中文版 | English
题名

From Lab to Science Museum: Research on and Exhibition Design of Electrolyte Additives for Lithium-ion Batteries

其他题名
从实验室到科技馆:锂离子电池电解液添加剂的研发和展览设计
姓名
姓名拼音
PEI Lulu
学号
12233201
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
CHRISTIANE MARGERITA HERR
导师单位
创新创意设计学院
论文答辩日期
2024-05-15
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

As global demand for clean energy continues to grow, lithium-ion batteries have emerged as a core technology for energy storage, garnering significant attention for performance optimization and promising future innovation potential. The development of additives plays a crucial role in enhancing battery performance, as even small amounts of additives may have a significant impact on one or more aspects of lithium-ion battery performance while barely affecting the viscosity and ion conductivity of the electrolyte. This study presents a cross-disciplinary research project with two parts, with the first part focusing on the development of new additives for lithium-ion batteries and the second part addressing the communication and innovative presentation of research findings to support science literacy and future innovation potential.

In the experimental research nickel cobalt manganese/silicon carbon (NCM/SiC) pouch cells, by comparing various additives, the results showed that difluoroethylene car bonate (DFEC), as a high-repair type electrolyte additive, exhibited significant advantages in cycle stability when added at a concentration of 3 wt%, surpassing those of traditional fluoroethylene carbonate (FEC). At room temperature (25℃) cycling tests, even after 608 cycles, the battery capacity with DFEC additive remains above 80%, with the generated solid electrolyte interface (SEI) membrane being dense and smooth, effectively reducing electrode corrosion and volume changes, significantly enhancing battery cycling durability. Thus, the DFEC additive can be considered a partial effective substitute for FEC in the NCM/SiC system.

In the research using lithium iron phosphate/Graphite (LFP/Graphite) pouch cells, a screening process was carried out for various additives, 4-trifluoromethylphenylboronic acid (4TP) emerged as a superior passivating additive; when used at a concentration of 1 wt%, it demonstrated outstanding stability under high-temperature cycling conditions at 60°C. Although the 4TP additive did not result in a decrease in the battery’s direct current internal resistance (DCIR) relative to vinylene carbonate (VC), after undergoing 370 cycles, it still managed to maintain the battery’s capacity above 80%, concurrently demonstrating a pronounced enhancement in electrode surface passivation. This improvement led to a reduction in deposit build-up and a marked increase in both the smoothness and uniformity of the electrode surface. Therefore, the 4TP additive can serve as an effective substitute for VC in the LFP/Graphite system.

The second part of this research explores ways of translating laboratory research outcomes into science museum exhibit designs to promote public understanding of scientific knowledge, meet the growing demand for technological literacy, stimulate future material innovations and applications across various sectors, and guide young people toward careers in related fields. In the global science museum domain, introducing advanced material innovation exhibits is an important complement to traditional display systems. This study proposes innovative interactive exhibit designs based on laboratory operations of lithium-ion batteries, offering engaging experiences of battery operation principles and technological innovations. Additionally, the study discusses the application of AI technology in the design domain, constructing a theoretical framework for AI-assisted design and demonstrating through examples the key role and practical value of AI technology in lithium-ion battery exhibit design.

其他摘要

随着全球对清洁能源的需求不断增长,锂离子电池作为存储技术的核心,其 性能优化和未来应用潜能备受瞩目。添加剂的开发在提升电池性能方面发挥着至 关重要的作用,少量的添加剂也可能对锂离子电池性能的一个或多个方面产生显 著影响,同时几乎不影响电解液的粘度和离子导电性。本研究开展了一项跨学科 的研究项目,包括两部分:第一部分专注于新型锂离子电池添加剂的研发,第二部 分则致力于科研成果的沟通与创新展示,以支持科学素养和未来创新潜力。

在镍钴锰酸锂/碳硅 (NCM/SiC) 软包电池的研究中,通过对多种添加剂比较,结 果显示双氟代碳酸乙烯酯 (difluoroethylene carbonate, DFEC) 作为一种高修复型电 解液添加剂,在 3 wt% 添加量下,展现出超越传统氟代碳酸乙烯酯(fluoroethylene carbonate, FEC)的显著循环稳定性优势。常温(25℃)循环测试中,DFEC 添加剂 经过长达 608 次循环后,电池容量仍能保持在 80% 以上,且生成的固体电解质界 面膜质地致密、平滑,有效降低了电极腐蚀和体积变化,显著增强了电池循环耐久 性。因此,DFEC 添加剂在 NCM/SiC 体系中可以作为 FEC 的部分有效替代。

在磷酸铁锂/石墨 (LFP/Graphite) 软包电池实验中,通过对多种添加剂的筛选, 4-三氟甲基苯基硼酸(4-trifluoromethylphenylboronic acid, 4TP)作为高钝化型添加 剂,在 1 wt% 添加量下,在 60℃ 高温循环条件下表现出了卓越的稳定性。虽然相 对碳酸亚乙烯酯(vinylene carbonate, VC)并没有降低电池的直流内阻,但是 370 次循环后,4TP 添加剂仍能使电池容量保持在 80% 以上,同时显著增强了电极表 面钝化效果,减少了沉积物积累,提升了电极表面的光滑度与均匀性。因此,4TP 添加剂在 LFP/Graphite 体系中可以作为 VC 的有效替代。

第二部分积极探索实验室研究转化为科技馆展品设计的方法,以实现科学知 识的普及,满足公众日益增长的科技认知需求,激发各界对未来材料创新应用的 思考,引导青少年关注并投身相关职业发展。在全球科技馆领域,引入先进的材料 创新成果是对传统展示体系的重要补充。本研究创新性地提出了基于锂离子电池 实验室实际操作的交互式展品设计思路,生动展现电池工作原理及技术创新。同 时,本课题还探讨了 AI 技术在设计领域的应用创新,构建了 AI 辅助设计的理论 框架,并通过实例论证了其在锂离子电池展品设计中的关键作用和实际价值。

关键词
语种
英语
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] CHU S, CUI Y, LIU N. The Path towards Sustainable Energy[J]. Nature Materials, 2017, 16(1): 16-22.
[2] YANG W. Xinhua Commentary: Adhering to Technological Innovation Leading Development Accelerating the Formation of New Quality Productivity Series Commentaries (Part One) [EB/OL]. 2024
[2024-04-01]. https://www.gov.cn/yaowen/liebiao/202309/content_6904805 .htm.
[3] China Association for Science and Technology. The China Association for Science and Technology (CAST) Notice on Issuing the“14th Five-Year Plan for the Development of the Modern Science and Technology Museum System (2021—2025)”[EB/OL]. 2021
[2023-12-08].
[4] NITTA N, WU F, LEE J T, et al. Li-ion Battery Materials: Present and Future[J]. Materials Today, 2015, 18(5): 252-264.
[5] XU J, CAI X, CAI S, et al. High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications[J]. Energy and Environmental Materials, 2023, 6(5): e12450.
[6] LU Y, RONG X, HU Y, et al. Research and Development of Advanced Battery Materials in China[J]. Energy Storage Materials, 2019, 23(1): 144-153.
[7] ABOU-RJEILY J, BEZZA I, LAZIZ N A, et al. Nonaqueous Liquid Electrolytes for Lithium Based Rechargeable Batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418.
[8] ZHANG K, LEE T H, BUBACH B, et al. Graphite Carbon-encapsulated Metal Nanoparticles Derived from Prussian Blue Analogs Growing on Natural Loofa as Cathode Materials for Rechargeable Aluminum-ion Batteries[J]. Scientific Reports, 2019, 9(1): 13665.
[9] TRAN N T T, NGUYEN D K, GLUKHOVA O E, et al. Coverage-dependent Essential Properties of Halogenated Graphene: A DFT Study[J]. Scientific Reports, 2017, 7(1): 17858.
[10] ZHANG H, YANG Y, REN D, et al. Graphite as Anode Materials: Fundamental Mechanism, Recent Progress and Advances[J]. Energy Storage Materials, 2021, 36(1): 147-170.
[11] XIN F, WHITTINGHAM M S. Challenges and Development of Tin-Based Anode with High Volumetric Capacity for Li-Ion Batteries[J]. Electrochemical Energy Reviews, 2020, 3(4):643-655.
[12] ZHANG X, WANG D, QIU X, et al. Stable High-capacity and High-rate Silicon-based Lithium Battery Anodes upon Two-dimensional Covalent Encapsulation[J]. Nature Communications,2020, 11(1): 3826.
[13] ZUO X, ZHU J, MüLLER-BUSCHBAUM P, et al. Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review[J]. Nano Energy, 2017, 31(1): 113-143.
[14] LYU Y, WU X, WANG K, et al. An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982.
[15] MANTHIRAM A. A Reflection on Lithium-Ion Battery Cathode Chemistry[J]. Nature Communications, 2020, 11(1): 1550.
[16] NOH H J, YOUN S, YOON C S, et al. Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries[J]. Journal of Power Sources, 2013, 233(1): 121-130.
[17] ABOU-RJEILY J, BEZZA I, LAZIZ N A, et al. High-rate Cyclability and Stability ofLiMn2O4Cathode Materials for Lithium-Ion Batteries from Low-cost Natural 𝛽 − MnO2[J]. Energy Storage Materials, 2020, 26(1): 423-432.
[18] NAN C, LU J, LI L, et al. Size and Shape Control of LiFePO4 Nanocrystals for Better Lithium Ion Battery Cathode Materials[J]. Nano Research, 2013, 6(7): 469-477.
[19] RAMASUBRAMANIAN B, SUNDARRAJAN S, CHELLAPPAN V, et al. Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review[J]. Batteries, 2022, 8(10): 133.
[20] GOODENOUGH J B, KYU-SUNGPARK. The Li-ion Rechargeable Battery: A Perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[21] ZHANG S, JOW T, AMINE K, et al. LiPF6–EC–EMC Electrolyte for Li-ion Battery[J]. Journal of Power Sources, 2002, 107(1): 18-23.
[22] HOLOUBEK J, LIU H, WU Z, et al. Tailoring Electrolyte Solvation for Li Metal Batteries Cycled at Ultra-low Temperature[J]. Nature Energy, 2021, 6(3): 303-313.
[23] HU Z, XIAN F, GUO Z, et al. Nonflammable Nitrile Deep Eutectic Electrolyte Enables High Voltage Lithium Metal Batteries[J]. Chemistry of Materials, 2020, 32(8): 3405-3413.
[24] CHEN X, YAO N, ZENG B S, et al. Ion–solvent Chemistry in Lithium Battery Electrolytes: From Mono-Solvent to Multi-solvent Complexes[J]. Fundamental Research, 2021, 1(4):393-398.
[25] MAUGER A, JULIEN C, PAOLELLA A, et al. A Comprehensive Review of Lithium Salts and Beyond for Rechargeable Batteries: Progress and Perspectives[J]. Materials Science and Engineering: R: Reports, 2018, 134(1): 1-21.
[26] NIU C, LEE H, CHEN S, et al. High-energy Lithium Metal Pouch Cells with Limited Anode Swelling and Long Stable Cycles[J]. Nature Energy, 2019, 4(7): 551-559.
[27] ZENG F, CHEN J, YANG F, et al. Effects of Polypropylene Orientation on Mechanical and Heat Seal Properties of Polymer-Aluminum-Polymer Composite Films for Pouch Lithium-Ion Batteries[J]. Materials, 2018, 11(1): 144.
[28] GOPINADH S V, ANOOPKUMAR V, ANSARI M J N, et al. Lithium-Ion Pouch Cells: An Overview[M]. Singapore: Springer, 2022: 209-224.
[29] PREETHICHANDRA D, SONAR P. Electrochemical Impedance Spectroscopy and Its Applications in Sensor Development and Measuring Battery Performance[J]. IEEE Sensors Journal, 2022, 22(11): 10152-10162.
[30] ZABAN A, ZINIGRAD E, AURBACH D. Impedance Spectroscopy of Li Electrodes. 4. A General Simple Model of the Li−Solution Interphase in Polar Aprotic Systems[J]. The Journal of Physical Chemistry, 1996, 100(8): 3089-3101.
[31] E.PELED, D.GOLODNITSKY, G.ARDEL. Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes[J]. Journal of The Electrochemical Society, 1997,144(8): L208-L210.
[32] ADENUSI H, CHASS G A, PASSERINI S, et al. Lithium Batteries and the Solid Electrolyte Interphase (SEI)—Progress and Outlook[J]. Advanced Energy Materials, 2023, 13(10): 2203307.
[33] XU C, LINDGREN F, PHILIPPE B, et al. Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive[J]. Chemistry of Materials, 2015, 27(7): 2591-2599.
[34] SINA M, ALVARADO J, SHOBUKAWA H, et al. Direct Visualization of the Solid Electrolyte Interphase and Its Effects on Silicon Electrochemical Performance[J]. Direct Visualization of the Solid Electrolyte Interphase and Its Effects on Silicon Electrochemical Performance, 2016,3(20).
[35] A D L, QIAN K, HE Y B, et al. Positive Film-Forming Effect of Fluoroethylene Carbonate(FEC) on High-Voltage Cycling with Three-Electrode LiCoO2/Graphite Pouch Cell[J]. Ele ctrochimica Acta, 2018, 269: 378-387.
[36] YANG S, XU X, CHENG X, et al. Columnar Lithium Metal Deposits: the Role of Non-Aqueous Electrolyte Additive[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 2007058.
[37] CHEN L, WANG K, XIE X, et al. Effect of Vinylene Carbonate (VC) as Electrolyte Additive on Electrochemical Performance of Si Film Anode for Lithium Ion Batteries[J]. Journal of Power Sources, 2007, 174(2): 538-543.
[38] DING N, XU J, YAO Y, et al. Improvement of Cyclability of Si as Anode for Li-Ion Batteries[J]. Journal of Power Sources, 2009, 192(2): 644-651.
[39] SALAH M, PATHIRANA T, DE EULATE E A, et al. Effect of vinylene carbonate electrolyte additive and battery cycling protocol on the electrochemical and cyclability performance of silicon thin-film anodes[J]. Journal of Energy Storage, 2022, 46: 103868.
[40] PEDRETTI E, IANNINI A M N. Towards Fourth-Generation Science Museums: Changing Goals, Changing Roles[J]. Canadian Journal of Science, Mathematics and Technology Education, 2020, 20: 700-714.
[41] WENTING Z. Analysis on the Dilemmas and Solutions of Science and Technology Museum Standardization Construction[J]. China Management Informationization, 2022, 25(24):189-191.
[42] DİLMEN H K, KIRCI N. Transformation of Science Museums into Science Centers as a Reflection of Active Learning in Museum Education on Architecture[J]. Uluslararası Müze Eğitimi Dergis, 2022, 4(1): 34-54.
[43] State Council. Notice on Issuing the Outline for National Scientific Literacy Action Plan (2021–2035): No. 19[EB/OL]. 2021
[2024-03-18]. https://www.gov.cn/gongbao/content/2021/content_5623051.htm.
[44] RAHIMI F B, LEVY R M, BOYD J E, et al. Hybrid Space: An Emerging Opportunity That Alternative Reality Technologies Offer to the Museums[J]. Space and Culture, 2018, 24(1):83-96.
[45] RAHIMI F B, BOYD J E, LEVY R M, et al. New Media and Space: An Empirical Study of Learning and Enjoyment Through Museum Hybrid Space[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(8): 3013-3021.
[46] DASKALAKI V V, VOUTSA M C, BOUTSOUKI C, et al. Service Quality, Visitor Satisfaction and Future Behavior in the Museum Sector[J]. Journal of Tourism, Heritage and Services Marketing, 2020, 6(1): 3-8.
[47] NAN Y, WANYING S, YU L, et al. Exploring Factors that Stimulate Curiosity Based on the Analysis of Types and Characteristics of Exhibition Items in Science and Technology Museums [J]. Journal of Natural Science Museum Research, 2021: 44-52.
[48] RUI L. Research and Application of User Interface Design for Virtual Reality Interaction Sys-tems[J]. Science Wind, 2022, 2022(25): 65-68.
[49] ALLEN S. Designs for Learning: Studying Science Museum Exhibits that Do More than En-tertain[J]. Science Education, 2004, 88(s1): s17-s33.
[50] MING C. Core Concepts, Narrative Construction, and Information Communication in Museum Exhibitions: A Case Study of Coin Displays in the “Jin Bronze Exhibition”[J]. Southeast Culture, 2022, 2022(4): 151-156.
[51] FAN C. The Study of Interface Design for Museum Mobile Learning from the Relationship Between Visitor’s Behavior Needs and Information Transmission[C]//Proceedings of the 8th International Conference on Kansei Engineering and Emotion Research: Vol. 1256. Advances in Intelligent Systems and Computing, Springer, 2020: 227-235.
[52] PIANCATELLI C, MASSI M, VOCINO A. The Role of Atmosphere in Italian Museums: Effects on Brand Perceptions and Visitor Behavioral Intentions[J]. Journal of Strategic Marketing, 2021, 29(6): 546-566.
[53] FANG C, ZHANG Y, DWORMAN M, et al. Wireality: Enabling Complex Tangible Geometries in Virtual Reality with Worn Multi-String Haptics[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Honolulu HI USA: ACM, 2020: 1-10.
[54] DONDI P, PORTA M, DONVITO A, et al. A Gaze-based Interactive System to Explore Artwork Imagery[J]. Journal on Multimodal User Interfaces, 2022, 16(1): 55-67.
[55] JEE B D, ANGGORO F K. Designing Exhibits to Support Relational Learning in a Science Museum[J]. Frontiers in Psychology, 2021, 12: 35-47.
[56] CHRISTOU A, GAO Y, NAVARAJ W T, et al. 3D Touch Surface for Interactive Pseudo‐holographic Displays[J]. Advanced Intelligent Systems, 2022, 4(2): 2000126.
[57] RAHIMI F B, BOYD J E, EISERMAN J R, et al. Museum Beyond Physical Walls: An Exploration of Virtual Reality-enhanced Experience in an Exhibition-like Space[J]. Virtual Reality, 2022, 26(4): 1471-1488.
[58] MU Z, LIU M, TAN Z, et al. On the Interactive Display of Virtual Aerospace Museum Based on Virtual Reality[C]//2018 International Conference on Robots and Intelligent System (ICRIS). Changsha, China: IEEE, 2018: 144-146.
[59] QI L, JIAWEI Y. Application of Intelligent Olfactory Perception in Home Design[J]. Decoration, 2022, 2022(9): 34-38.
[60]BRENGMAN M, WILLEMS K, GAUQUIER L D. Customer Engagement in Multi-Sensory Virtual Reality Advertising: The Effect of Sound and Scent Congruence[J]. Frontiers in Psychology, 2022, 13: 33-38.
[61] PING W, LIUJING Z, ZHEN Q, et al. Research Progress on Bionic Olfactory and Gustatory Sensing Technologies[J]. Bulletin of the Chinese Academy of Sciences, 2017, 32(12): 1313-1321.
[62] YAN L, CHANGSHU T, JINQIAO D, et al. Research Progress on Bionic Olfactory and Gustatory Sensing Technologies[J]. Journal of Functional Materials and Devices, 2022, 28(5):401- 408.
[63] MASSARANI L, NEPOTE A C, BECK J, et al. Conversations About Evolution During Family Visits to an Exhibition About Darwin in a Mexican Museum: An Analysis of Scientific Reasoning[J]. Interdisciplinary Journal of Environmental and Science Education, 2022, 18(2): e2267.
[64] RAHIMI F B, LEVY R M, BOYD J E, et al. Human Behaviour and Cognition of Spatial Exp- erience; A Model for Enhancing the Quality of Spatial Experiences in the Built Environment [J]. International Journal of Industrial Ergonomics, 2018, 68: 245-255.
[65] Shenzhen Municipal Government Website. Shenzhen Science and Technology Museum (New Venue): Building a World-Class Center for Scientific Exploration[EB/OL]. 2024
[2024-03-19]. http://www.szgm.gov.cn/xxgk/ztzl/2021nqglh/gmkxcyfxzc/content/post_9749840.html.
[66] WANG S, ZHANG J, GHARBI O, et al. Electrochemical Impedance Spectroscopy[J]. Nature Reviews Methods Primers, 2021, 1(1): 1-21.
[67] PUSHKAREVA I V, SOLOVYEV M A, BUTRIM S I, et al. On the Operational Conditions’ Effect on the Performance of an Anion Exchange Membrane Water Electrolyzer: Electrochemical Impedance Spectroscopy Study[J]. Membranes, 2023, 13(2): 192.
[68] LOMBARDO G, FOREMAN M R S J, EBIN B, et al. Determination of Hydrofluoric Acid Formation During Fire Accidents of Lithium-Ion Batteries with a Direct Cooling System Based on the Refrigeration Liquids[J]. Fire Technology, 2023, 59(5): 2375-2388.
[69] LU T, CHEN F. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
[70] HU S, ZHAO H, QIAN Y, et al. Improved high-temperature performance of LiNi0.5Co0.2Mn0.3O2/artificial graphite lithium-ion pouch cells by difluoroethylene carbonate [J/OL]. Journal of Energy Storage[J]. Journal of Energy Storage, 2022, 57: 106266.
[71] Exploratorium[EB/OL]. 2023
[2023-04-24]. https://www.exploratorium.edu/.
[72] Ontario Science Centre[EB/OL]. 2023
[2023-04-24]. https://www.ontariosciencecentre.ca/.
[73] Science Centre Singapore | Things to Do in Singapore[EB/OL]. 2023
[2023-04-24]. https: //www.science.edu.sg/.
[74] Home | Science Museum[EB/OL]. 2023
[2023-04-24]. https://www.sciencemuseum.org.uk/.
[75] Madatech, Israel National Museum of Science, Technology and Space, Haifa. - Home[EB/OL]. 2023
[2023-04-24]. https://www.madatech.org.il/en.
[76] China Science and Technology Museum[EB/OL]. 2023
[2023-04-25]. https://cstm.org.cn/.
[77] Liaoning Science and Technology Museum[EB/OL]. 2023
[2023-04-25]. http://www.lnkjg.cn /index.html.
[78] Shanghai Science and Technology Museum[EB/OL]. 2023
[2023-04-25]. https://www.science. edu.sg/.
[79] Hong Kong Science and Technology Museum[EB/OL]. 2023
[2023-05-08]. https://hk.science .museum/sc/web/scm/exhibition.html.
[80] CH’NG E, CAI S, LEOW F T, et al. Adoption and Use of Emerging Cultural Technologies in China’s Museums[J]. Journal of Cultural Heritage, 2019, 37: 170-180.
[81] SYLAIOU S, KASAPAKIS V, GAVALAS D, et al. Avatars as Storytellers: Affective Narratives in Virtual Museums[J]. Personal and Ubiquitous Computing, 2020, 24(6): 829-841.
[82] ENDOW S, MORADI H, SRIVASTAVA A, et al. Compressables: A Haptic Prototyping Toolkit for Wearable Compression-based Interfaces[C]//Designing Interactive Systems Conference 2021. Virtual Event USA: ACM, 2021: 1101-1114.
[83] China Sees Growth in Number of Popular Science Museums[EB/OL]. State Council of the People’s Republic of China
[2024-03-20]. https://english.www.gov.cn/statecouncil/ministries/2 02209/05/content_WS6315f746c6d0a757729dfa23.html.
[84] DRIBBLE. 12 AI Design Tools to Transform Your Creative Workflow[EB/OL]. 2023
[2023-07- 01]. https://dribbble.com/resources/ai-design-tools.
[85] XIYUAN Z, XINYANG M, YANG Y, et al. Melting Your Models: An Integrated AI-based Creativity Support Tool for Inspiration Evolution[C]//2022 15th International Symposium on Computational Intelligence and Design (ISCID). Hangzhou, China: IEEE, 2022: 97-101.
[86] AN H, PARK M. An AI-based Clothing Design Process Applied to an Industry-university Fashion Design Class[J]. Journal of the Korean Society of Clothing and Textiles, 2023, 47(4):666- 683.
[87] WAN Q, LU Z. GANCollage: A GAN-Driven Digital Mood Board to Facilitate Ideation in Creativity Support[C]//Proceedings of the 2023 ACM Designing Interactive Systems Conference. Pittsburgh PA USA: ACM, 2023: 136-146.
[88] RAMASUBRAMANIAN B, SUNDARRAJAN S, CHELLAPPAN V, et al. Recent Develop-ment in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review[J]. Batteries, 2022, 8(10): 133.
[89] R.BORAH, F.R.HUGHSON, J.JOHNSTON, et al. On Battery Materials and Methods[J]. Materials Today Advances, 2020, 6: 100046.
[90] ZHANG Y, CHENG S, MEI W, et al. Understanding of Thermal Runaway Mechanism of LiFePO4 Battery In-Depth by Three-Level Analysis[J]. Applied Energy, 2023, 336: 120695.

所在学位评定分委会
材料科学与工程
国内图书分类号
TM911.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778758
专题创新创意设计学院
推荐引用方式
GB/T 7714
Pei LL. From Lab to Science Museum: Research on and Exhibition Design of Electrolyte Additives for Lithium-ion Batteries[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233201-裴露露-创新创意设计学(134523KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[裴露露]的文章
百度学术
百度学术中相似的文章
[裴露露]的文章
必应学术
必应学术中相似的文章
[裴露露]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。