science, 2010, 328(5984): 1398-401.
[76] POET M, KORNAK U, SCHWEIZER M, et al. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6 [J]. Proc Natl Acad Sci U S A, 2006, 103(37): 13854-9.
[77] ZIFARELLI G, PUSCH M, FONG P. Altered voltage-dependence of slowly activating chloride-proton antiport by late endosomal ClC-6 explains distinct neurological disorders [J]. J Physiol, 2022, 600(9): 2147-64.
[78] POLOVITSKAYA M M, BARBINI C, MARTINELLI D, et al. A Recurrent Gain-of-Function Mutation in CLCN6, Encoding the ClC-6 Cl(-)/H(+)-Exchanger, Causes Early-Onset Neurodegeneration [J]. Am J Hum Genet, 2020, 107(6): 1062-77.
[79] KORNAK U, KASPER D, BOSL M R, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man [J]. Cell, 2001, 104(2): 205-15.
[80] CHALHOUB N, BENACHENHOU N, RAJAPUROHITAM V, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human [J]. Nat Med, 2003, 9(4): 399-406.
[81] WU J Z, ZEZIULIA M, KWON W, et al. ClC-7 drives intraphagosomal chloride accumulation to support hydrolase activity and phagosome resolution [J]. J Cell Biol, 2023, 222(6).
[82] SCHRECKER M, KOROBENKO J, HITE R K. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1 [J]. Elife, 2020, 9.
[83] ZHANG S, LIU Y, ZHANG B, et al. Molecular insights into the human CLC-7/Ostm1 transporter [J]. Sci Adv, 2020, 6(33): eabb4747.
[84] ENZ R, ROSS B J, CUTTING G R. Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina [J]. J Neurosci, 1999, 19(22): 9841-7.
[85] LAN W Z, ABBAS H, LAM H D, et al. Contribution of a time-dependent and hyperpolarization-activated chloride conductance to currents of resting and hypotonically shocked rat hepatocytes [J]. Am J Physiol Gastrointest Liver Physiol, 2005, 288(2): G221-9.
[86] NEHRKE K, ARREOLA J, NGUYEN H V, et al. Loss of hyperpolarization-activated Cl(-) current in salivary acinar cells from Clcn2 knockout mice [J]. J Biol Chem, 2002, 277(26): 23604-11.
[87] BOUYER G, EGEE S, THOMAS S L. Toward a unifying model of malaria-induced channel activity [J]. Proc Natl Acad Sci U S A, 2007, 104(26): 11044-9.
[88] CATALAN M, CORNEJO I, FIGUEROA C D, et al. ClC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization [J]. Am J Physiol Gastrointest Liver Physiol, 2002, 283(4): G1004-13.
[89] SANCHEZ-RODRIGUEZ J E, DE SANTIAGO-CASTILLO J A, CONTRERAS-VITE J A, et al. Sequential interaction of chloride and proton ions with the fast gate steer the voltage-dependent gating in ClC-2 chloride channels [J]. J Physiol, 2012, 590(17): 4239-53.
[90] SANCHEZ-RODRIGUEZ J E, DE SANTIAGO-CASTILLO J A, ARREOLA J. Permeant anions contribute to voltage dependence of ClC-2 chloride channel by interacting with the protopore gate [J]. J Physiol, 2010, 588(Pt 14): 2545-56.
[91] DE JESUS-PEREZ J J, CASTRO-CHONG A, SHIEH R C, et al. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy [J]. J Gen Physiol, 2016, 147(1): 25-37.
[92] ARREOLA J, BEGENISICH T, MELVIN J E. Conformation-dependent regulation of inward rectifier chloride channel gating by extracellular protons [J]. J Physiol, 2002, 541(Pt 1): 103-12.
[93] JORDT S E, JENTSCH T J. Molecular dissection of gating in the ClC-2 chloride channel [J]. EMBO J, 1997, 16(7): 1582-92.
[94] CAPDEVILA-NORTES X, JEWORUTZKI E, ELORZA-VIDAL X, et al. Structural determinants of interaction, trafficking and function in the ClC-2/MLC1 subunit GlialCAM involved in leukodystrophy [J]. J Physiol, 2015, 593(18): 4165-80.
[95] HOEGG-BEILER M B, SIRISI S, OROZCO I J, et al. Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction [J]. Nat Commun, 2014, 5: 3475.
[96] JEWORUTZKI E, LAGOSTENA L, ELORZA-VIDAL X, et al. GlialCAM, a CLC-2 Cl(-) channel subunit, activates the slow gate of CLC chloride channels [J]. Biophys J, 2014, 107(5): 1105-16.
[97] BOSL M R, STEIN V, HUBNER C, et al. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption [J]. EMBO J, 2001, 20(6): 1289-99.
[98] CORTEZ M A, LI C, WHITEHEAD S N, et al. Disruption of ClC-2 expression is associated with progressive neurodegeneration in aging mice [J]. Neuroscience, 2010, 167(1): 154-62.
[99] EDWARDS M M, MARIN DE EVSIKOVA C, COLLIN G B, et al. Photoreceptor degeneration, azoospermia, leukoencephalopathy, and abnormal RPE cell function in mice expressing an early stop mutation in CLCN2 [J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 3264-72.
[100] DEPIENNE C, BUGIANI M, DUPUITS C, et al. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study [J]. Lancet Neurol, 2013, 12(7): 659-68.
[101] GIORGIO E, VAULA G, BENNA P, et al. A novel homozygous change of CLCN2 (p.His590Pro) is associated with a subclinical form of leukoencephalopathy with ataxia (LKPAT) [J]. J Neurol Neurosurg Psychiatry, 2017, 88(10): 894-6.
[102] FERNANDES-ROSA F L, DANIIL G, OROZCO I J, et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism [J]. Nat Genet, 2018, 50(3): 355-61.
[103] PUSCH M, LIANTONIO A, BERTORELLO L, et al. Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives [J]. Mol Pharmacol, 2000, 58(3): 498-507.
[104] KOSTER A K, REESE A L, KURYSHEV Y, et al. Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel [J]. Proc Natl Acad Sci U S A, 2020, 117(51): 32711-21.
[105] THOMPSON C H, OLIVETTI P R, FULLER M D, et al. Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels [J]. J Biol Chem, 2009, 284(38): 26051-62.
[106] ALAM A, LOCHER K P. Structure and Mechanism of Human ABC Transporters [J]. Annu Rev Biophys, 2023, 52: 275-300.
[107] NIELSEN M J, RASMUSSEN M R, ANDERSEN C B, et al. Vitamin B12 transport from food to the body's cells--a sophisticated, multistep pathway [J]. Nat Rev Gastroenterol Hepatol, 2012, 9(6): 345-54.
[108] ZHANG Z, LIU F, CHEN J. Conformational Changes of CFTR upon Phosphorylation and ATP Binding [J]. Cell, 2017, 170(3): 483-91 e8.
[109] CHENG S H, GREGORY R J, MARSHALL J, et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis [J]. Cell, 1990, 63(4): 827-34.
[110] JIA S, TAYLOR-COUSAR J L. Cystic Fibrosis Modulator Therapies [J]. Annu Rev Med, 2023, 74: 413-26.
[111] DAS S, JAYARATNE R, BARRETT K E. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea [J]. Cell Mol Gastroenterol Hepatol, 2018, 6(1): 33-45.
[112] VERKMAN A S, LUKACS G L, GALIETTA L J. CFTR chloride channel drug discovery--inhibitors as antidiarrheals and activators for therapy of cystic fibrosis [J]. Curr Pharm Des, 2006, 12(18): 2235-47.
[113] SONAWANE N D, MUANPRASAT C, NAGATANI R, JR., et al. In vivo pharmacology and antidiarrheal efficacy of a thiazolidinone CFTR inhibitor in rodents [J]. J Pharm Sci, 2005, 94(1): 134-43.
[114] VERKMAN A S, SYNDER D, TRADTRANTIP L, et al. CFTR inhibitors [J]. Curr Pharm Des, 2013, 19(19): 3529-41.
[115] MA T, THIAGARAJAH J R, YANG H, et al. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion [J]. J Clin Invest, 2002, 110(11): 1651-8.
[116] DUAN Y, LI G, XU M, et al. CFTR is a negative regulator of gammadelta T cell IFN-gamma production and antitumor immunity [J]. Cell Mol Immunol, 2021, 18(8): 1934-44.
[117] LIU M, LIN Z, WANG Y, et al. High cystic fibrosis transmembrane conductance regulator expression in childhood B-cell acute lymphoblastic leukemia acts as a potential therapeutic target [J]. Transl Cancer Res, 2022, 11(3): 436-43.
[118] ZHANG Z, CHEN J. Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator [J]. Cell, 2016, 167(6): 1586-97 e9.
[119] FIEDORCZUK K, CHEN J. Mechanism of CFTR correction by type I folding correctors [J]. Cell, 2022, 185(1): 158-68 e11.
[120] FIEDORCZUK K, CHEN J. Molecular structures reveal synergistic rescue of Delta508 CFTR by Trikafta modulators [J]. Science, 2022, 378(6617): 284-90.
[121] PAMPALONI N P, LOTTNER M, GIUGLIANO M, et al. Single-layer graphene modulates neuronal communication and augments membrane ion currents [J]. Nat Nanotechnol, 2018, 13(8): 755-64.
[122] ZHONG S, NAVARATNAM D, SANTOS-SACCHI J. A genetically-encoded YFP sensor with enhanced chloride sensitivity, photostability and reduced ph interference demonstrates augmented transmembrane chloride movement by gerbil prestin (SLC26a5) [J]. PLoS One, 2014, 9(6): e99095.
[123] HE M, YE W, WANG W J, et al. Cytoplasmic Cl(-) couples membrane remodeling to epithelial morphogenesis [J]. Proc Natl Acad Sci U S A, 2017, 114(52): E11161-E9.
[124] SAHA S, PRAKASH V, HALDER S, et al. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells [J]. Nat Nanotechnol, 2015, 10(7): 645-51.
[125] LIN S, KE M, ZHANG Y, et al. Structure of a mammalian sperm cation channel complex [J]. Nature, 2021, 595(7869): 746-50.
[126] HE Y, NING T, XIE T, et al. Large-scale production of functional human serum albumin from transgenic rice seeds [J]. Proc Natl Acad Sci U S A, 2011, 108(47): 19078-83.
[127] CHOY B C, CATER R J, MANCIA F, PRYOR E E, JR. A 10-year meta-analysis of membrane protein structural biology: Detergents, membrane mimetics, and structure determination techniques [J]. Biochim Biophys Acta Biomembr, 2021, 1863(3): 183533.
[128] YOU X, ZHANG X, CHENG J, et al. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex [J]. Nature, 2023, 616(7955): 199-206.
[129] YAO X, FAN X, YAN N. Cryo-EM analysis of a membrane protein embedded in the liposome [J]. Proc Natl Acad Sci U S A, 2020, 117(31): 18497-503.
[130] LEE H J, LEE H S, YOUN T, et al. Impact of novel detergents on membrane protein studies [J]. Chem-Us, 2022, 8(4): 980-1013.
[131] LE BON C, MICHON B, POPOT J L, ZOONENS M. Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy [J]. Q Rev Biophys, 2021, 54: e6.
[132] XU Y, DANG S. Recent Technical Advances in Sample Preparation for Single-Particle Cryo-EM [J]. Front Mol Biosci, 2022, 9: 892459.
[133] SCHERES S H. RELION: implementation of a Bayesian approach to cryo-EM structure determination [J]. J Struct Biol, 2012, 180(3): 519-30.
[134] PUNJANI A, RUBINSTEIN J L, FLEET D J, BRUBAKER M A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination [J]. Nat Methods, 2017, 14(3): 290-6.
[135] PUNJANI A, ZHANG H, FLEET D J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction [J]. Nat Methods, 2020, 17(12): 1214-21.
[136] OAK A A, CHU T, YOTTASAN P, et al. Lubiprostone is non-selective activator of cAMP-gated ion channels and Clc-2 has a minor role in its prosecretory effect in intestinal epithelial cells [J]. Mol Pharmacol, 2022, 102(2): 106-15.
[137] MA T, WANG L, CHAI A, et al. Cryo-EM structures of ClC-2 chloride channel reveal the blocking mechanism of its specific inhibitor AK-42 [J]. Nat Commun, 2023, 14(1): 3424.
[138] SCHOLL U I, STOLTING G, SCHEWE J, et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II [J]. Nat Genet, 2018, 50(3): 349-54.
[139] ASHRAFI M R, AMANAT M, GARSHASBI M, et al. An update on clinical, pathological, diagnostic, and therapeutic perspectives of childhood leukodystrophies [J]. Expert Rev Neurother, 2020, 20(1): 65-84.
[140] GOPPNER C, SORIA A H, HOEGG-BEILER M B, JENTSCH T J. Cellular basis of ClC-2 Cl(-) channel-related brain and testis pathologies [J]. J Biol Chem, 2021, 296: 100074.
[141] GAITAN-PENAS H, APAJA P M, ARNEDO T, et al. Leukoencephalopathy-causing CLCN2 mutations are associated with impaired Cl(-) channel function and trafficking [J]. J Physiol, 2017, 595(22): 6993-7008.
[142] FU S J, HU M C, HSIAO C T, et al. Regulation of ClC-2 Chloride Channel Proteostasis by Molecular Chaperones: Correction of Leukodystrophy-Associated Defect [J]. Int J Mol Sci, 2021, 22(11).
[143] IMBRICI P, TRICARICO D, MANGIATORDI G F, et al. Pharmacovigilance database search discloses ClC-K channels as a novel target of the AT(1) receptor blockers valsartan and olmesartan [J]. Br J Pharmacol, 2017, 174(13): 1972-83.
[144] MILLER C. ClC chloride channels viewed through a transporter lens [J]. Nature, 2006, 440(7083): 484-9.
[145] LEISLE L, LAM K, DEHGHANI-GHAHNAVIYEH S, et al. Backbone amides are determinants of Cl(-) selectivity in CLC ion channels [J]. Nat Commun, 2022, 13(1): 7508.
[146] MILLER C. Q-cubed mutant cues clues to CLC antiport mechanism [J]. J Gen Physiol, 2021, 153(4).
[147] DE JESUS-PEREZ J J, MENDEZ-MALDONADO G A, LOPEZ-ROMERO A E, et al. Electro-steric opening of the CLC-2 chloride channel gate [J]. Sci Rep, 2021, 11(1): 13127.
[148] FAHLKE C, FISCHER M. Physiology and pathophysiology of ClC-K/barttin channels [J]. Front Physiol, 2010, 1: 155.
[149] BENNETTS B, RYCHKOV G Y, NG H L, et al. Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels [J]. J Biol Chem, 2005, 280(37): 32452-8.
[150] YAMADA T, KRZEMINSKI M, BOZOKY Z, et al. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel [J]. Biophys J, 2016, 111(9): 1876-86.
[151] STOLTING G, TEODORESCU G, BEGEMANN B, et al. Regulation of ClC-2 gating by intracellular ATP [J]. Pflugers Arch, 2013, 465(10): 1423-37.
[152] ZHANG B, ZHANG S, POLOVITSKAYA M M, et al. Molecular basis of ClC-6 function and its impairment in human disease [J]. Sci Adv, 2023, 9(41): eadg4479.
[153] LEISLE L, LUDWIG C F, WAGNER F A, et al. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity [J]. EMBO J, 2011, 30(11): 2140-52.
[154] XU M, NEELANDS T, POWERS A S, et al. CryoEM structures of the human CLC-2 voltage gated chloride channel reveal a ball and chain gating mechanism [J]. bioRxiv, 2023.
[155] GRUNDER S, THIEMANN A, PUSCH M, JENTSCH T J. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume [J]. Nature, 1992, 360(6406): 759-62.
[156] YANG Z, ZHANG X, YE S, et al. Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids [J]. Nat Commun, 2023, 14(1): 4879.
[157] YOUNG P G, LEVRING J, FIEDORCZUK K, et al. Structural basis for CFTR inhibition by CFTR(inh)-172 [J]. Proc Natl Acad Sci U S A, 2024, 121(10): e2316675121.
[158] LEVRING J, CHEN J. Structural identification of a selectivity filter in CFTR [J]. Proc Natl Acad Sci U S A, 2024, 121(9): e2316673121.

所在学位评定分委会
生物学
国内图书分类号
Q735
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778757
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
王雷. 人源氯离子通道ClC-2和CFTR的结构生物学研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930845-王雷-生物系.pdf(12447KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王雷]的文章
百度学术
百度学术中相似的文章
[王雷]的文章
必应学术
必应学术中相似的文章
[王雷]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。